
Compositions of (max,+) automata ⋆

Sébastien Lahaye ∗ Jan Komenda ∗∗ Jean-Louis Boimond ∗

∗ LUNAM Université, LISA, Angers, France ([sebastien.lahaye,
jean-louis.boimond]@univ-angers.fr).

∗∗ Institute of Mathematics - Brno Branch, Czech Academy of
Sciences, Czech Republic (komenda@ipm.cz).

Abstract: Automata with weights (multiplicities) in the so called (max,+) semiring constitute
a class of timed automata. Their modeling power has been studied in Gaubert and Mairesse
(1999): at least timed safe Petri nets can be modeled by means of (max,+) automata.
In this contribution, we define compositions for (max,+) automata. The motivation is to be
able to model a complex system by composing sub-models representing its elementary parts. In
doing so we expect two benefits:

• The modeling activity should be eased and enhanced since the model can be obtained in a
modular manner with a good understanding of phenomena.

• The modeling power of (max,+) automata can be refined.

Keywords: Discrete event systems, (max,+) automata, modeling, compositions

1. INTRODUCTION

Weighted automata with weights (multiplicities) in the
idempotent semiring (R ∪ {−∞},max,+) can be viewed
as an important class of timed automata. Their modeling
power in terms of timed discrete-event systems (TDES)
is studied in Gaubert and Mairesse (1999), where it is
shown that the behavior of any safe timed Petri net can
be expressed by a so-called heap automaton, which is a
special type of (max,+)-automaton. Let us recall that safe
timed Petri net are timed Petri nets, where the marking
of any place is bounded by 1 (at most 1 token can be
at a place in any time). Recently (max,+)-automata have
been applied to performance evaluation Gaubert (1995);
Su and Woeginger (2011), scheduling Houssin (2011) and
control Komenda et al. (2009b) problems for a large class
of TDES.

This paper focuses on the modeling of TDES using
(max,+)-automata and we propose an alternative way
of modeling some (but not all) m-bounded timed Petri
nets using (max,+)-automata. The main advantage of our
approach is that it is compositional, i.e. the (max,+)-
automaton of the overall modularly structured and com-
plex TDES is obtained as asynchronous and/or syn-
chronous composition(s) of (max,+)-automata correspond-
ing to smaller subsystems. In terms of Petri nets, these
subsystems correspond to safe timed state graphs and
it is first shown these can be equivalently modeled by
deterministic (max,+) automata.

We then consider the case of asynchronous composition,
where the local timed state graphs are composed in an
asynchronous way. We compose several similar (max,+)-
automata that have isomorphic state-transition structure
(the same number of states and identical morphism ma-

⋆ This work has been partially supported by research plan
AV0Z10190503 and by project EU.ICT N.224498 (DISC).

trices), i.e. they differ only by vector of initial states (final
states are not considered here). This asynchronous product
is helpful for modeling m-bounded timed state graphs
(with m > 1) as asynchronous composition of safe timed
state graphs.

Subsequently we present the construction of the syn-
chronous product, where different local components are
related via shared events on which they must synchronize.
This is similar as composing (putting together) several
timed state graphs using common (called synchronization)
transitions. It is proven that the behavior of the product
of local (m-bounded) timed state graphs given by merging
the common (synchronization) transition is equal to the
behavior of the synchronous product of (max,+)-automata
corresponding to individual (m-bounded) timed state
graphs. Note that the synchronous product of (max,+)-
automata is a nondeterministic (max,+)-automaton de-
fined over standard union alphabet and moreover, its
number of states is smaller than the number of states in
standard synchronous products of Boolean automata, cf.
Cassandras and Lafortune (2006)) or in other approaches
to synchronous product of (max,+)-automata Buchholz
and Kemper (2003); Su et al. (2012). Indeed, in all these
products the number of states is bounded by the product
of the number of states of the component automata, while
in our case it is equal to the sum of the number of states.
This means that description of timing phenomena does not
suffer from the combinatorial state space explosion. Never-
theless, if we want to model the logical phenomena, the re-
finement by product is needed (the resulting automaton is
obtained by the tensor product with Boolean automaton of
the composition of the corresponding Boolean automata).
Note that we have already sketched this result in Lahaye
et al. (2012) with restrictions to safe timed state graphs
and on the transition structure. Let us also recall that a
synchronous composition of (max,+)-automata has been
proposed in Komenda et al. (2009a), where the product au-

tomaton is defined as a deterministic (max,+)-automaton,
but over an extended alphabet that is composed of tuples
of strings of events that can be executed in parallel. Since
the resulting (max,+)-automaton is deterministic, this
product finds it application in decentralized supervisory
control of (max,+)-automata, while the product proposed
in this paper is better suited for verification and perfor-
mance evaluation.

The paper is organised as follows. In the following section
preliminaries necessary to understand the paper are briefly
recalled. In Section 3 we study the modeling power of
deterministic (max,+)-automata. Section 4 is dedicated
to the definition of asynchronous product of (max,+)-
automata. In section 5, synchronous product of (max,+)-
automata is introduced and its properties are discussed.
Finally, in section 6 concluding remarks with hints on fu-
ture extensions and applications of our modeling approach
are given.

2. PRELIMINARIES

The necessary concepts and results about idempotent
semirings, (max,+) automata and Petri nets are briefly
recalled in this section. For some more exhaustive pre-
sentations, the reader is invited to consult the references
Baccelli et al. (1992), Gaubert (1995) and David and Alla
(2010).

Definition 1. (dioid). A dioid is a semiring in which the
addition ⊕ is idempotent. The addition (resp, the multi-
plication ⊗) has a unit element ε (resp, e).

Example 1. The set (R∪{−∞}) with the maximum play-
ing the role of addition and conventional addition playing
the role of multiplication is a dioid, denoted Rmax, with
e = 0 and ε = −∞.
The set of n×nmatrices with coefficients inRmax, endowed
with the matrix addition and multiplication conventionally
defined from ⊕ and ⊗, is also a dioid, denoted R

n×n
max . The

zero element for the addition is the matrix denoted εn
and exclusively composed of ε (= −∞). We denote In
the zero element of the multiplication, which is the matrix
with e (= 0) on the diagonal and ε (= −∞) elsewhere.
Note that any 1× n vector can be embedded in this dioid
by adding n − 1 lines full of ε but this construction is
abusively omitted in the following, and the coefficients
equal to ε in the matrices will be replaced by ’·’ to lighten
the presentation.

Example 2. Formal languages over a finite alphabet A are
subsets of the free monoid A∗, which is composed of finite
sequences of letters (called words) from A. The set of
formal languages, with the union of languages playing the
role of addition and concatenation of languages playing the
role of multiplication, is a dioid, denoted (Pwr(A∗),∪, .).
The zero language is 0 = {}, the unit language is denoted
1 = {ǫ} where ǫ is the empty (zero length) string.

Automata with multiplicities in the Rmax semiring are
called (max,+) automata.

Definition 2. ((max,+) automaton). A (max,+) automa-
ton G is a quadruple (Q,A, α, µ) where 1

1 Without loss of generality and in order to make the presentation
lighter, this definition omits to distinguish the marked states.

• Q and A are finite sets of states and of events ;

• α ∈ R
1×|Q|
max is such that αq 6= ε if q is an initial state ;

• µ : A∗ → R
|Q|×|Q|
max is a morphism specified by the

family of matrices µ(a) ∈ R
|Q|×|Q|
max , a ∈ A, and for a

string w = a1 . . . an, we have

µ(w) = µ(a1 . . . an) = µ(a1) . . . µ(an),

where the matrix multiplication involved here, is the

one of R
|Q|×|Q|
max . A coefficient [µ(a)]qq′ 6= εmeans that,

from state q, the occurrence of event a causes a state
transition to state q′.

We restrict our attention to (max,+) automata in which
the initial delays (that is the coefficients in α different
from ε) are all equal to e = 0. The vector of final delays is
not considered, hence all states can be thought of as final
states (as is the case for heap automata). Consequently, the
underlying languages of (max,+) automata (as supports of
formal power series they recognize) will always be prefix-
closed.

Example 3. Figure 1 is the typical graphical representa-
tion which can be associated with every (max,+) automa-
ton:

• the nodes correspond to states q ∈ Q ;
• an edge exists from state q ∈ Q to state q′ if
there exists an event a ∈ A such that [µ(a)]qq′ 6=
ε : it represents the state transition when event a
occurs and the value of [µ(a)]qq′ is interpreted as the
duration associated to event a (namely, the activation
time of event a before it can occur) ;

• an input edge symbolizes an initial state.

For this example, we have Q = {I, II}, A = {a, b, c}, and

α = (· e) , µ(a) =

(

· ·
2 ·

)

, µ(b) =

(

· 1
· ·

)

, µ(c) =

(

3 ·
· ·

)

.

The possible events sequences are the strings: a, ac, ab, acc,
acb, aba, . . ., i.e. the underlying language of the (max,+)
automata is the prefix-closure of L = (ac∗b)∗.

III

a/2

b/1

c/3

Fig. 1. A (max,+) automaton.

A (max,+) automaton is said to be deterministic (resp.
transition-deterministic) if the following conditions are
(resp. only the second condition is) satisfied:

(1) it has a unique initial state, namely, there is a unique
q ∈ Q such that αq 6= ε ;

(2) from each state, the occurrence of an event cannot
induce several possible state transitions, namely, if
for all a ∈ A each line of µ(a) contains at most one
element not equal to ε.

Note that the term ”transition-deterministic” is intro-
duced for lack of having found an equivalent term in
the literature. An automaton corresponding to a finite

union of deterministic ones (called ”finite union of se-
quential automata” in Klimann et al. (2004)) is a partic-
ular transition-deterministic automaton. Some less trivial
transition-deterministic automata are introduced in sec-
tion 4.

We define xG(w) ∈ R
1×|Q|
max for w ∈ A∗ by

xG(w) = αµ(w).

An element [xG(w)]q is interpreted as the date at which
state q is reached at the conclusion of events sequence w
starting from an initial state (with the convention that
[xG(w)]q = ε if state q is not reached from an initial
state using the input sequence w). The elements of xG

are generalized daters, and we have
{

xG(ǫ) = α,
xG(wa) = xG(w)µ(a).

(1)

Definition 3. (Petri net). A Petri net is a 4-tuple G =
(P , T ,F ,M), in which P is a finite set of places (repre-
sented by circles), T is a finite set of transitions (repre-
sented by bars), F ⊆ (P × T) ∪ (T × P) is a relation
between places and transitions (represented by arrows),
M : P → N defines the initial marking of places (repre-
sented by tokens).

The marking evolves according to the following rules:

(1) Transition a is enabled at M if there exists at least
one token in each of its input places.

(2) An enabled transition a can fire. The firing of a
transforms M into M ′ by removing one token from
each of the input places and adding one token in each
of the output places of a.

We say that a word w = a1a2 . . . an ∈ T ∗ is a firing
sequence starting from markingM0 if there is a sequence of
markings M1M2 . . .Mn such that transition ai is enabled
at Mi−1 and its firing transforms Mi−1 into Mi. We call
language of the Petri net the set L ⊂ T ∗ of firing sequences
starting from initial marking M0.

A Petri net is said to be safe (resp. m-bounded) if for all
accessible marking each place contains at most one token
(resp. m tokens).

For transition a ∈ T , •a (resp. a•) denotes the set of its
input (resp. output) places. If for all the transitions these
sets are singletons, then the Petri net is a state graph.

We consider T-timed Petri nets in which a firing finite
duration τ is associated with each transition a: τ is the
minimal time that must elapse, starting from the time at
which a is enabled, until this transition can fire.

Afterwards, several assumptions on the functioning of
Petri nets are adopted:

• a token from the initial marking is supposed to have
arrived in the Petri net at time instant 0;

• a transition is fired as soon as possible (earliest
functioning rule) ;

• if a place has several output transitions, then for each
token in this place it is required to decide on which
transition is to fire (that is, in case of a conflict).
In the present work, all the logically feasible choices
are considered for the decision (preselection policy, in

contrast to models for which the decision is rather
based on time considerations).

We define xG(w) ∈ R
1×|P|
max , the vector of variables asso-

ciated with places q ∈ P and function of firing sequence
w ∈ T ∗ by

[xG(w)]q =
{

instant at which the last token arrived in q
(assuming that it is still contained in q),
ε if q does not contain any token.

(2)

3. MODELING USING DETERMINISTIC (MAX,+)
AUTOMATA

In the present contribution, deterministic (max,+) au-
tomata will be used as elementary bricks for the modeling
of TDES. The following proposition (also presented in
Lahaye et al. (2012)) states their modeling power in terms
of timed Petri nets.

Proposition 1. Deterministic (max,+) automata and safe
timed state graphs have the same modeling power.

Proof. It is first shown that every safe timed state graph
G = (P , T ,F ,M) can be transformed into a deterministic
(max,+) automaton G = (Q,A, α, µ) with

xG(w) = xG(w),

for all w corresponding respectively to a firing sequence in
G and a state transition sequence in G. The transformation
can be done as follows :

(1) a state in Q is associated with each place in P ;
(2) the initial state (i.e., the unique q ∈ Q such that

αq = e) is associated with the only place containing
a token (i.e., the unique q ∈ P such that M(q) 6= 0
and M(q) = 1) ;

(3) an event a ∈ A is associated with each transition
a ∈ T . The morphism of G is then defined by ∀a ∈ A,
∀q, q′ ∈ Q,

[µ(a)]qq′ =






τ if q = •a, q′ = a•

and the firing duration of a is equal to τ,
ε otherwise.

Since G is a state graph, •a and a• are singletons, and
the morphism defined this way is such that for all q, there
exists at most one q′ such that [µ(a)]qq′ 6= ε. In other
words, the derived automaton is deterministic.

For the empty string w = ǫ we have by construction

[xG(ǫ)]q = αq = [xG(ǫ)]q =

{

0 if M(q) = 1,
ε otherwise.

Let us assume that equality

xG(w) = xG(w),

is true at the conclusion of firing sequence (resp. state
transition sequence) w in G (resp. in G), and let us check
that xG(wa) = xG(wa), ∀a. Since G is a state graph, •a and
a• are singletons and we denote q = •a and q′ = a•. Let
τ be the firing duration associated with a, this transition
is enabled from time instant [xG(w)]q and is fired at τ +
[xG(wa)]q , hence

[xG(wa)]q′ = τ + [xG(w)]q .

Only place q′ contains a token at the conclusion of firing
sequence wa and then [xG(wa)]i = ε for i ∈ P and i 6= q′.

In automaton G obtained from G as explained above, we
have by construction [µ(a)]qq′ = τ and it is the only
coefficient in µ(a) different from ε. From (3), we have
xG(wa) = xG(w)µ(a), hence [xG(wa)]q′ = τ + [xG(w)]q
and [xG(wa)]i = ε for i ∈ Q and i 6= q′.

In a symmetric way, a deterministic (max,+) automaton
G = (Q,A, α, µ) can be transformed into a safe timed state
graph G = (P , T ,F ,M), and it can be checked that

xG(w) = xG(w),

for all w.

Example 4. Figure 2 shows a safe timed state graph which
is equivalent to the deterministic (max,+) automaton of
figure 1.

ab1 2

c

3

Fig. 2. A safe timed state graph.

4. ASYNCHRONOUS COMPOSITION

We first define a so-called asynchronous composition of
several (max,+) automata admitting isomorphic state-
transition structures µ. This enables us to model similar
(max,+) automata operating simultaneously and indepen-
dently (asynchronously).

Definition 4. (Asynchronous composition).
Let Gi = (Qi, A, αi, µi), i = 1, . . . ,m, be several (max,+)
automata defined on the same set of events A but with
disjoint sets of states. We assume that for each i, j ∈
{1, 2, . . . ,m}, i 6= j, we have |Qi| = |Qj|, and µi(a) =
µj(a) for all a ∈ A (in other words, their representations
possibly differ only through vectors αi, i = 1, . . . ,m), that
we denote indifferently |Q| and µ(a). Their asynchronous
composition is the (max,+) automaton denoted GG1...Gm

defined on set of events A with

• Q1 ∪Q2 ∪ . . . ∪Qm as set of states,
• αG1...Gm = (α1 α2 . . . αm),
• for a ∈ A,

µG1...Gm(a) =



















ε|Q| ε|Q| µ(a)

I|Q|

. . . ε|Q|

ε|Q| I|Q|

. . .
...

...
. . .

. . .
. . .

...
ε|Q| . . . ε|Q| I|Q| ε|Q|



















.

Note that figure 5 aims at illustrating this definition.

Proposition 2. If (max,+) automata Gi = (Qi, A, αi, µi),
i = 1, . . . ,m, are transition-deterministic, then their
asynchronous composition GG1...Gm is also transition-
deterministic.

q1

a/τ

q′1

in G1

q2

a/τ

q′2

in G2

q1

q′1

in G1 . . . G2

q2

a/τ

q′2

a/0

a/0

Fig. 3. Illustration of the definition of the asynchronous
composition.

Proof. It is straightforward to check that for all a ∈ A
each line of µG1...Gm(a) contains at most one element
different from ε if µi(a) satisfies the same property and,
in particular, if Gi = (Qi, A, αi, µi), i = 1, . . . ,m, are
transition-deterministic. Note that there are at least m
states q ∈ Q1 ∪Q2 ∪ . . . ∪Qm such that αG1...Gm

q 6= ε.

Let us consider a m-bounded timed state-graph G. We
associate m safe state-graphs Gi to G, each corresponding
to G in which only one of the initial tokens has been kept.
We denote Mi the vectors of initial markings and Li,
the languages associated to Gi, i = 1, . . . ,m. According
to proposition 1, these state graphs admit equivalent
deterministic (max,+) automata Gi = (Qi, A, αi, µi), i =
1, . . . ,m, defined on the same set of events, with disjoint
sets of states and such that for each i, j ∈ {1, 2, . . . ,m},
i 6= j, |Qi| = |Qj | and µi(a) = µj(a) for all a ∈ A.

The next proposition states that the asynchronous prod-
uct (cf. definition 4) of these equivalent deterministic au-
tomata Gi can be used to evaluate the daters associated
with safe state graphs Gi.

Proposition 3. Let xGG1...Gm be the vector of generalized
defined for (max,+) automaton GG1...Gm and satisfying
the underlying recurrence

{

xGG1...Gm (ǫ) = αG1...Gm ,
xGG1...Gm (wa) = xGG1...Gm (w)µG1...Gm(a).

(3)

Then xGG1...Gm and vector of generalized daters associated
to state graphs Gi, i = 1, . . . ,m are related as follows. For
a string

w = a1,1a1,2 . . . a1,ma2,1 . . . a2,m . . . ak,1 . . . ak,j
with a1,ia2,i . . . ak,i ∈ Li for i = 1, . . . ,m,

(4)

we have

x
GG1...Gm (w) =

















xGj+1
(a1,j+1a2,j+1 . . . ak−1,j+1)

.

..
xGm

(a1,ma2,m . . . ak−1,m)
xG1

(a1,1a2,1 . . . ak,1)
..
.

xGj
(a1,ja2,j . . . ak,j)

















T

. (5)

Proof. Vector xGG1...Gm (w) is derived from definition 4 of
GG1...Gm . We then show by induction that for all j, k we
have for w defined according to (4)

x
GG1...Gm (w) =

















αj+1µ(a1,j+1a2,j+1 . . . ak−1,j+1)
.
..

αmµ(a1,ma2,m . . . ak−1,m)
α1µ(a1,1a2,1 . . . ak,1)

...
αjµ(a1,ja2,j . . . ak,j)

















T

. (6)

In fact, for k = 1, j = 1, we have w = a1,1 and

xGG1...Gm (a1,1) = αG1...GmµG1...Gm(a1,1)
= (α2 . . . αm α1µ(a1,1)) .

Let us assume that (6) is satisfied for w given by (4), we
then check that (6) is also satisfied for wak,j+1:

xGG1...Gm (wak,j+1)
= xGG1...Gm (w)µG1...Gm(ak,j+1)

=



















αj+2µ(a1,j+2a2,j+2 . . . ak−1,j+2)
...

αmµ(a1,ma2,m . . . ak−1,m)
α1µ(a1,1a2,1 . . . ak,1)

...
αj+1µ(a1,j+1a2,j+1 . . . ak,j+1)



















T

.

In (6), each term αjµ(a1,ja2,j . . . ak,j) corresponds to
xGj

(a1,ja2,j . . . ak,j), that is to the generalized dater asso-
ciated with deterministic (max,+) automaton Gj . As Gj

is equivalent to safe state graph Gj , this term is equal to
xGj

(a1,ja2,j . . . ak,j).

Remark 1.

• Each vector of daters xGj
in (5) describes the evo-

lution ”in isolation” of one of the m tokens in m-
bounded state graph G. With the considered assump-
tions on Petri nets, them tokens evolve independently
in G and equation (5) then allows us to model prop-
erly the behavior of this m-bounded timed Petri net.

• Note that only strings corresponding to interlace-
ments of words of Li (as defined in (4)) are considered
in (5) and not all w ∈ A∗. The set of these strings can
be obtained by means of the prefix closure of the free
product of L1, L2 . . . Lm (as defined for example in
(Sakarovitch, 2003, sec. 6.1)).

Example 5. Let us consider 2-bounded state graph G rep-
resented in figure 4. Associated safe state graphs G1 and
G2 are also represented in the figure, and their equivalent
deterministic (max,+) automata G1 and G2 are defined by

α1 = (e ·) , α2 = (· e) ,

µi(a) =

(

· ·
2 ·

)

, µi(b) =

(

· 1
· ·

)

, µi(c) =

(

3 ·
· ·

)

,

for i = 1, 2.

Their asynchronous composition GG1...G2 is defined by

ab1 2

c

3

ab1 2

c

3

ab1 2

c

3

G

G1

G2

P2

P1

P2,1

P1,1

P2,2

P1,2

Fig. 4. A 2-bounded state graph G and associated safe
state graphs G1, G2.

αG1...G2 = (e · · e) , µG1...G2(a) =







· · · ·
· · 2 ·
e · · ·
· e · ·






,

µG1...G2(b) =







· · · 1
· · · ·
e · · ·
· e · ·






, µG1...G2(c) =







· · 3 ·
· · · ·
e · · ·
· e · ·






.

For example, we obtain xGG1...G2 (cacbba) = (· 7 5 ·).
Sub-vector (· 7) (resp. (5 ·)) corresponds to xG1

(ccb)
(resp. xG2

(aba)) which is the dater associated to G1 (resp.
G2), and it indicates that a token arrives at time instant 7
in P2,1 (resp. at 5 in P1,2) and no token is contained in P1,1

(resp. in P2,2) at the conclusion of firing sequence ’ccb’ in
G1 (resp. ’aba’ in G2).

5. SYNCHRONOUS COMPOSITION OF
TRANSITION-DETERMINISTIC (MAX,+)

AUTOMATA

Synchronous composition of transition-deterministic (max,+)
automata is now defined. To have a synthetic presen-
tation, we consider only two (max,+) automata G1 =
(Q1, A1, α1, µ1) and G2 = (Q2, A2, α2, µ2) in this section,
knowing that all the definitions and results can easily be
extended to the composition of more than two automata.

Definition 5. We denote G1||G2 = (Q,A, α, µ) the au-
tomaton resulting from the synchronous product ofG1 and
G2 defined by:

Q = Q1 ∪Q2,A = A1 ∪ A2,α = (α1 α2) ,

µ(a) =

(

µ11 µ12

µ21 µ22

)

,

in which each block µij is a |Qi| × |Qj | matrix defined as
follows:

• for i = j :

µii =

{

µi(a), if a ∈ Ai;
I|Qi|, otherwise.

q1

a/τ

q′1

case a ∈ (A1 ∩A2)

in G1

q2

a/τ

q′2

in G2

q1

a/τ

q′1

in G1||G2

q2

a/τ

q′2

a/τ

a/τ

q1

a/τ

q′1

case a ∈ A1 \ (A1 ∩ A2)

in G1

q2

q′2

in G2

q1

a/τ

q′1

in G1||G2

q2

a/0 q′2

a/0

Fig. 5. Illustration of the definition of the synchronous
composition.

• for i 6= j :

[µij]kl =











τ, if a ∈ A1 ∩ A2 and ∃q′k ∈ Qi, q
′
l ∈ Qj

s.t. [µi(a)]qk,q′k = [µj(a)]q′
l
,ql = τ(6= ε)

with τ 6= 0;
ε, otherwise.

Note that figure 5 aims at illustrating this definition.

The next proposition states the modeling power obtained
by means of synchronous product of transition determin-
istic (max,+) automata. It is expressed as a Petri net
resulting from the merging of common transitions in two
sub-nets.

Proposition 4. Let G1 and G2 be the two transition-
deterministic automata obtained to model two bounded
state graphs G1 and G2 (cf. definition 4 and proposition
3). We denote G1||G2 the Petri net obtained from G1 and
G2 by merging the transitions corresponding to common
events a ∈ A1 ∩ A2 of G1 and G2. We have :

xG1||G2
(w) = xG1||G2

(w),

for all w ∈ A∗ corresponding to a firing sequence in G1||G2

such that P1(w) (P1 is the projection on the language
defined on A1

2) and P2(w) are possible firing sequences
in G1 and G2, and in particular if G1 results from the
asynchronous composition of deterministic automata G1,1,
. . ., G1,m then P1(w) must satisfy the decomposition (4)
on languages LG1,i

, i = 1, . . . ,m.

Proof. We have by construction xG1||G2
(ǫ) = xG1||G2

(ǫ).
Let us assume that equality xG1||G2

(w) = xG1||G2
(w)

is true at the conclusion of event sequence (resp. firing
sequence) w in G1||G2 (resp. in G1||G2), and let us check
that xG1||G2

(wa) = xG1||G2
(wa), ∀a.

2 The natural projection, from A to A1 ⊆ A, is such that:

P1(a) =

{

a if a ∈ A1,

ε if a ∈ A \A1,

P1 preserves concatenation and can be extended to words (for all
word, P1 removes events (letters) in A \A1).

Let us consider first that a ∈ A1 ∩ A2 corresponds to a
shared event in G1||G2, that is a common transition a ∈ T
in G1||G2. As G1 and G2 are transition-deterministic, there
exist {q1, q

′
1} ∈ Q1 and {q2, q

′
2} ∈ Q2 such that

[µ(a)]q1q′1 = [µ(a)]q1q′2 = [µ(a)]q2q′1 = [µ(a)]q2q′2 = τ,

with τ 6= ε, τ 6= 0 and all other coefficients of lines q1
and q2 are equal to ε (see the left part of fig. 5 for an
illustration). We then have

[xG1||G2
(wa)]q′

1
= max

(

τ + [xG1||G2
(w)]q1 , τ + [xG1||G2

(w)]q2
)

,

= max
(

τ + [xG1||G2
(w)]q1 , τ + [xG1||G2

(w)]q2
)

,

[xG1||G2
(wa)]q′

2
= max

(

τ + [xG1||G2
(w)]q1 , τ + [xG1||G2

(w)]q2
)

,

= max
(

τ + [xG1||G2
(w)]q1 , τ + [xG1||G2

(w)]q2
)

.

This enables us to properly model the synchronization
operating when transition a is fired in G1||G2 (that is
xG1||G2

(wa) = xG1||G2
(wa)).

Let us now consider that a is a private event, say a ∈ A1 \
(A1 ∩ A2) (see the right part of fig. 5 for an illustration).
We then have

[xG1||G2
(wa)]q′

1
= τ + [xG1||G2

(w)]q1 = τ + [xG1||G2
(w)]q1 , (7)

for a q′
1
∈ Q1 and q′

1
∈ Q1, and

[xG1||G2
(wa)]q2 = [xG1||G2

(w)]q2 = [xG1||G2
(w)]q2 , (8)

for all q2 ∈ Q2. This enables us to properly model that
when transition a is fired in G1||G2 then the corresponding
dater in G1 is shifted due to the firing duration and that
daters in G2 are not affected.

We have the following property for sequences composed
exclusively of private events.

Proposition 5. For all u, v ∈ (A \ (A1 ∩ A2))
∗, if P1(u) =

P1(v) and P2(u) = P2(v) we then have µ(u) = µ(v).

Proof. Due to the block-diagonal (with an identity block)
structure of µ for private events, we have ∀a ∈ A1 \
(A1 ∩ A2), ∀b ∈ A2 \ (A1 ∩ A2), µ(ab) = µ(ba). This
observation can be easily extended to show the statement
of the proposition.

Now, any w ∈ A∗ can be decomposed as w =
v0a1v1 . . . anvn where ai ∈ A1 ∩ A2, i = 1, . . . , n are
common events and vi ∈ (A \ (A1 ∩ A2))

∗ are sequences
of private events. Then, it should be clear that for any
other word w′ = v′0a1v

′
1 . . . anv

′
n such that P1(vi) = P1(v

′
i)

and P2(vi) = P2(v
′
i) we have µ(w) = µ(w′) enabling us

to model that subsequences of private events are executed
simultaneously and asynchronously in each components.

Example 6. Let the Petri net depicted in figure 6 be
studied as the merging of two bounded state graphs G1

and G2 having a common transition a. The 2-bounded
state graph, denoted here G1, has been described by means
of a (max,+) automaton resulting from an asynchronous
composition in example 5. In a similar manner, 3-bounded
state graph G2 can be modeled by (max,+) automaton
(Q2, A2, α2, µ2) with

α2 = (e e e) , µ2(a) =

(

· · 2
e · ·
· e ·

)

, µ2(d) =

(

· · 4
e · ·
· e ·

)

.

According to definition 5, the synchronous composition of
these (max,+) automata (a graphical representation is fig.
7) is

ab1 2

c

3

d 4

G1

G2

P1

P2

P3

Fig. 6. A bounded timed Petri net.

α = (e · · e e e e) , µ(b) =



















· · · 1 · · ·
· · · · · · ·
e · · · · · ·
· e · · · · ·
· · · · e · ·
· · · · · e ·
· · · · · · e



















,

µ(c) =



















· · 3 · · · ·
· · · · · · ·
e · · · · · ·
· e · · · · ·
· · · · e · ·
· · · · · e ·
· · · · · · e



















, µ(d) =



















e · · · · · ·
· e · · · · ·
· · e · · · ·
· · · e · · ·
· · · · · · 4
· · · · e · ·
· · · · · e ·



















,

µ(a) =



















· · · · · · ·
· · 2 · · · 2
e · · · · · ·
· e · · · · ·
· · 2 · · · 2
· · · · e · ·
· · · · · e ·



















.

For example, we have

αµ(cdab) = αµ(dcab) = (2 · · 4 0 4 2) .

Sub-vector (2 ·) (resp (· 4)) indicates that a token ar-
rives at time instant 2 (resp. 4) in P2 (resp. in P1) at
the conclusion of the firing of transition a (resp. the firing
sequence cb) . Sub-vector (0 4 2) gives the last arrival
dates of the three tokens in P3 (the first one has not
contributed to a firing, the second has contributed to a
firing of d and the third has contributed to a firing of a).

Fig. 7. Automaton associated with Petri net of fig. 6

6. CONCLUSION

Both asynchronous and synchronous products of (max,+)-
automata are proposed and their modeling power in terms
of classes of timed Petri nets has been discussed. When

they are used in a joint way, timed Petri nets obtained
by merging common transitions of bounded timed state
graphs can be studied as illustrated in example 6. Future
investigations should make clear the whole methodology
using our compositions for the modeling a large class
of TDES (order in which the compositions should be
used,. . .). The proposed compositions also open the way to
the compositional verification and performance evaluation
of large TDES.

REFERENCES

Baccelli, F., Cohen, G., Olsder, G.J., and Quadrat, J.P.
(1992). Synchronization and Linearity. Wiley.

Buchholz, P. and Kemper, P. (2003). Weak bisimulation
for (max/+) automata and related models. J. Autom.
Lang. Comb., 8, 187–218.

Cassandras, C.G. and Lafortune, S. (2006). Introduction
to Discrete Event Systems. Springer-Verlag New York,
Inc.

David, R. and Alla, H. (2010). Discrete, continuous, and
hybrid Petri Nets (2nd edition). Springer, Paris.

Gaubert, S. (1995). Performance Evaluation of (max,+)
Automata. IEEE Transaction on Automatic Control,
vol. 40(12), 2014–2025.

Gaubert, S. and Mairesse, J. (1999). Modeling and
Analysis of Timed Petri Nets using Heaps of Pieces.
IEEE Transaction on Automatic Control, vol. 44(4),
683–698.

Houssin, L. (2011). Cyclic jobshop problem and
(max,plus) algebra. In 18th IFAC World Congress,
2717–2721. Milan, Italy.

Klimann, I., Lombardy, S., Mairesse, J., and Prieur, C.
(2004). Deciding unambiguity and sequentiality from a
finitely ambiguous max-plus automaton. Theor. Com-
put. Sci., 327.

Komenda, J., Lahaye, S., and Boimond, J.L. (2009a). Le
produit synchrone des automates (max,+). Special issue
of Journal Européen des Systèmes Automatisés (JESA),
vol. 43(7), 1033–1047.

Komenda, J., Lahaye, S., and Boimond, J.L. (2009b). Su-
pervisory Control of (max,+) Automata: A Behavioral
Approach. Discrete Event Dynamic Systems, vol. 19(4),
525–549.

Lahaye, S., Komenda, J., and Boimond, J.L. (2012).
Modélisation modulaire à l’aide d’automates (max,+).
Accepted at CIFA 2012 (Grenoble, France).

Sakarovitch, J. (2003). Éléments de théorie des automates.
Vuibert.

Su, R., van Schuppen, J., and Rooda, J. (2012). The
synthesis of time optimal supervisors by using heaps-of-
pieces. IEEE Transaction on Automatic Control, vol.
57(1), 105–118.

Su, R. and Woeginger, G.J. (2011). String execution
time for finite languages: Max is easy, min is hard.
Automatica, 47(10), 2326–2329.

