
Synchronous composition of interval weighted

automata

Jan Komenda ∗ Sébastien Lahaye ∗∗ Jean-Louis Boimond ∗∗

∗ Institute of Mathematics, Czech Academy of Sciences, Zizkova 22,
616 62 Brno, Czech Republic (e-mail: komenda@ipm.cz)

∗∗ LISA Angers, 62, Avenue Notre Dame du Lac, 49000 Angers,
France (e-mail: { sebastien.lahaye,

jean-louis.boimond}@istia.univ-angers.fr)

Abstract: Interval weighted automata are introduced as automata with weights in a product
dioid (idempotent semiring). They constitute an extension of (max,+) automata since they
enable us to model temporal constraints (instead of exact durations) for transitions. Their
synchronous composition, which coincides with the synchronous product of underlying (one
clock) timed automata, results in multi-event interval weighted automata, whose behaviors are
studied. Our approach is illustrated by an example.

Keywords: Timed automata, (max,+) automata, synchronous product

1. INTRODUCTION

In the theory of timed discrete-event systems the formal-
ism of timed automata is a very powerful reference model.
Unfortunately it suffers from several undecidability prob-
lems, see Alur and Dill (1994), that have been established
for some fundamental problems such as checking equal-
ity and inclusions of their behaviors (timed languages),
checking universality and are not closed under complemen-
tation. Hence, there is an increasing interest in studying
subclasses of timed automata.

Conceptually much simpler models are weighted automata
with weights in semirings like (max,+)-automata. These
may be viewed as special timed automata with one clock
and only lower bound on clocks. Automata with weights
in an interval based semiring then naturally correspond to
a more general class of one clock timed automata, where
both lower and upper bounds on clocks are allowed. They
extend (max,+) automata proposed in Gaubert (1995)
as (possibly nondeterministic) weighted automata with
weights (multiplicities) in the (R∪{−∞},max,+) semiring
by simply replacing this semiring by a real-interval based
semiring, namely, the product of idempotent semirings
Rmax and Rmin.

Instead of using nondeterminism to code simultaneous
execution of events, explicit synchronous composition of
deterministic interval weighted automata will be proposed
in this paper.

While defining interval weighted automata and their syn-
chronous product, it is important to understand their
modeling power and the applied semantics. With this
intention, it is pointed out that interval weighted automata
are related to Time Petri nets (TPN). TPN are derived
from Petri nets by associating holding and/or firing inter-
vals with places and transitions respectively. Because the
relation with automata is more explicit, only T-TPN (that

is with firing intervals associated with transitions) are con-
sidered. These are quite powerful timed models, because
their subclass with bounding marking is comparable to
timed automata in Cassez and Roux (2008).

Interestingly, the construction proposed in this paper cor-
responds to a class of timed automata, which is called
product interval automata (PIA) in D’Souza and Thia-
garajan (2002). They represent a nice trade-off between
tractability (fundamental problems like checking timed
language inclusion or universality are known to be decid-
able for this class of timed automata) and modeling power.

It will be shown that the synchronous product of interval
weighted automata can be recasted as interval weighted
automata over an extended alphabet. The main advantage
of our compositional constructions is that the resulting
weighted automata models are deterministic, which is not
the case for heap automata that capture resource sharing
in timed DES using nondeterministic (max,+) automata
Gaubert and Mairesse (1999). Nondeterministic weighted
automata suffer from many fundamental drawbacks, in
particular there is no finite state determinization proce-
dure, no general (state) minimization algorithm is known,
and the equality of their behaviors (rational formal power
series) is not decidable in general. It is therefore interesting
to have deterministic automata representation of timed
DES with both synchronization and resource sharing phe-
nomena.

The contribution of this paper is essentially at the mod-
elling level, but it is motivated by control applications.
In fact, the behavioral approach (based on formal power
series) proposed for the supervisory control of (max,+) au-
tomata in Komenda et al. (2009b) can be easily extended
to the framework of interval weighted automata. Com-
bined with the synchronous product of interval weighted
automata, the decentralized supervisory control of interval

weighted automata is intended to be tackled in future
works.

The paper is organized as follows. After preliminaries
given in section 2, section 3 is an introduction to inter-
val weighted automata and their algebraic behaviors. In
section 4 we discuss closely related discrete event models,
namely PIA and T-TPN. In section 5, the definition of
the synchronous product of interval weighted automata is
proposed with an example. Finally, section 6 proposes a
discussion and hints for future investigations.

2. PRELIMINARIES

In this section we recall basic notions and properties
from the theory of idempotent semirings (see Baccelli
et al. (1992) or Heidergott et al. (2005) for an exhaustive
presentation).

2.1 Dioids

Definition 1. An idempotent semiring (also called dioid)
is a set D endowed with two inner operations denoted ⊕
and ⊗. The addition ⊕ is commutative, associative, has
for unit element ε, i.e., ε ⊕ a = a for each a ∈ D, and is
idempotent: a⊕ a = a for each a ∈ D. The multiplication
⊗ is associative, has for unit element e, and distributes
over ⊕. Moreover, ε is absorbing for ⊗, i.e., ∀a ∈ D : a⊗
ε = ε⊗ a = ε.

Let us recall that any idempotent semigroup (in particular,
any dioid) is equipped with a natural order defined by:
a � b⇔ a⊕ b = b.

The simplest examples of dioids are number dioids such as
Rmax = (R∪{−∞},max,+) with idempotent addition a⊕
b = max(a, b), and conventional addition playing the role
of multiplication a⊗b (or ab when it is unambiguous)= a+
b.

The direct product of a family of semirings has the
structure of a semiring with the operations of addition
and multiplication defined componentwise (see for instance
(Golan, 1999, chap. 2)). We define below two product
dioids resulting from the direct product of Rmax with itself
and with Rmin. The elements of these dioids are pairs
which will be used to represent time intervals.

Definition 2. Imax
max is the dioid 〈(R ∪ {−∞}) × (R ∪

{−∞}),⊕,⊗〉 with:

(p1, p1)⊕ (p2, p2) = (max(p1, p2),max(p1, p2)),

(p1, p1)⊗ (p2, p2) = (p1 + p2, p1 + p2),

ε = (−∞,−∞) (zero interval) and e = (0, 0) (identity
interval).

The dual direct product is defined below.

Definition 3. Imin
max is the dioid 〈(R ∪ {−∞}) × (R ∪

{+∞}),⊕,⊗〉 with:

(p1, p1)⊕ (p2, p2) = (max(p1, p2),min(p1, p2)),

(p1, p1)⊗ (p2, p2) = (p1 + p2, p1 + p2),

ε = (−∞,+∞) (zero interval) and e = (0, 0) (identity
interval).

In Imin
max we have for instance (2, 4) ⊕ (1, 5) = (2, 4) and

(2, 3) ⊕ (4, 7) = (4, 3). Note that dioid Imin
max contains

imaginary (degenerated) intervals, where lower bound is
greater than upper bound.

We propose the following convention for notations. If one
of the dioids Imin

max or Imax
max is fixed, then the dual addition,

i.e., addition of the other dioid is denoted by ⊕′. This
means that in Imax

max we have

(p1, p1)⊕′ (p2, p2) = (max(p1, p2),min(p1, p2))

and vice versa.

Matrix dioids are introduced in the same manner as
in conventional linear algebra. The identity matrix of
(Imin

max)n×n (resp. (Imax
max)n×n) is denoted by Emin

max (resp.
Emax

max). These identity matrices have zero intervals out
of the main diagonal and unity intervals on the main
diagonal.

The notation N is reserved for the set of natural numbers
with zero. The star operation can be introduced by the
formula

a∗ =
⊕
n∈N

an,

where by convention a0 = e for any a (for instance, for
A ∈ (Imin

max)n×n we have A0 = Emin
max) and an = an−1 ⊗ a.

Among dioid structures encountered in this paper formal
power series and formal languages are very important, be-
cause these are behaviors of (interval) weighted automata
and corresponding Boolean automata. Formal languages
over a finite alphabet A are subsets of the free monoid A∗

of all finite sequences of words from A. The zero language
is 0 = {}, the unit language is 1 = {λ}, where λ is the
empty string. In the sequel we will work with the dioid of
formal power series in the non commutative variables from
A (transition labels) and coefficients from an idempotent
semiring D. This semiring will be interval based, but we do
not specify it in this section, because firstly the preliminary
results below do not depend on particular semiring and
secondly, both Imax

max and Imin
max will be used.

Formal power series with coefficients from a dioid D and
non commuting variables from A form a dioid denoted
D(A), where addition and (Cauchy) multiplication are
defined as follows. For two formal power series
s = ⊕w∈A∗s(w)w ∈ D(A) and s′ ∈ D(A),

s⊕ s′ , ⊕w∈A∗(s(w)⊕ s′(w))w,
s⊗ s′ , ⊕w∈A∗(⊕uv=ws(u)⊗ s′(v))w.

This dioid is isomorphic to the dioid of generalized dater
functions from A∗ toD via a natural isomorphism similarly
as the dioid Zmax(γ) of formal power series is isomorphic
to the dioid of daters from Z to Zmax, used to study timed
event graphs (Baccelli et al., 1992, §5.3). This isomorphism
associates to any y : A∗ → D the formal power series
⊕w∈A∗y(w)w ∈ D(A).

Finally, we recall basic definitions of tensor linear algebra
that will be used in section 5.

The Kronecker (tensor) product Graham (1982) A⊗tB of
matrices A = (aij) ∈ Dm×n and B ∈ Dp×q over a dioid, is
the mp× nq block matrix

A⊗t B =

a11 ⊗B · · · a1n ⊗B...
. . .

...
am1 ⊗B · · · amn ⊗B

 .
3. INTERVAL WEIGHTED AUTOMATA

Interval weighted automata, the basic model of this paper,
are introduced as weighted automata with weights in a
suitable interval like semiring.

Definition 4. A D-weighted automaton over an alphabet
A is a quadruple G = (Q,α, t, β), where Q is a finite set
of states, α : Q→ D, t : Q×A×Q→ D, and β : Q→ D,
called input, transition, and output delays, respectively.

The (nondeterministic) transition function t associates to
a state q ∈ Q, a discrete input a ∈ A and a new state
q′ ∈ Q, an output value t(q, a, q′) ∈ D corresponding to
the a−transition from q to q′ or t(q, a, q′) = ε if there is
no transition from q to q′ labeled by a.

There are many kinds of weighted automata depending on
the multiplicity semiring. For instance, cost or (min,+)-
automata with weights in Rmin interpreted as costs of
transitions, stochastic automata with weights in the prob-
ability semirings interpreted as probability of transitions,
and (max,+)-automata with weights in Rmax interpreted
as the exact duration of the transition.

Afterwards, we will consider automata with weights in
Imax
max which will be called interval weighted automata. A

value t(q, a, q′) = (p, p) of the transition function is then
interpreted as follows: p (resp. p) is the minimal (resp.
maximal) duration of the a-transition from q to q′ (the
case where p = −∞ and p = −∞ corresponds to the case
where no a-transition from q to q′ exists).

An interval weighted automaton is equivalently defined by
a triple (α, µ, β), where α ∈ (Imax

max)1×Q, β ∈ (Imax
max)Q×1

and µ is a morphism defined by:

µ : A→ (Imax
max)Q×Q, µ(a)q q′ , t(q, a, q′).

We will call such a triple a linear representation.

The morphism matrix µ of an interval weighted automaton
can be extended from events of A to sequences of A∗ using
the morphism property

µ(a1 . . . an) = µ(a1) . . . µ(an).

This means that µ is an element of Imax
max (A)Q×Q, i.e.

µ = ⊕w∈A∗µ(w)w. This way we have a homomorphism
from the free monoid of words A∗ (with concatenation
playing the role of multiplication) to the multiplicative
monoid of matrices over the semiring Imax

max .

Let G1 and G2 be interval automata defined over local
alphabets A1 and A2 with A = A1 ∪ A2. The associated
natural projections are P1 : A∗ → A∗1 and P2 : A∗ → A∗2.
We also need the underlying boolean matrices associated
to morphism matrices:

[Bµ(a)]ij =

{
e, if [µ(a)]ij 6= ε,
ε, otherwise.

In order to avoid heavy notation, Bµ(a) is denoted by
B(a) in the sequel, hence Bµ1(a) is denoted by B1(a). This
notation can be extended to words in A∗ in an obvious way.

The behavior of an interval automaton G = (Q,α, t, β) is
given by the formal power series l(G) : A∗ → Imax

max defined
for w = a1 . . . an−1 ∈ A∗ by

l(G)(w) = max
q1,...,qn∈Q

α(q1) +

n−1∑
i=1

t(qi, ai, qi+1) + β(qn).

Thus l(G)(w) is the longest path along the word w
starting at an initial state and ending at a final state,
which corresponds to the time interval for completion
of the sequence of tasks w. This is because α(q1) +∑n−1

i=1 t(qi−1, ai, qi) + β(qn) = ε whenever α(q1) = ε (i.e.,
q1 is not an initial state) or β(qn) = ε (i.e., qn is not a
final state). Note that using the linear representation we
simply have: l(G)(w) = α⊗ µ(w)⊗ β.

4. CONNECTIONS WITH PIA AND T-TPN

In this section two important models studied in the litera-
ture will be recalled and compared with interval weighted
automata.

4.1 Product Interval Automata

Synchronous composition is a very important concept
in the study of large timed automata Alur and Dill
(1994). Product interval automata (PIA) are introduced in
D’Souza and Thiagarajan (2002) as synchronous products
of interval automata (i.e. timed automata with a single
clock that is always reset after a transition). It is known
that PIA are strictly more expressive than interval au-
tomata. Consequently, interval automata are not closed
under synchronous product.

PIA correspond to an important class of timed automata,
where the clocks are read and reset in a particular fashion:
there are n clocks (one per component) and during a
transition in a PIA only clocks that correspond to the
components that are active in a transition are read (i.e.
compared to constants in guards) and reset. This way the
reading and writing (resetting) of clocks is compatible with
the distributed event set structure. Thus, the usage of
clocks can be completely avoided and PIA can be described
by symbolic purely algebraic methods.

When composing interval automata viewed as timed au-
tomata, a synchronizing transition is guarded by the inter-
section of local guards (c.f. definition of the synchronous
product of timed automata in Alur and Dill (1994)). In the
special case of interval weighted automata this amounts to
intersection of corresponding intervals in local automata.
This explains why the dual addition of Imax

max (i.e., addition
of Imin

max) will be needed in our definition of the synchronous
product in section 5. The major difference compared to
D’Souza and Thiagarajan (2002) is that we are not satis-
fied with presenting PIA as vectors of interval automata or
special class of multi-clock TA described above. Instead,
it is shown below how the synchronous product of interval
weighted automata can be recasted as interval (weighted)
automata over a special extended event set.

4.2 T-time Petri nets

A Petri net is a 4-tuple G = (P, T ,F ,M), in which P
is a finite set of places, T is a finite set of transitions,

F ⊆ (P × T) ∪ (T × P) is a relation between places and
transitions, M : P → N defines the initial marking of
places 1 . The marking evolves according to the following
rules:

(1) Transition t is enabled at M if there exists at least
one token in each of its input places.

(2) An enabled transition t can fire. The firing of t
transforms M into M ′ by removing one token from
each of the input places and adding one token in each
of the output places of t.

The set of reachable markings of a Petri net G will be
denoted R(G,M) (set of markings reachable from the
initial marking M). It can be expressed by its reachability
graph. Two basic Petri net based models for handling time
have been developed: timed Petri nets (see Ramchandani
(1974)) and time Petri nets (TPN) (see Berthomieu and
Diaz (1991)). With timed Petri nets, a firing finite duration
is associated with each transition. With TPN, two values of
time t and t (real or rational numbers) are associated with
each transition t: t is the minimal time that must elapse,
starting from the time at which t is enabled, until this
transition can fire; t denotes the maximum time during
which t can be enabled without being fired. Formally,
a TPN is defined as a tuple (P, T ,F ,M, T) with T :
T → R × (R ∪ {+∞}), t 7→ (t, t). An important feature
to point out in order to complete the semantic adopted for
TPN, is how the transition to fire is chosen: afterwards,
we consider that decisions on which transitions are to fire
is not based on time considerations and that all logically
feasible choices can be considered.

In Gaubert and Mairesse (1999), the authors have studied
how (max,+) automata are related to timed Petri nets
(every safe timed Petri net is shown to admit a repre-
sentation in terms of possibly nondeterministic (max,+)
automaton). Considering interval weighted automata in
this paper, we naturally study the relation of these models
with TPN. More precisely, we explain how to convert a
TPN into an interval weighted automaton and discuss the
limitations of this approach.

Classically, a Petri net G can be transformed into an
automaton by means of its reachability graph R(G,M).
Following this approach, the equivalent automaton of
a TPN (P, T ,F ,M, T) is defined an interval weighted
automaton (Q,α, t, β) on alphabet A by: A = T , Q =
R(G,M), α = M and t(M, t′,M ′) = (t′, t′) if t′ is enabled
by M and its firing transforms M into M ′. Note that the
obtained automaton is deterministic (since the TPN are
assumed to be free-labeled), and that a safe TPN has a
finite reachability graph (the corresponding automaton is
then finite).

Although the above conversion can be done for all TPN,
the obtained automaton does not always capture correctly
the behavior of the TPN. In fact, it is important to point
out that the behavior of the obtained interval weighted
automaton, as it is deterministic, is given by:

1 We restrict our attention to Petri nets which are ordinary and
free-labelled (each transition is labeled by a single event and there
are no two transitions with the same label).

l(G)(w) = α(q1) +

n−1∑
i=1

t(qi, ai, qi+1) + β(qn).

It should be clear that the completion time interval of
a sequence of tasks a1, . . . , an−1 then corresponds to the
sum of completion time intervals of successive tasks. In
other words, tasks are considered to be executed sequen-
tially (i.e., tasks cannot be executed simultaneously, even
partially). In the proposed model conversion, an event
(task) of the automaton corresponds to the firing of a
transition. It is then straightforward that the obtained
automaton captures correctly the behavior of the TPN
only if transitions do not fire simultaneously in the TPN
(i.e., no concurrency phemenon occurs).

It could be interesting to identify the largest class of TPN
without concurrence, and as by-product, whose behav-
ior could be correctly captured by an interval weighted
automaton as defined above. In this paper, we merely
consider safe time state machines (i.e., Petri nets in which
each transition has exactly one input place and one output
place) which are intrinsically concurrency free. More pre-
cisely, we consider TPN which admit a safe state-machine
covering, that is, which can be decomposed into state-
machine components which are synchronized through com-
mon transitions. In our approach, each state-machine
component is transformed into an interval weighted au-
tomaton. To capture the behavior of the whole TPN,
interval weighted automata are composed thanks to the
synchronous product defined in the following section.

5. SYNCHRONOUS COMPOSITION OF INTERVAL
WEIGHTED AUTOMATA

In this section an extension is presented of our synchronous
composition of (max,+) automata Komenda et al. (2009a)
to more general timed automata (with several clocks).

In particular, the synchronous product of interval weighted
automata is still an interval weighted automaton, but over
an extended alphabet. Although this alphabet may be
infinite, linear representation enables us to compute the
behavior on finite sequences. Moreover, if there are no
cycles labeled only by private events (i.e. those that are
not shared among two or more components), the extended
alphabet is finite. This is natural, because a cycle of private
events means that the component will never participate in
a future synchronization, which is often not acceptable as
a behavior of the composed system.

The interval automata with weights in Imax
max are consid-

ered. They are essentially a sequential model, because the
time windows (intervals) in which the events take place
follow one after another and simultaneous occurrences of
events cannot be modeled in a deterministic manner. This
means, that the time window in which an event sequence
can take place is the sum of the intervals to which the
transition times of the individual events belong, i.e. the
product of these intervals in Imax

max . It is our contribution to
notice that description of T-time event graphs by systems
of linear equations over dioid of real intervals endowed
with point wise addition and multiplication; similar to our
product semiring Imax

max) can be extended to more general
T-time Petri nets using the synchronous composition.

The alphabet of the synchronous composition below con-
sists of shared events and of tuples of private local events.

Definition 5. Synchronous Composition of interval wei-
ghted automata G1 = (Q1, A1, α1, µ1, β1) and G2 =
(Q2, A2, α2, µ2, β2), is the following interval weighted au-
tomaton defined over the alphabet A = (A1 ∩ A2) ∪ (A \
(A1 ∩A2))∗:

G1‖G2 = G = (Q1 ×Q2,A, α, µ, β)

with Q1 × Q2 the set of states, A the set of events,
α = α1⊗tα2 the initial delay , µ : A∗ → (Imax

max)|Q|×|Q| the
morphism matrix and β = β1 ⊗t β2 the final delay. The
morphism matrix is defined by :

µ(v) =

µ1(v)⊗t B2(v)⊕′ B1(v)⊗t µ2(v),

if v = a ∈ A1 ∩A2,
µ1(P1(v))⊗t B2(P2(v))⊕B1(P1(v))⊗t µ2(P2(v)),

if v ∈ (A \ (A1 ∩A2))∗.

For v ∈ A such that v = a ∈ A1 ∩ A2, we have in
this case P1(v) = P2(v) = v and the expressions for
morphism matrix of the composed system are almost
the same for both types of events from the extended
alphabet. The major difference is that dual addition is
used for shared events. This comes from the intuition
that synchronization corresponds to intersection of local
time constraints (intervals). This way the synchronous
composition of interval automata is compatible with the
one for more general timed automata, where transitions
guards in the synchronous composition are intersections
of local transitions guards.

We started with the definition for two local interval au-
tomata, where only a (typically finite) part of the events
from A is used. The key point is to find a suitable extended
alphabet for any particular composition. It is well known
that precise alphabets of local automata play key role in
associativity of the synchronous composition.

Let us now explain the intuition behind this seemingly
complicated definition. The interval automata G1 and G2

are synchronized over the shared events set: A1 ∩A2, but
in between two consecutive synchronizations the automata
G1 and G2 are free to execute their respective private
events belonging to A\ (A1∩A2). The corresponding local
strings are P1(v) and P2(v). These string are fully inde-
pendent, hence they are executed simultaneously. Their
total duration is then at least the maximum of local lower
bounds on duration of component (local) events and at
most the maximum of local upper bounds on their dura-
tion. Otherwise stated, both upper and lower bounds are
given by maximum of the local ones.

On the other hand, for a shared event the situation is
different and the dual addition corresponding to the in-
tersection of local intervals appears. This is to ensure
compatibility with the synchronous product of timed au-
tomata, where time constraints in the global (composed)
system are given by intersection of local clock constraints.
In our case with one clock components this corresponds
to intersection of intervals, which is given by addition
of Imin

max. Note however that if a distributed system is
given by a T-time Petri net, then shared transitions have
only one time interval attached and it is the same in
both components (more generally in all components that
share a particular synchronization transition). Otherwise

stated, use of Imax
max is only sufficient when composing

two automata with the same interval duration for shared
events (synchronization transitions), which corresponds to
the case, where distributed DES is given by a T-TPN,
where naturally the transitions shared among two or more
components have the same associated interval duration (it
is the same transition for all component net that share this
transition). In this case our synchronous product is linearly
described within Imax

max and no dual addition is needed.

Still, the dual addition of Imax
max , i.e., addition of Imin

max
is useful in modeling of P-time Petri nets. In particular,
(interval) P-time event graphs may be modeled by linear
recurrent equations in Imin

max. On the other hand, the se-
mantics of (interval) T-time Petri nets is quite different
and T-time event graphs admit linear representation by
linear recurrent equations in Imax

max . This is known for
their special class without (even structural) conflicts in
transition firings (called T-timed event graphs). The dual
addition is then useful even for composing interval au-
tomata using the semantics of P-time Petri nets when
synchronizing transitions.

5.1 Behavior Induced by Synchronous Composition

In this section the morphism µ of definition 5, extended to
µ : A∗ → (Imax

max)|Q|×|Q|, will be interpreted in the original
alphabet using induced matrix mapping ν that is defined
on A∗ by:

ν(w) = µ(v0)µ(a1)µ(v1) . . . µ(an)µ(vn).

It is important to remark at this point that the induced
matrix mapping ν : A∗ → (Imax

max)|Q|×|Q| is not a
morphism. It would be a morphism if the synchronous
composition could work on the usual global alphabet A =
A1∪A2. But this is only possible in the simple case, where
A1 = A2 = A and clearly A = A.

This concept of induced matrix mapping yields the notion
of induced behavior of the synchronous product, where
behaviors, as formal power series over A, are recasted as
formal power series over A1 ∪A2. It is defined by:

l(G1‖G2)(w) = αν(w)β.

Next the induced behavior of the synchronous product of
(max,+)-automata G1 and G2 is computed.

The formula presented below uses automata representa-
tions. Since only deterministic interval automata are con-
sidered, there are no problem with canonical (minimal)
representations of deterministic formal power series. It
turns out that the formula for computing the induced
behavior of the synchronous product is quite complicated
and complex. In fact, it uses all combinations of morphism
matrix and associated logical morphism matrix that are
evaluated for projected words (corresponding to sequences
of local events). The auxiliary notation below is used.

Let Z = {ν,B} be two elements that can be thought of
as Booleans. Thus, we use the complement operation on
Z given by ν̄ = B and B̄ = ν. The free monoid generated
by Z, and denoted as usual by Z∗, is needed. Complement
operation can be extended by morphism property to the
whole Z∗ by defining for m = m1 . . .mk ∈ Z∗, m̄ =

(be,c) / (3,5)

(d,c) / (3,4)
c / (3,4)

a / (2,4)

e / (0,2)

b / (0,3)

d / (1,3)

=
a /(2,4)

a / (1,4)

Fig. 1. Automaton representation of G1, G2, and G1‖G2.

m̄1 . . . m̄k. La convention est que pour m ∈ Z, m1 signifie
soit ν1 ou For finite words mi = m1

i . . .m
k
i ∈ Zk, i =

1, 2 and v = v1 . . . vk ∈ Ak of the same length k we
define: mi(v) = m1

i (v1) ⊗ · · · ⊗ mk
i (vk) as a ”mixed”

product of morphism matrices and their corresponding
Boolean matrices. Let us recall at this point that any
word w ∈ A∗ can be interpreted as a word of length
2n+ 1 over A∗, because w can be decomposed as follows:
w = v0a1v1 . . . anvn, where ai ∈ A1 ∩ A2, i = 1, . . . , n are
shared events and vi ∈ (A \ (A1 ∩ A2))∗, i = 0, . . . , n are
sequences of private (local) events.

The following results can be shown in the very same way as
the formula for induced behavior of the synchronous prod-
uct of (max,+)-automata from Komenda et al. (2009a).

Proposition 6. The induced behavior of G1‖G2 for w =
v0a1v1 . . . anvn ∈ A∗ can be computed using the formula:

l(G1‖G2)(w) =
⊕

m∈Z2n+1

α1m1(P1(w))β1 ⊗ α2m̄2(P2(w))⊗ β2.

5.2 Example

We consider interval weighted automata G1 and G2 over
the alphabets A1 = {a, b, d} and A2 = {a, c}, cf. Fig. 1.
Their synchronous product, G1‖G2 in Fig. 1, is:

G1‖G2 = G = (Q1 ×Q2,A, α, µ, β),

where Q1 ×Q2 is the set of states,

A = {a, (be, c), (d, c)} ⊆ (A1 ∩A2) ∪ (A \ (A1 ∩A2))∗,

α = α1 ⊗t α2, β = β1 ⊗t β2, and ν(v) = µ1(a)⊗t B2(a)⊕B1(a)⊗t µ2(a), if v = a ∈ A1 ∩A2,
µ1(be)⊗t B2(c)⊕B1(be)⊗t µ2(c), if v = (be, c),
µ1(d)⊗t B2(c)⊕B1(d)⊗t µ2(c), if v = (d, c),

Let us note that by definition of morphism we have
µ1(be) = µ1(b)⊗ µ1(e) and also B1(be) = B1(b)⊗B1(e).
The extended alphabet is A = {a, (be, c), (d, c)} with
P1(be, c) = be ∈ A∗1, P2(be, c) = c ∈ A∗2, idem for (d, c).
The corresponding TPN, drawn in Fig. 2, consists of two
composed time state machines.

ACKNOWLEDGEMENTS

This work was supported by the EU.ICT project DISC
No. 224498, and by the Academy of Sciences of the Czech
Republic Institutional Research Plan No. AV0Z10190503.

6. CONCLUSION

We have shown how techniques based on semirings of
interval and tensor linear algebra enable modeling of an

c/[3,4]
c/ [3,4]

a/ [2,4]

a/ [2,4]

b/[0,3]

e/ [0,2]

a/[1,4]

d/[1,3] d/[1,3]

e/ [0,2]

a/[1,4]

d/[1,3]

b/ [0,3]

Fig. 2. TPNs corresponding to G1, G2, and G1‖G2.

important class of timed automata in a linear manner. It is
possible to compute behavior of the synchronous product
of interval automata based on this linear description.

The approach presented in this paper together with our
earlier results on supervisory control of (max,+) automata
paves the way for the decentralized control of (classes of)
timed automata like PIA. This is a class of timed automata
with all basic problems decidable, but the global control
synthesis is of a too high complexity.

REFERENCES

Alur, R. and Dill, D. (1994). The theory of timed
automata. Theoretical computer science, 126, 183–235.

Baccelli, F., Cohen, G., Olsder, G.J., and Quadrat, J.P.
(1992). Synchronization and Linearity. J.Wiley & Sons.

Berthomieu, B. and Diaz, M. (1991). Modeling and
verification of time dependent systems using time petri
nets. IEEE Transactions on Software Engineering,
17(3), 259–273.

Cassez, F. and Roux, O.H. (2008). From Time Petri nets
to Timed Automata. Petri Net: Theory and Application.
Edited by Vedran Kordic, I-Tech Publishing, Vienna.

D’Souza, D. and Thiagarajan, P.S. (2002). Product in-
terval automata. In Sadhana, Academy Proceedings in
Engineering Sciences, 27(2), 181–208.

Gaubert, S. (1995). Performance evaluation of (max,+)
automata. IEEE Transactions on Automatic Control,
40(12), 2014–2025.

Gaubert, S. and Mairesse, J. (1999). Modeling and
analysis of timed petri nets using heaps of pieces. IEEE
Transactions on Automatic Control, 44(4), 683–698.

Golan, J.S. (1999). Semirings and their Applications.
Kluwer, Dordrecht.

Graham, A. (1982). Kronecker Products and Matrix
Calculus: With Applications. J.Wiley and Sons.

Heidergott, B., Olsder, G.J., and Woude, J.V.D. (2005).
Max Plus at Work: Modeling and Analysis of Synchro-
nized Systems. Princeton Series in Applied Math.

Komenda, J., Lahaye, S., and Boimond, J.L. (2009a). Le
produit synchrone des automates (max,+). Journal
Européen des Systèmes Automatisés, 43, 1033–1047.

Komenda, J., Lahaye, S., and Boimond, J.L. (2009b).
Supervisory control of (max,+) automata: a behavioral
approach. Discrete Event Dyn. Systems, 19, 525–549.

Ramchandani, C. (1974). Analysis of Asynchronous Con-
current Systems by Timed Petri Nets. Ph.D. thesis,
MIT, Boston.

