
Modeling of timed Petri nets using
deterministic (max,+) automata

Sébastien Lahaye ∗ Jan Komenda ∗∗ Jean-Louis Boimond ∗

∗ LUNAM Université, LISA, Angers, France.
sebastien.lahaye@univ-angers.fr, jean-louis.boimond@univ-angers.fr.
∗∗ Institute of Mathematics - Brno Branch, Czech Academy of

Sciences, Czech Republic. komenda@ipm.cz

Abstract: Automata with weights (multiplicities) in (max,+) algebra form a class of timed
automata. Determinism is a crucial property for numerous results on (max,+) automata and,
in particular, for applications to performance evaluation and control of a large class of timed
discrete event systems. In this paper, we show how to build a deterministic (max,+) automaton
equivalent to a live and safe timed Petri net in which any oriented path between any two
transitions contains at most one ”conflict place”.

Keywords: Petri nets, (max,+) automata, modeling, determinization

1. INTRODUCTION AND MOTIVATIONS

An important class of timed discrete-event systems (TDES)
can be captured by means of timed Petri nets (TPNs) with
deterministic timing of places and/or transitions [16]. A
corresponding class of timed automata with deterministic
timing of transitions is known as (max,+) automata [5]
that are automata with weights (multiplicities) in (max,+)
algebra 1 .

(Max,+) automata have been applied to performance eval-
uation [5,14,17,3], scheduling [8] and control [11,2] prob-
lems for a large class of TDES. Beyond the scope of TDES,
there are important applications for image and speech
processing [15], and more generally, weighted automata
constitute a theoretical object extensively studied (see [4]
for an overview).

The modeling power of (max,+) automata is studied in
[7], where it is shown that the behavior of any safe 2

TPN can be expressed by a heap model. It has been
shown that the height of heaps of pieces is recognized
by a particular (max,+) automaton (especially useful for
algebraic computations). The (max,+) automaton derived
from the example of heap model is depicted 3 on the right-
hand side of Figure 1.

Another approach in [12] proposes a direct transformation
of any safe TPN into a (max,+) automaton. For example
and as reminded in section 3, the (max,+) automaton of
Figure 2 is obtained to represent the TPN of Figure 3.

1 Set Z ∪ {−∞} endowed with the maximum playing the role
of addition ⊕ and the conventional addition playing the role of
multiplication ⊗ is an idempotent semiring, usually called (max,+)
algebra, and denoted Zmax. We denote e = 0 and ε = −∞ the neutral
elements of ⊕ and ⊗.
2 At most one token can be in a place at any time.
3 The graphical representation of a (max,+) automaton is such that:
nodes correspond to states, an arrow from a state to another with
label a/n denotes a state transition requiring n units of time when
event a occurs, an input arrow symbolizes an initial state.

q1

a/0, b/1, c/3a/0, b/1, c/0

q2

q3

a/2, b/0

a/0, b/1

b/1

a/2, b/0, c/0

b/0 b/1

b/1

q1 q2 q3

a

b

c

b

slots

pieces

Fig. 1. Heap model and associated (max,+) automaton to
represent TPN G.

Observe that these (max,+) automata have larger lan-
guages 4 than the language of the TPN. For example,
they recognize sequence aaa . . . whereas consecutive firings
of transition a (without firing b) are impossible. As it is
done classically in automata theory, it is then possible
to adequately restrict the (max,+) automata languages
by using the tensor product with the (Boolean) marking
automaton recognizing the TPN language.

In addition, these (max,+) automata are both nonde-
terministic 5 . Except for trivial examples, this situation
always occurs with the two approaches and this is a
serious drawback. Determinism is indeed important for

4 If A is a finite set (alphabet), the free monoid on A is defined as
the set A∗ of finite words with letters in A. A word w ∈ A∗ can
be written as a sequence w = a1a2 . . . an with a1, a2, . . ., an ∈ A
and n a natural number (the zero-length word is denoted e in the
following). Formal languages are subsets of the free monoid A∗.
5 Several initial states and/or several transitions share the same
event from certain states.

many results and, for example, it is a required property
for (max,+) automata

• to do efficient computations in speech processing [15];
• to compute the optimal, as well as the average behav-
ior, for TDES [5];
• to realize supervisors for TDES [11,2].

Unlike (Boolean) finite automata, it has been shown that
nondeterministic (max,+) automata cannot always be de-
terminized, that is transformed into equivalent determin-
istic (max,+) automata (see for example [13]).

In the continuity of [7], authors proposed in [6] a deter-
minization procedure based on the completion of heap
models 6 . Returning to the TPN from which the heap
model is built, this means that a deterministic (max,+)
automaton representation can be obtained if any two tran-
sitions share at least one input or output place (see Th.4
and the discussion in [6]). This condition is not satisfied for
transitions a and c of the TPN in Fig. 3, and the procedure
then fails for this example.

Another approach is to use a determinization proce-
dure applying directly to (max,+) automata. This ex-
tension of the classical determinization algorithm of
Boolean automata has been extensively studied (see e.g.
[5,15,10,13,9]). In few words, a normalization operator is
defined to quantify the gaps between the dates at which
various states are reached at the end of a transition se-
quence. If a finite number of vectors of gaps is obtained
for all the possible sequences, then it is possible to build
a normalized automaton which is deterministic and which
has the same behavior as the initial nondeterministic au-
tomaton. In the case of (max,+) automata derived to rep-
resent TPN in Fig. 3, the determinization procedure based
on normalization fails. For (max,+) automata obtained
to represent TPNs according to the approach recalled in
Section 3, such an unfavourable circumstance arises, in
particular, as soon as two transitions do not share any
input and output place.

In this paper, we propose another way to build deter-
ministic (max,+) automata describing safe TPNs. This
new procedure jointly uses the reachability graph of the
TPN to cover its language, and the (nondeterministic)
(max,+) automaton derived from the TPN to compute
the weights to be associated with transitions so that the
timed behavior is properly described. As already notified
this procedure cannot always succeed (remember that
all the (max,+) automata cannot be determinized) but,
interestingly, it terminates successfully for a wider class
than the existing approaches mentioned above. Then a
condition on the structure of the TPN is shown to be
sufficient for termination of the procedure. More precisely,
the main result can be expressed as: if the oriented path
between any two transitions contains at most one ”con-
flict place” (with more than one output transition), then
the procedure builds a deterministic (max,+) automaton
equivalent to the safe TPN. For example, this condition is
satisfied by the TPN in Fig. 3, and the procedure builds
the deterministic (max,+) automaton in Fig. 5.

The paper is organized as follows. In the following section
basic concepts and notations are introduced. In section

6 In [14], the case of heap models with two pieces is fully treated.

3, the approach proposed in [12] to transform any safe
TPN into a nondeterministic (max,+) automaton is briefly
presented. This result is used in the procedure proposed
in section 4. If it terminates, this procedure constructs
a deterministic (max,+) automaton equivalent to the safe
TPN. Then, a structural condition on TPNs is shown to be
sufficient for the termination of the procedure. In section
5, concluding remarks with hints on future extensions are
proposed.

2. PRELIMINARIES

Several necessary concepts, results and notations about
(max,+) algebra, (max,+) automata and Petri nets are
introduced in this section (see the references [1], [5] and
[16] for exhaustive presentations).

2.1 (Max,+) algebra and automata

The set of n × n matrices with coefficients in (max,+)
algebra Zmax, endowed with the matrix addition and
multiplication conventionally defined from⊕ and⊗, is also
an idempotent semiring, denoted Z

n×n
max . The zero element

for the addition is the matrix denoted εn and exclusively
composed of ε (= −∞). We denote In the identity element
of the multiplication, which is the matrix with e (= 0)
on the diagonal and ε (= −∞) elsewhere. As usual in
conventional algebra, the multiplication symbol ⊗ will be
often omitted in the following.

(Max,+) automata can be defined as follows.

Definition 2.1. A (max,+) automaton G is a quadruple
(Q,A, α, µ) where

• Q and A are finite sets of states and of events;

• α ∈ Z
1×|Q|
max is such that αq = e or αq = ε, and q is an

initial state if αq = e;

• µ : A∗ → Z
|Q|×|Q|
max is a morphism specified by the

family of matrices µ(a) ∈ Z
|Q|×|Q|
max , a ∈ A, and for a

string w = a1a2 . . . an ∈ A∗, we have

µ(w) = µ(a1a2 . . . an) = µ(a1)⊗ µ(a2)⊗ . . .⊗ µ(an).

A coefficient [µ(a)]qq′ 6= ε means that, from state q,
the occurrence of event a causes a state transition to
state q′.

EquivalentlyG can be defined by the quadruple (Q,A,Qi, t),
in which Qi denotes the set of initial states

Qi , {q ∈ Q : αq = e},

and t : Q× A×Q→ Zmax is the transition function

t(q, a, q′) , [µ(a)]qq′ .

With this def., all states can be thought of as final states
(as for automata derived from heap models [7]).

A coefficient [µ(a)]qq′ 6= ε (equiv., t(q, a, q′) 6= ε) means
that, from state q, the occurrence of event a causes a state
transition to state q′, and value [µ(a)]qq′ is interpreted as
the duration associated to event a (namely, the activation
time of event a before it can occur). If [µ(a)]qq′ 6= ε, then
we denote (q, a, q′) the transition in G. Let m ≥ 0 and
π = (q0, a1, q1)(q1, a2, q2) . . . (qm−1, am, qm) be a sequence
of transitions. We call π a path from q0 to qm. We denote

q1

a/0, b/1, c/3c/0

q2

q3

a/2

b/1

b/1

c/0

b/1

Fig. 2. (Max,+) automaton G.

σ(π) the product ⊗ (i.e. the usual sum)of the weights on
π, that is

σ(π) =
⊗

i=1,...,m

t(qi−1, ai, qi) =
⊗

i=1,...,m

[µ(ai)]qi−1,qi .

Let p, q ∈ Q and w ∈ A∗. We denote by p
w
 q the set of

paths from p to q which are labeled by w. It can be shown
that

[µ(a1a2 . . . am)]q0qm =
⊕

π∈q0
a1...am
 qm

σ(π) . (1)

This shows that [µ(a1a2 . . . am)]q0qm corresponds to the
maximum weight among the paths recognizing a1a2 . . . am.

A (max,+) automaton is said to be deterministic if it has
a unique initial state and from each state, no two state
transitions share the same event (namely, if for all a ∈ A
each line of µ(a) contains at most one element not equal
to ε).

For deterministic automata, ∀q, q′ ∈ Q, ∀w ∈ A∗, q
w
 q′

is the empty set or a singleton. Let us denote π =
(q0, a1, q1)(q1, a2, q2) . . . (qm−1, am, qm) the unique path
recognizing a1a2 . . . am from q0 to qm, equation (1) is then
reduced to

[µ(a1a2 . . . am)]q0,qm =
⊗

i=1...m

[µ(ai)]qi−1,qi ,

=
⊗

i=1...m

t(qi−1, ai, qi).
(2)

In order to describe the dynamic evolution of (max,+)

automaton G, vector x(w) ∈ Z
1×|Q|
max for w ∈ A∗ is defined

by

x(w) = αµ(w) . (3)

An element [x(w)]q is interpreted as the date at which state
q is reached at the conclusion of the sequence w starting
from an initial state (with the convention that [x(w)]q = ε
if state q is not reached from an initial state using the
input sequence w). The language of a (max,+) automaton
contains the words w ∈ A∗ such that there exists a state q
with [x(w)]q 6= ε. The elements of x are generalized daters,
and we have

{

x(ǫ) = α,
x(wa) = x(w)µ(a).

(4)

Below, since all the states are considered as final, we
denote y the sum ⊕ of all the coefficients of vector x, that
is:

∀w ∈ A∗, y(w) =
⊕

q∈Q

[x(w)]q . (5)

2.2 Timed Petri nets

Definition 2.2. (Petri net). A Petri net (PN) G is a 4-
tuple (P , T ,F ,M0), in which P is a finite set of places,
T is a finite set of transitions, F ⊆ (P × T) ∪ (T × P)
is a relation between places and transitions, M0 : P → N

defines the initial marking of places (that is, the number
of tokens they contain initially). 7

For transition a ∈ T , •a (resp. a•) denotes the set of its
input (resp. output) places. The marking evolves according
to the following rules:

(1) Transition a is enabled at marking M if there exists
at least one token in each input place q ∈ •a.

(2) An enabled transition a can fire. The firing of a trans-

formsM intoM ′ (written M
a
→M ′) by removing one

token from each input place q ∈ •a and adding one
token in each output place q′ ∈ a•.

We say that a word w = a1a2 . . . an ∈ T ∗ is a firing
sequence starting from markingM0 if there is a sequence of
markings M1M2 . . .Mn such that transition ai is enabled
at Mi−1 and its firing transforms Mi−1 into Mi. We call
language of the PN the set L ⊂ T ∗ of firing sequences
starting from initial marking M0.

The set of reachable markings from initial marking M0 of
PN G will be denoted R(G,M0). A PN is said to be safe if
for all reachable marking each place contains at most one
token. If G is safe then set R(G,M0) is finite.

Let us denote B the subdioid of Zmax defined on set {e, ε}.
Themarking automaton of a safe PN G is the deterministic
boolean automaton GR = (R(G,M0), T , αR, µR) defined
by

• αR : R(G,M0)→ B, [αR]M =

{

e if M = M0,
ε otherwise,

• µR : T → B
|R(G,M0)|×|R(G,M0)|,

[µR(a)]MM ′ =

{

e if M
a
→M ′,

ε otherwise.

By construction, a word w ∈ T ∗ is a firing sequence of G
iff it is accepted by its marking automaton. If a PN is safe
and live, then it is strongly connected (that is, for every
pair of nodes there exists an oriented path from one node
to the other). In the following, we restrict our attention to
such live and safe PNs.

We call repetitive sequence from M ∈ R(G,M0) a firing

sequence v = a0 . . . an such that M
a0→M1 . . .

an→M .

We consider TPNs in which a finite firing duration τa is
associated with each transition a: τa is the minimal time
that must elapse, starting from the time at which a is
enabled, until this transition can fire.

Example 1. A PN G is usually represented by a bipartite
oriented graph as in Fig. 3. The two types of nodes are
places in P and transitions in T represented respectively
by circles and bars with the associated labels and dura-
tions. An element of F is displayed by an arrow from a
place to a transition or from a transition to a place. The

7 We restrict our attention to PNs which are ordinary and free-

labelled (each transition is labeled by a single event and there are no
two transitions with the same label).

initial marking is represented by [M0]q tokens in place q.
PN G is live and safe. Marking automaton GR of G is also
displayed on Fig. 3.

q1

b/1a/2

q2

q3

c/3

011

101

a b

c

c

Fig. 3. TPN G and its marking automaton GR.

Several assumptions on the functioning of PNs are consid-
ered hereafter:

• a token from the initial marking is supposed to arrive
in the TPN at time instant 0;
• if a place has several output transitions, then for
each token in this place it needs to be decided which
transition is to fire (that is, in case of a conflict). In
the present work, all the logically feasible choices are
considered for the decision. This corresponds to a so-
called preselection policy, in contrast to models for
which the decision is rather based on time considera-
tions (e.g. using the race policy). Note that choices
corresponding to the race policy are considered as
particular cases with the policy adopted here;
• when a transition is to be fired, then it is fired as soon
as possible.

We define xG(w) ∈ Z
1×|P|
max , the vector of variables asso-

ciated with places q ∈ P and function of firing sequence
w ∈ T ∗ by

[xG(w)]q =

{

instant at which the last token has arrived
in q after w (assuming that it is still in q),

ε if q does not contain any token after w.
(6)

Below, we denote yG the sum ⊕ of coefficients of vector
xG , that is:

∀w ∈ T ∗, yG(w) =
⊕

q∈P

[xG(w)]q . (7)

3. DESCRIPTION OF SAFE TPN BY POSSIBLY
NONDETERMINISTIC (MAX,+) AUTOMATA

In [7], authors have shown that the behavior of any safe
TPN can be modeled by a (max,+) automaton. Their
approach consists of two steps: a heap representation for
such PNs is first proposed, then a (max,+) automaton is
derived from the heap model. The following proposition
given in [12] specifies how to directly derive a (max,+)
automaton representing the timed behavior of a safe TPN.

Proposition 3.1. Let G = (P , T ,F ,M0) be a live and safe
TPN. A (max,+) automaton G = (Q,A, α, µ) is derived
from G as follows:

Q = P , A = T ,

∀q ∈ Q, αq =

{

e if [M0]q = 1,
ε otherwise,

∀q, q′ ∈ Q, ∀a ∈ A,

[µ(a)]qq′ =

{

τa if q ∈ •a and q′ ∈ a•,
e if q = q′ and q /∈ •a ∪ a•,
ε otherwise.

We have, for all w ∈ L,

x(w) = xG(w) . (8)

Example 2. (Max,+) automaton G displayed on Figure 2
is the one obtained by means of procedure described in
Proposition 3.1 in order to represent safe TPN G in Figure
3.

Remark 3.2. Note that (max,+) automaton G defined in
Proposition 3.1 is nondeterministic as soon as

• the corresponding TPN G has several places initially
marked (then G has several initial states);
• the corresponding TPN G has a transition a with
several output places, i.e. a• > 1 (then there exists
at least a line in µ(a) which contains more than one
non-zero element).

4. DESCRIPTION OF SAFE TPN BY
DETERMINISTIC (MAX,+) AUTOMATA

To the best of our knowledge and as discussed in the
introduction, results of the literature frequently fail to
determinize (max,+) automata obtained to represent safe
TPNs (in particular the automata displayed in figures 1
and 2). This observation has motivated the synthesis of a
new procedure to build deterministic (max,+) automata
describing live and safe TPNs. This procedure is intro-
duced in the next subsection together with a sufficient
structural condition on TPN for its termination.

4.1 New procedure to describe safe TPNs by deterministic
(max,+) automata

A new procedure is proposed to build a deterministic
(max,+) automaton G′ = (Q′, A, q′i, t

′) which is equivalent
to a safe and live TPN G. Models G′ and G are said to be
equivalent because y′(w) defined by Eq. (5) for G′ is equal
to yG(w) defined by Eq. (7) for G for every w ∈ T ∗. Note
that:

• G′ (unlike G considered in Prop. 3.1) does not have
necessarily the same number of states as the number
of places in G. This is why we require the equality
y′(w) = yG(w) instead of x(w) = xG(w) as in Eq. (8).
The situation is identical in [7] where the height of
heaps of pieces is shown to compute the completion
date of a firing sequence in the TPN.
• G′ and G have the same language, while the equality
of vectors in Prop. 3.1 is only true for w belonging to
language L ⊆ T ∗ of G.

Marking automaton GR is used to cover L and possibly
nondeterministic (max,+) automaton G defined in Prop.
3.1 is used to compute the weights to be associated with
the transitions. In very few words, the procedure unfolds
GR and computes weights to be associated with transitions
in G′ so that y′ represents the same timed behavior as
TPN G, that is y′(w) = yG(w), ∀w ∈ T ∗. The states of G′

are tuples composed of a reachable marking and a firing
sequence leading to this marking. Compared to existing
approaches discussed in the introduction, the key feature

M0 Mi

v

M0
Mi

Mk

ui

uk

Fig. 4. Partial representation of unfolding of GR.

is that the procedure covers the language L of TPN G
while building the corresponding (max,+) automaton G′.

Let us state some conventions used for the notations in the
procedure proposed below:

• Figure 4 is a partial depiction of the marking au-
tomaton GR which is unfolded by the procedure.
In the following,v denotes by convention a repetitive
sequence of transitions starting from and ending to
state Mi. String ui denotes a sequence with length
|ui| = i from M0 and leading to state Mi. Note that
uk for k ≥ i may have both ui and vn, with n a
natural number, for subwords.
• As usual, Tr(A) denotes the trace of matrix A, i.e. the
(max,+) sum ⊕ (maximum) of its diagonal elements.

Example 3. For PN G displayed in Figure 3, the proposed
procedure builds deterministic (max,+) automaton G′ de-
picted in Figure 5. In order to illustrate how the procedure
operates to build G′, let us detail some steps. Initial state
q′i is defined as the tuple (M0, u0) = ((101), e). When
RecursiveUnfolding is called with ((101), e) as argument
and Q′ = {((101), e)}, then possible iterations on line 9
are:

• a with M ′ = (011): the condition on line 10 is false
since M ′ /∈ Q′ and so the tuple ((011), a) is added
in Q′. State transition t′(((101), e), a, ((011), a)) =
y(a) − y(e) = 0 + 2 is defined and RecursiveUnfold-
ing is called with ((011), a) as argument and Q′ =
{((101), e), ((011), a)},
• c with M ′ = (101): the condition on line 10 is
true with (M0, u0) = ((101), e), but the condition
on line 11 is false since y(ca) − y(c) = (3 − 3) 6=
y(a) − y(e)(= 2). So tuple ((101), c) is added in Q′,
t′(((101), e), c, ((101), c)) = y(c) − y(e) = 3 and Re-
cursiveUnfolding is called with ((101), c) as argument
and Q′ = {((101), e), ((101), c)}.

When RecursiveUnfolding is called with ((011), a) as ar-
gument and Q′ = {((101), e), ((011), a)}, then possible
iterations on line 9 are:

• b with M ′ = (101): the condition on line 10 is true
with (M0, u0) = ((101), e), the condition on line 11 is
true since y(aba)−y(ab)(= 5−3) = y(a)−y(e)(= 2−0)
and y(abc) − y(ab)(= 6 − 3) = y(c) − y(e)(= 3 − 0),
and the condition on line 12 is true since

µ(ab) =

(

3 ε 3
ε ε ε
1 ε 1

)

, Tr(µ(ab)) = 3,

Procedure building deterministic (max,+) au-
tomaton G′ = (Q′, A, q′i, t

′) equivalent to G

1: Build GR = (R(G,M0), T , αR, µR) the marking au-
tomaton of G

2: Build (max,+) automaton G = (Q,A, α, µ) from G
using Prop. 3.1

3: if G is nondeterministic then
4: q′i ← (M0, e) ⊲ (M0, u0) with u0 = e is the initial

state
5: Q′ ← q′i ⊲ adds the initial state in set Q′

6: RecursiveUnfolding(M0, e) ⊲ Calls the recursive
procedure

7: end if

8: procedure RecursiveUnfolding(Mk, uk)
9: for all a ∈ T ,M ′ ∈ R(G,M0) s.t. [µR(a)]MkM ′ 6= ε

do
10: if ∃(Mi, ui) ∈ Q′ such that M ′ = Mi,
11: y(ukab)− y(uka) = y(uib)− y(ui) for all b ∈ T ,
12: y(uka) = Tr(µ(v)) + y(ui) with v ∈ A∗ s.t. uka = uiv

then
⊲ State (M ′, uka) is equivalent to (Mi, ui) in Q′

⊲ loops on state (Mi, ui) and stops unfolding
13: t′((Mk, uk), a, (Mi, ui))← y(uka)− y(uk)
14: else

⊲ state (M ′, uka) is not equivalent to a state in Q′

⊲ adds the state in Q′

15: Q′ ← Q′
⋃

{(M ′, uka)}
⊲ defines the state transition

16: t′((Mk, uk), a, (M
′, uka))← y(uka)− y(u)

⊲ calls the procedure to keep on unfolding
17: RecursiveUnfolding(M ′, uka)
18: end if
19: end for
20: end procedure

and y(ab)(= 3) = Tr(µ(ab)) + y(e)(= 3 + 0). Then
t′(((011), a), b, ((101), e)) = y(ab)− y(a) = 1 and this
instance of RecursiveUnfolding ends.
• c with M ′ = (011): the condition on line 10 is true
with (M1, u1) = ((011), a), but the condition on line
11 is false since y(acc) − y(ac)(= 6 − 3) 6= y(ac) −
y(a)(= 3 − 2). Tuple ((011), ac) is added in Q′,
t′(((011), a), c, ((011), ac)) = y(ac)− y(a) = 3− 2 and
RecursiveUnfolding is called with ((011), ac) as argu-
ment and Q′ = {((101), e), ((101), c), ((011), ac)}.

4.2 Sufficient condition for the termination of the procedure

Unfortunately, the above procedure does not always ter-
minate because the number of states in G′ may be infinite
(no surprise here since it is well-known that not all the
(max,+) automata can be determinized, see e.g. [13]).

In this subsection, it is shown that the following property
for G is sufficient for the termination of the procedure.

Property 4.1. For every pair of transitions (q, q′), there
exists an oriented path from q to q′ which contains at most
one place in set Ps defined by

Ps , {q ∈ P|q
• > 1}.

In other words, this class of live and safe TPNs is identi-
fied to be equivalently modeled by deterministic (max,+)

011, a
c/3

c/3

101, e

a/2

b/1 b/1

101, c

c/3

011, ac

c/1

011, ca

b/1

a/0

c/3

Fig. 5. Deterministic (max,+) automaton G′ equivalent to
safe TPN G represented in Figure 3.

automata. Let us emphasize that our contribution extends
existing results on this topic as pointed out in Remark 4.6
below. In particular, for TPN G displayed in Fig. 3 the
procedures from the literature fail to build a deterministic
(max,+) automaton representation (see the discussion in
the introduction), but it satisfies Property 4.1 and the
proposed procedure then succeeds to build G′ which is
deterministic and equivalent to G (see Ex. 3 and Prop.
4.5).

Before stating the main result in Proposition 4.5, we give
several properties for TPN G and (max,+) automaton G
obtained using Proposition 3.1. Note that we denote x and
y (instead of xG and yG) the daters associated with G since
they are equal to the daters associated to G according to
3.1.

We say that two circuits in a Petri net G denoted by
w1 ∈ T

∗, w2 ∈ T
∗ are disjoint if they don’t have any

common place and transition, and if ∀a ∈ w1, ∀b ∈ w2,
(•a ∪ a•) ∩ (•b ∪ b•) = ∅.

Lemma 4.2. Let G be a live and safe PN. If G satisfies
Property 4.1, then there does not exist two disjoint circuits
denoted by w1 ∈ T ∗, w2 ∈ T ∗ such that wn

1w
m
2 with n > 1

and m > 1 is a possible firing sequence.

Lemma 4.3. Let G be a live and safe PN. Let w1 ∈ T ∗,
w2 ∈ T ∗ denoting two circuits in G having common
transition(s) and/or place(s), or such that ∃a ∈ w1, ∃b ∈
w2 with (•a ∪ a•) ∩ (•b ∪ b•) 6= ∅. If G satisfies Property
4.1, then for all v ∈ T ∗ a repetitive sequence 8 on places
in w1 and w2 there exists a marked place p in w1 and/or
w2 such that ∀ui ∈ T i,

[x(ui)]p ≥ [x(ui)]q and [x(uiv)]p ≥ [x(uiv)]q
for all q a place in w1 and/or w2.

Lemma 4.4. If G satisfies Property 4.1, then there exists a
(uniform) bound k ∈ N such that ∀uk ∈ T ∗, k ≥ 1, there
exists a finite length repetitive sequence vj ∈ T ∗, j ∈ N

(circuit in the marking automaton of G) such that there is
a place p ∈ P that is marked after both ui and uiv

j , with

y(ui) = [x(ui)]p and y(uiv
j) = [x(uiv

j)]p. (9)

Proposition 4.5. If G satisfies Property 4.1, then the pro-
cedure of Subsec. 4.1 terminates and builds a deterministic
(max,+) automaton G′ which is equivalent to TPN G.
8 The marking of places in w1 and w2 is the same before and after
firing sequence v.

Remark 4.6. Note that the special class of Petri nets for
which there exists a pair of transitions (q, q′) such that
any oriented path from q to q′ contains more than one
”conflict” place (i.e. in Ps) is much weaker than the
requirement that there exist transitions which do not share
any input and output place.

5. CONCLUSION

The main result in this paper is the constructive proof that
a safe TPN can be equivalently represented by a determin-
istic (max,+) automaton provided that the oriented path
between any two transitions contains at most one ”conflict
place”. The complexity of our determinization procedure
should be addressed in future work. It is also our plan
to transpose this result into a determinization procedure
applied directly to (max,+) automata.

REFERENCES

[1] F. Baccelli, G. Cohen, G.-J. Olsder, and J.-P.
Quadrat. Synchronization and Linearity. Wiley, 1992.

[2] E. Badouel, A. Bouillard, P. Darondeau, and
J. Komenda. Residuation of tropical series: rationality
issues. In CDC-ECC’11, pages 3855–3861, 2011.

[3] R. Boukra, S. Lahaye, and J.-L. Boimond. New repre-
sentations for (max,+)-automata with applications to
the performance evaluation of discrete event systems.
In WODES’12.

[4] M. Droste, W. Kuich, and H. Vogler (Eds.). Handbook
of Weighted Automata. Springer, 2009.

[5] S. Gaubert. Performance Evaluation of (max,+) Au-
tomata. IEEE TAC, 40(12):2014–2025, 1995.

[6] S. Gaubert and J. Mairesse. Asymptotic analysis of
heaps of pieces and application to timed Petri nets. In
PNPM’99, pages 158 – 169, 1999.

[7] S. Gaubert and J. Mairesse. Modeling and analysis of
timed Petri nets using heaps of pieces. IEEE TAC,
44(4):683–698, 1999.

[8] L. Houssin. Cyclic jobshop problem and (max,plus)
algebra. In 18th IFAC WC, Milan, Italy, 2011.

[9] D. Kirsten. A burnside approach to the termination
of Mohri’s algorithm for polynomially ambiguous min-
plus-automata. RAIRO, 42(3):553–581, 2008.

[10] I. Klimann, S. Lombardy, J. Mairesse, and C. Prieur.
Deciding unambiguity and sequentiality from a finitely
ambiguous max-plus automaton. TCS, 2004.

[11] J. Komenda, S. Lahaye, and J.-L. Boimond. Supervi-
sory Control of (max,+) Automata: A Behavioral Ap-
proach. Disc. Event Dyn. Syst., 19(4):525–549, 2009.

[12] S. Lahaye, J. Komenda, and J.-L. Boimond. Compo-
sitions of (max,+) automata. Disc. Event Dyn. Syst.
To appear.

[13] S. Lombardy and J. Sakarovitch. Sequential ? Theo-
retical Computer Science, 359(1-2):224–244, 2006.

[14] J. Mairesse and L. Vuillon. Asymptotic behavior in
a heap model with two pieces. Theoretical Computer
Science, 270(12):525 – 560, 2002.

[15] M. Mohri. Weighted automata algorithms. In Hand-
book of weighted automata. Springer, 2011.

[16] C. Ramchandani. Analysis of asynchronous concur-
rent syst. by timed PN. Ph.d. thesis, M.I.T., 1973.

[17] Rong Su and Gerhard J. Woeginger. String execution
time for finite languages: Max is easy, min is hard.
Automatica, 47(10):2326–2329, 2011.

