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Abstract Discrete Event Dynamic Systems modeled by (max;+) linear equations
with periodically varying coeÆcients are studied. It turns out that
spectral properties of the so-called monodromy matrix can be used for
the performance evaluation of these systems.

1. INTRODUCTION

Discrete Event Dynamic Systems (DEDS) subject to synchronization
phenomena can be modeled by linear equations in a particular algebraic
structure called (max;+) algebra. A linear system theory analogous
to the conventional theory has been developed for this class of systems
which can be, for example, manufacturing systems or communication
networks [2]. In particular, linear time invariant systems, whose be-
haviors are usually represented by Timed Event Graphs with constant
timings, have been studied extensively [2], [5], [7]. In a manufacturing
system, time invariance corresponds for example to assume that process-
ing times are constant.
Lots of systems arising in practice are time-varying, that is, the val-
ues of the output response depend on when the input is applied. Time
variation is a result of system parameters changing: in a manufacturing
system, processing times of parts may depend on their type. Systems
described by state models with varying coeÆcients in (max;+) algebra
have been considered in [10]. The output tracking under just-in-time
criterion has in particular been extended to such systems.
In this paper, the focus is on linear systems whose state models have
periodically varying coeÆcients. Explicitly, each entry of the matrices
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in the state model satisfy a(k +K) = a(k), k 2 Z. We aim at extend-
ing to the (max;+) context some established concepts and results of
the conventional periodic linear system theory [3], [6], [4]. In particu-
lar, the spectral properties of the so-called monodromy matrix, i.e., the
transition matrix over one period K, are used to show that autonomous
periodic systems couple in �nite time to a periodic regime. This result
can for example be applied to the performance evaluation of manufac-
turing systems in which tasks are scheduled periodically.
The outline of the paper is as follows. In x2, we recall the elements of
(max;+) algebra we shall use throughout the paper. In x3, (max;+)
linear time-varying systems are presented. Section 4 is devoted to the
analysis of periodic systems. An application to the performance evalua-
tion of a particular class of DEDS is proposed in x5.

2. PRELIMINARIES

We consider the semi-�eld (R [ f�1g;�;
) in which the law � is
max, and 
 is the usual addition. We denote respectively " = �1 and
e = 0 the neutral elements of � and 
. The element " is absorbing for

. The law � is idempotent, i.e., a� a = a.
(R [ f�1g;�;
) is an idempotent semi-ring or dioid [2], [5], and is
usually referred to as (max,+) algebra. We shall denote it by Rmax .
In the following, we shall consider vectors and matrices with entries in
Rmax . The product of a vector u 2 R

n
max by a scalar a 2 Rmax is de�ned

as (a
 u)i = a
 ui = a+ ui :
The sum and product of matrices are de�ned conventionally, replacing
+ and � by � and 
, respectively. Let A;B 2 Rn�n

max ,

(A�B)ij = Aij � Bij (A
B)ij =
nL

l=1

Ail 
 Blj = max
1�l�n

(Ail + Blj) :

The matrix-vector product is de�ned in a similar way. Most of the time,
the symbol '
' is omitted as is the case in conventional algebra.
Let us recall basic de�nitions and results about the (max;+) spectral
problem (see [2], [7] for exhaustive presentations), that is the existence
of (nonzero) eigenvalues � 2 Rmax and eigenvectors v 2 Rn

max for a given
a matrix M 2 Rn�n

max , such that M 
 v = �
 v.

De�nition 1 A matrix M 2 Rn�n
max is irreducible if

8i; j 9l � 0 such that (M l)ij > ":

Theorem 1 An irreducible matrix M 2 R
n�n
max has a unique eigenvalue

denoted �.

There might be several eigenvectors of an irreducible matrix with the
unique corresponding eigenvalue �. A linear combination (in Rmax) of
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eigenvectors is an eigenvector. An eigenvector has all its coordinates
di�erent from ". Finally, let us recall that in Rmax every irreducible
matrix is cyclic in the sense of the following theorem.

Theorem 2 Let M 2 R
n�n
max be an irreducible matrix whose eigenvalue

is �. There exists integers N and c such that

8m � N; Mm+c = �c 
Mm:

The least value of c is called the cyclicity of M .

3. TIME-VARYING (MAX,+) LINEAR
SYSTEMS

We study time-varying (max;+) linear systems represented by equa-
tions: �

x(k) = A(k � 1)x(k � 1)�B(k)u(k) (1a)
y(k) = C(k)x(k) (1b)

in which for k 2 Z:
� A(k) 2 Rn�n

max , B(k) 2 R
n�p
max , and C(k) 2 Rq�n

max ;
� u(k) 2 R

p
max (resp. x(k) 2 R

n
max , y(k) 2 R

q
max) is called the input

(resp. state, output) vector.
The recursive equation (1a) can also be written

x(k) = �(k; k0)x(k0)�

kM
j=k0+1

�(k; j)B(j)u(j) (2)

in which �(k; k0) is called transition matrix by analogy with conventional
time-varying linear systems theory [8], and is given by

�(k; k0) =

8<
:

not de�ned ; k0 > k
Id (identity element of Rn�n

max ) ; k0 = k
A(k � 1)A(k � 2)
 � � � 
A(k0) ; k0 < k

(3)

Remark 1: The transition matrix satis�es the composition property

k � l � k0; �(k; k0) = �(k; l)
 �(l; k0) : (4)

In particular, for k > k0, we have �(k; k0) = A(k � 1) 
 �(k � 1; k0),
which shows that the transition matrix is solution of the homogeneous
state equation (Eq. (1a) with u(k) = ";8k).
The input-output relationship is deduced from Eq. (2) with x(k0) =
u(k0) = " for k0 < 0, and is given by

y(k) =
L
j2Z

h(k; j)u(j) ; with h(k; j) =

�
C(k)�(k; j)B(j) ; k � j;
" ; k < j;

(h is called the impulse response).
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4. ANALYSIS OF PERIODIC SYSTEMS

In this section, we de�ne and study (max;+) linear periodic systems
by analogy with linear periodic systems over conventional algebra [3],
[6], [4]. Using basic properties and (max;+) spectral theory, we show
that autonomous periodic systems couple in �nite time to a periodic
regime.

De�nition 2 A system represented by Eqs. (1) is said to be periodic
of period K (or shortly K-periodic) if K is the least integer such that
8k 2 Z; A(k +K) = A(k) ; B(k +K) = B(k) ; C(k +K) = C(k) :

Remark 2: The period K of the system is equal to the least common
multiplier of the periods of entries A(k)ij , B(k)ik and C(k)lj, i = 1 : : : n,
j = 1 : : : n, k = 1 : : : p, l = 1 : : : q, k 2 Z.

Proposition 1 The transition matrix is K-periodic, i.e.,

k0 < k ; �(k +K; k0 +K) = �(k; k0) (5)

if, and only if, A(k) is K-periodic.

Proof: Let us suppose that A(k) is K-periodic. We have 8k; k0 < k,
�(k+K; k0+K) = A(k+K)
 : : :
A(k0+1+K) = A(k)
 : : :
A(k0+1) = �(k; k0):

Conversely, the K-periodicity of the transition matrix gives for k0 = k�1
�(k +K; k � 1 +K) = �(k; k � 1);

which, according to the de�nition of the transition matrix (Eq. (3)),
leads to 8k; A(k +K) = A(k): �
The K-periodicity of � also writes

k0 < k ; 8m 2 Z ; �(k +mK; k0 +mK) = �(k; k0) :
Setting k = i+mK with k0 � i < K, m 2 N, and using the composition
property (4) as well as the periodicity (5) of �, we have:
�(i+mK; k0)
= �(i+mK; k0+mK)�(k0+mK; k0+(m� 1)K)
 : : :
�(k0+K; k0)
= �(i; k0)�(k0 +K; k0)
 : : :
 �(k0 +K; k0)| {z }

m times

= �(i; k0)[�(k0 +K; k0)]
m :

De�nition 3 The matrix Mk0 = �(k0+K; k0) is called the monodromy
matrix at k0 (as in conventional theory [3]).

For autonomous systems, that is systems for which the input is null
(u(k) = ", 8k 2 Z in eq. (1a), the state vector obeys:

x(i+mK) = �(i+mK; k0)x(k0)

= �(i; k0)[�(k0 +K; k0)]
mx(k0)

= �(i; k0)M
m
k0
x(k0) : (6)
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In other words, the monodromy matrix describes the evolution of the
state over one period. This relation allows showing that an autonomous
periodic system couple in �nite time to a periodic regime.

Proposition 2 If the monodromy matrix Mk0 is irreducible with eigen-
value �, then there exists two integers N and c such that for m � N

x(k + (m+ c)K) = �cx(k +mK) :

Proof: From equation (6), a direct application of theorem 2 leads to:
x(i+ (m+ c)K) = �(i; k0)M

m+c
k0

x(k0) = �(i; k0)�
cMm

k0
x(k0)

= �c�(i; k0)M
m
k0
x(k0)

= �cx(i+mK)
in which � (resp. c) is the eigenvalue (resp. the cyclicity) of Mk0 . �
In this periodic regime, the length of the pattern is equal to c�K. In the
application of section 5, entries of x(k) shall point out dater variables
associated with a DEDS: xi(k) will denote the date of the k-th occurrence
of event labeled xi. The ratio (c � �)=(c � K) = �=K (the numerical
evaluation of �c in the formula equals c � � in conventional analysis)
shall then be interpreted as the cycle time (inverse of the throughput)
of the system; every c�K occurrences of events are spaced out of c� �
units of times. The following proposition, claiming that the cycle time
is independent of k0, completes the description of this periodic regime.
Remark 3: If x(k0) is an eigenvector of Mk0 , we have

x(k0 +K) =Mk0x(k0) = �x(k0) :
From k0, the state is then periodic. The pattern is shorter (equal to K),
but the cycle time is still equal to �=K.

Proposition 3 The spectrum of Mk0 = �(k0+K; k0) is independent of
k0. Furthermore, if x(k0) is an eigenvector of Mk0 with corresponding
eigenvalue �, then x(k) = �(k; k0)x(k0) is an eigenvector of Mk = �(k+
K; k) with corresponding eigenvalue �.

Proof:
� For any pair (k0; �0) with �0+K � k0 � �0, the monodromy matrices
at k0 and at �0 can respectively be written
� �(k0+K; k0) = �(k0+K;�0+K)�(�0+K; k0) = �(k0; �0)�(�0+K; k0)
� �(�0 +K;�0) = �(�0 +K; k0)�(k0; �0)
In other words, the monodromy matrices can be expressed in the forms
�(k0 +K; k0) = FG and �(�0 +K;�0) = GF .
If � is a nonzero eigenvalue of �(k0 + K; k0), i.e., FGx = �x, x 6= ",
then GFGx = G�x = �Gx, or GFy = �y, with y = Gx.
Since � 6= " and x 6= ", y = Gx 6= "; so that � is an eigenvalue of
�(�0 +K;�0) = GF as well.
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By reversing the role of �(k0+K; k0) and �(�0+K;�0) in the above ar-
gument, it conversely follows that all the nonzero eigenvalues of �(�0 +
K;�0) are eigenvalues of �(k0 +K; k0).
� Let us assume that x(k0) is an eigenvector of Mk0 with corresponding
eigenvalue �. We have
Mkx(k) = �(k +K; k)x(k) = �(k +K; k)�(k; k0)x(k0)

= �(k +K; k0)x(k0)
= �(k +K; k0 +K)�(k0 +K; k0)x(k0)
= �(k; k0)�x(k0)
= �x(k)

which shows that x(k) is an eigenvector ofMk with corresponding eigen-
value �. �

5. APPLICATION TO THE PERFORMANCE
EVALUATION OF DEDS

In this section, we apply the preceding results to DEDS. More pre-
cisely, we de�ne a class of Timed Petri Nets suitable to model time-
varying (max;+) linear systems (introduced in [10]). Essentially, those
are Timed Event Graphs (TEGs, Petri net for which each place has only
one input arc and one output arc) whose holding times associated with
places are variable. We give their representation in (max;+) algebra.
When sequences of holding times are periodic, the representation is a
state model with periodically varying coeÆcients.

5.1. FIFO TEGS

We denote by P (respectively, Q) the �nite set of places (respectively,
transitions) of a TEG, and Mp 2 N the number of tokens being initially
in place p 2 P; p� (respectively, �p) refers to the output transition
(respectively, input transition) of p. We de�ne similarly the sets q�, �q
as the set of output places, and the set of input places, of transition
q 2 Q.
We call holding time the minimum amount of time tokens have to stay
in a place (without loss of modeling power, the �ring of transitions is
supposed to be instantaneous): the k-th token in place p incurs the
holding time denoted �p(k).

De�nition 4 We de�ne the earliest First-In-First-Out (FIFO) func-
tioning rule of a TEG as follows.

1 A transition q �res as soon as each place upstream q contains at
least one available token.
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2 We denote q(n) the date of n-th �ring of transition q. This �ring
consumes one token in each upstream place and produces one to-
ken in each downstream place. A token added in place p 2 q� at
time q(n) is indexed k with k = n+Mp and becomes available for
transition p� from instant max

1�i�n
fq(i) + �p(i+Mp)g.

A TEG functioning under this rule is called a FIFO TEG.
The only originality in this de�nition concerns the token's availability.
Indeed, the token indexed k in place p is usually said to be available as
soon as its holding time �p(k) is over [1].
The reason why we have de�ned a new functioning rule is that TEGs
can be modeled by linear equations in (max;+) algebra only if tokens do
not overtake one another when traversing places [1], [2, ch. 2]. Previous
studies have consequently considered conditions on sequences of hold-
ing times (constant or non-decreasing holding times for example)and/or
structural conditions (preventing several tokens to be simultaneously
present in a place with variable holding time). The above functioning
rule ensures without structural conditions that places operate as FIFO
channels for any sequences of holding times, and will notably enable to
easily model mixed-model assembly lines (which are intrinsically over-
take free) on which several parts can be simultaneously handled at a
same "station" or machine. Let us consider for example the automobile
production line partly shown in �gure 1.(a) where cars are handled by
a linear accumulative conveyor crossing successive working areas sepa-
rated by bu�er zones. In each working area, a �xed number of cars

x2

bu�er
zone

(a)

�

�

�

�
working area

(b)

- -
-

�p2(�)

- -

p2

x1 x3

- -

p1
R R

i i

Figure 1 (a) A portion of an automobile production line, (b) a FIFO TEG.

can be processed simultaneously (two in the represented working area)
and bu�er zones have limited capacities (only one car can be stocked in
the represented bu�er zone). Cars cannot overtake one another on the
conveyor; bu�er zones and working areas work as FIFO channels. The
evolution of cars in the considered portion of the line can be modeled by
the FIFO TEG of �gure 1.(b). A token in place p1 (resp. p2) represents
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a car stocked in the bu�er zone (resp. being processed in the working
area). Processing times in the working area are equal to �p2(�), and for
sake of simplicity, travelling time in the bu�er zone as well as setup times
are assumed to be null. Finally, let us note that this system would not
be modeled by a TEG if the classical functioning rule was used.

5.2. REPRESENTATION OF FIFO TEGS

With each transition q 2 Q we associate a dater variable also denoted
q: q(k) denotes the date of the k-th �ring of transition q. The sequences
of holding times �p(k), p 2 P, k 2 Z are assumed to be given nonnega-
tive and �nite integers.

Assertion 1 The dater variables of a FIFO TEG satisfy the following
equation:

q(k) =
M

fp2�qjq0=�pg

M
i�k

�
�p(i)
 q

0(i�Mp)
�
; k 2 Z;

or equivalently,

q(k) = q(k � 1)�
M

fp2�qjq0=�pg

�
�p(k)
 q

0(k �Mp)
�
; k 2 Z:

The methodology to obtain a state representation for FIFO TEGs in
(max;+) algebra is the same one as for TEGs functioning with the
classical rule [2, chap. 2]. One can partition the set of transitions
Q = U [ X [ Y where U is the set of transitions with no predecessors
(input transitions), Y is the set of transitions with no successors (output
transitions), and X = Q n (U [ Y) (state transitions). We denote by u
(respectively x, y) the vector of input (respectively, state, output) daters
q, q 2 U (respectively, X , Y). One can obtain after several combinatorial
manipulations the standard state model given by Eqs. (1) (see [10]).
Example 1: We consider the FIFO TEG of �gure 1.(b) (non-dotted part
of the graph) which may partly represent a working area of an automo-
bile production line, as described in section 5.1. This graph has exclu-
sively state transitions, its dynamic behavior can be represented by the
following equation:

x(k) =

0
@
x1(k)
x2(k)
x3(k)

1
A =

0
@
" " "

e " "

" " "

1
A


0
@
x1(k)
x2(k)
x3(k)

1
A�

0
@
e e "

" e e

" �p2(k) e

1
A


0
@
x1(k � 1)
x2(k � 1)
x3(k � 1)

1
A :

This equ. can be written in an explicit form (see [2, th. 2.66, p. 79]):

x(k) =

0
@
x1(k)
x2(k)
x3(k)

1
A =

0
@
e e "

e e e

" �p2 (k) e

1
A


0
@
x1(k � 1)
x2(k � 1)
x3(k � 1)

1
A .
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A FIFO TEG represented by Eqs. (1) will be seen as a periodic system
if, and only if, all the entries of matrices A(k), B(k) and C(k) (corre-
sponding to the holding times associated with places of the graph) are
periodic. The periodicity of the system, denoted K, is then equal to the
lowest common multiplier of the periodicities of the sequences of hold-
ing times. In the manufacturing system described above, sequences of
holding times represent the processing times of cars crossing the working
area. Such a system is then periodic if for example the successive types
of cars released on the production line are ordered in a periodic manner.
In such a periodic setting, the reasoning of section 4 can be used to
show that daters associated with transitions of the FIFO TEG reach
a periodic regime, and to assess the cycle time of these daters which
correspond to the average time between two successive �rings.
Example 2: Let us consider again the portion of the automobile produc-
tion line modeled in example 1.
We assume that three types of cars, denoted R1, R2 and R3, are handled
in this line. The processing time for R1 (resp. R2, R3) in the considered
working area is equal to 3 (resp. 2, 1) units of times. The scheduling is
supposed to be a cyclic permutation of the di�erent types of cars. More
precisely, the successive types of cars released in the line are : R1, R2,
R3, R1, R2, R3; : : : We then have 8j 2 Z;

�p2(k0 + 3j) = 3; �p2(k0 + 3j + 1) = 2; �p2(k0 + 3j + 2) = 1.
The system is 3-periodic since A(k + 3) = A(k), 8k 2 Z. The mon-
odromy matrix at k0 is equal to

Mk0 = �(k0 + 3; k0) =

0
@0 3 0
2 3 2
2 4 2

1
A :

Mk0 is irreducible (see de�nition 1). Its unique eigenvalue � is equal
to 3 and its cyclicity c is equal to 1. The state of the systems reaches
a periodic regime in �nite time. The length of the pattern is equal
to c � K = 1 � 3 = 3 and the cycle time of the system is equal to
�=K = 3=3 = 1.
Remark 4: Repetitive manufacturing systems have previously been stud-
ied in [9]. Nevertheless, the approach presented in this reference does
not allow considering systems where several parts can be handled simul-
taneously on a same machine as in the considered example.

6. CONCLUSION

We have tackled the study of (max;+) linear systems with periodically
varying parameters. We have given basic properties, and in particular
we have shown that such autonomous systems reach a periodic regime
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in �nite time. This result can be used for the performance evaluation of
particular DEDS.
We think that further results on conventional periodic systems could be
adapted to the considered DEDS. In particular, for the analysis of dis-
crete time periodic systems, it is often useful to resort to a time-invariant
reformulation [6], [4]. In a similar way, (max;+) linear periodic systems
admit a time-invariant reformulation which could extend the study of
these systems.
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