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Control of (max, +)-linear systems minimizing

delays

L. Houssin, S. Lahaye and J.-L. Boimond

Abstract

In this paper, we develop a new control technique for discetent dynamic systems subject
to synchronization phenomena. We propose a feedback dlentfor (max, +)-linear systems which
delays input events as less as possible while constrainisternal or output events are satisfied. The

synthesis is mainly based on new results about fixed poingtitone {.e., order reversing) mappings.

Index Terms

Discrete event systeméinaz, +)-linear systems; controller synthesis.

. INTRODUCTION

In this paper, we study Discrete Events Dynamic Systems (H)EDat can be modeled by
a linear representation ifmax, +) algebra. This class of DEDS corresponds to Timed Event
Graphs (TEG). A linear system theory has been developethésetparticular systems in [1] with
applications to flexible manufacturing systems, telecomication and transportation networks
[8]. Strong analogies exist between the classical lineatesy theory and thémax, +)-linear
system theory. In particular, the concept of control is vagfined in context of TEG. It refers
to the firing control of TEG input transitions in order to rbaa desired performance.

One possible approach is based on thedel-reference techniqué given model then de-

scribes the desired performance limits and the design gaathieved through the calculation of
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a precompensator and/or of a feedback controller. Such &otien is computedh priori and is
valid for all potential reference inputs. In these workg;hsas [5] and [12], the authors consider
a just-in-time criterion, that is, the proposed control $aslelay occurrences of input or internal
events (firings of input or internal transitions) as much @ssgble. This paper also deals with the
a priori synthesis of a feedback controller valid for all possiblerence inputs. However, the
control objective as well as the technique are different, amdur knowledge, original. Instead
of the just-in-time criterion, the aim of the control is tolagthe system as less as possible, that
is to postpone the occurrences of input events (firings ofitin@nsitions) as less as possible,
while satisfying some given constraints (rather than a rmodgching problem). For example,
in a railway network, one can aim at limiting the number ofirtsaon a path (by increasing
dwell times at stations to improve connections) while miaing the induced delays. Another
possible application concerns push flow production systemhgect to critical time constraints,
in which sojourn times of pieces must not exceed a given valusome stages. Hence, we
may be interested at bounding the sojourn times while detpyhe release of raw parts into
the system as less as possible. For such control problemappuoach is mainly based on new
results about fixed points of antitone (order reversing) pivags.
For the control of TEG, several techniquesreference signal trackingpave also been studied.
In particular, an extension of Model Predictive Control (®)Fhas been proposed fonax, +)-
linear systems in [13], and notably applied to the justimnet output tracking problem: compute
the latest occurrence times of consecutive inputs evenile wiinimizing the error between a
reference signal (defining due dates for the output eventsjlee predicted output of the system.
An advantage of this approach is that it can accommodatdreamts on the inputs and outputs.
It will be pointed out that the criterion and the constraiotsisidered in the present paper can
be recast in the MPC framework. Nevertheless, the obtaioedra law then depends on the
reference input whereas the proposed feedback is validllifpoasible reference inputs.

In section 2, we recall some results from the dioid theory emicbduce results concerning
isotone and antitone mappings. Section 3 is devoted to theelmg of DEDS. The proposed

control laws are presented in section 4 before to conclude.
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[I. ALGEBRAIC TOOLS
A. Dioid theory

A dioid (D, ®,®) is a semi-ring in which the sum, denoted by is idempotent. The sum
(resp. product) admits a neutral element denatéeksp.e). A dioid is said to be complete if it
is closed for infinite sums and if the product distributesranéinite sums too. The sum of all
its elements is generally denotéd (for top).

Example 1:The setZ,... = Z U {—oc} endowed with the max operator as sum and the
classical sum as product is a (hon-complete) dioid. If we adé +oo (with the convention
T®e =400+ (—o0) = —c0 = ¢) to this set, the resulting dioid is complete and is denoted
Znaz-

Due to the idempotency of the sum, a dioid is endowed with &gbarder relation, denoted
= and defined by the following equivalence:> b < a = a & b. A complete dioid has a
structure of complete lattice [E£4], i.e., two elements in a complete dioid always havieast
upper boundnamelya & b, and agreatest lower boundenotede Ab = @, |, <, .y * N the
considered dioid.

Let D andC be two complete dioids. A mapping : D — C is said to be isotone (resp.
antitone) ifa,b € D, a < b= f(a) < f(b) (resp.f(a) = f(b)).

Residuation theory [3] defines "pseudo-inverses” for sosmoine mappings defined over
ordered sets such as complete dioids [4]. In particulathéf greatest element of the st €
D|f(x) = b} exists for allb € C, then it is denoted”(b) and f* is calleddual residualof f.

Example 2: The mappindl, : D — D;x — a & z is dually residuated (see [14.4.4] for a
proof). The dual residual is denotdd(b) = b e a. It should be clear that = b < T7(b) = .

If T, is defined ovelZ,,,, then

b if b>a,
T°b)=be a=
¢ otherwise
We recall the following property of? used later:
a(x e b) = ax o ab. (1)
Note that the product operatoy has been (and will be) omitted as soon as no ambiguity can

appear. A relevant remark is that althougi(x) = = e a is isotone, the mapping — a ¢
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is antitone sincer; < xy < ae 11 = a-© o, Va. It should be clear that e x; is the least
solution ofx; ® x > a anda e x5 is the least solution ot, ® = > a (see [1, 4.4.4] for more

details).

B. Fixed points of mappings defined over dioids

Because of their lattice structure, properties about fixeithtp stated for lattices also apply
over dioids.

Notation 1: Let f : D — D with D a complete dioid, we use the following notations:
Fr={z € D|f(z) =z}, Py ={x € D|f(x) = z}, Qy = {z € D|f(x) < z} and f? denotes
fof.

For an isotone mapping, in [14] and [6] it has been shown that the sé&ts, P; and Qy
are non-empty complete lattices. Moreover, it can be shdwahthe greatest (resp. least) fixed

point coincides with the greatest (resp. least) elemer® ofresp.Q;):

Sup Py = Sup Fy and Sup Fy € Fy,
Inf Qf:]nf}—f and ]nf]:fe}"f.

(2)

In the following proposition given without proof, a well kwa method to compute the greatest
fixed point of an isotone mappinf) (see for example [15]) is indicated.

Proposition 1: Let f be an isotone mapping. If the following iterative compudati

Yo = T 3)
Yer1 = [(yr)
converges in a finite number, of iterations, theny,, is the greatest fixed point of.
Properties about fixed points of antitone mappings are nditastablished, and only few works
have tackled this problem [2], [7]. To the best of our knovgedresults presented in the sequel
are original. However, proposition 6 has been inspired hy{.7A]. More details and illustrations
can be found in [11].
Notice that if f is an antitone mapping thef? is isotone. Let us first characterize the structure
of Py and Qy.
Proposition 2: Let f : D — D be an antitone mapping. The S8t (resp.P;) is a complete

upper semi-lattice (resp. complete lower semi-lattice).
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Proof: Let us consider two elementsy € Q. Sincef is antitone, we hav¢(z®y) < f(x)
and f(z @ y) = f(y) which implies thatf(z © y) = f(2) A f(y) = f(z) @ f(y) 2z @y, and
hencex @ y € Q; . This assertion also applies to infinite sums. TheBeis proved to be a
complete lower semi-lattice by identical arguments. [ |

Proposition 3: Let f : D — D be an antitone mapping andc D. We have

r@® f(zr) € Qy, z A f(z) € Py

Proof: We havef(z)® x > = and f(x) & x >~ f(x) which implies by antitony off that
f(f(@)@x) 2 f(x) X f(z) @ a. Similarly, f(z) Az € Py since f(f(z) Ax) = f(x) = f(z)Ax.
u
Proposition 4: Let f : D — D be an antitone mapping, € P; andz € Q. For allz € D
such thatr < y (resp.2’ € D such thatr’ > z), we haver € P; (resp.z’ € Qy).
Proof: We use the antitony of :

8
A

.
=
s
Y
<
Y
8

y = f(v)
= oz o= f(2)

N
=
&
N
I\
N
%3\

[
Proposition 5: If z is a fixed point of an antitone mapping: D — D, thenz is a minimal
(resp. maximal) element ad; (resp.Py).

Proof: Letx € Fy, y € Py andz € Q; such thaty > = = z. Using the antitony off, we
obtain f(y) = f(z) = f(2) =y = f(y) 2= = f(2) =X 2, and hencg = v = z. We conclude
that there is no element &, (resp.P;) which is less (resp. greater) than [ |

As a corollary to this proposition, notice that ff admits several distinct fixed points, then
they are not comparable. Furthermore, remark that/getan be empty.

Proposition 6:Let f : D — D be an antitone mapping. Denoting= Inf Fp andv =
Sup Fp2, we havey € Py andv € Q.

Proof: We show thatf(x) = v and f(v) = u (sincep < v by definition, this proves
f(p) = pand f(v) < v). Insertingp = Inf Fr into f(-) yields

fw=fCN\ = P f (4)

xE]:f2 xE]:fg

(f antitone= f(a Ab) = f(a) ® f(D)).
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However, elements of f (z)|x € Fj} are fixed points off? too sincef*(f(z)) = f(f*(z)) =
f(x). Next we show thatfprf2 is a permutation. Indeed consider thaty € 7., z # y and
f(x) = f(y), then we havef?(x) = f*(y) and sox = y which is a contradiction. Hence

inequality (4) can be rewritten as

We previously remarked that(z) with = € F;= is a fixed point off? so doesf(x) and it
leads tof(u) = EByefo y = v. From the last equality, we obtain algdf(u)) = = f(v). ®

As any fixed point of f is also fixed point off?, the following corollary follows from
Proposition 6.

Corollary 1: If v = p, thenF; = {v} andv is a minimal element of;.

Remark 1:For the following control problem, we are interested in tlmmgputation of as
small as possible elements ¢f;. The element, which can be computed using proposition 1,
can be a minimal element @, (see Corollary 1). Otherwise, it constitutes an interegstipper
approximation of a minimal element @&;. In fact, anyz € F; is a minimal element oQ;

(see proposition 5) and is such that< v (sincex also belongs toF2).

[1I. M ODELING DEDSUSING DIOIDS
A. State and transfer representation

Dioids enable one to obtain linear models for DEDS which imeqonly) synchronization
and delay phenomena (but not choice phenomena).

This class of DEDS can be modeled by TEG.

The behavior of such systems can be represented by sometdiganctions callediater
functions (see [1], [8]). More precisely, a discrete valéahy(-) is associated to an event labeled
z (firing times of transition labeled in the corresponding TEG). This variable represents the
occurring dates of event. For instance, considering the TEG drawn in figure 1, under th
earliest functionning rufe the daterz; is related to the daters; andz, overZ,,,, as follows:

x3(k) = 1laq (k) & 229(k — 1). More generally, every TEG admits a linestate equation

That is, considering that transitions of the TEG are firedamsas possible.
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x(k) = Az(k — 1) @ Bu(k), (5)

wherex andu are the state and the input vectors.

An analogous transform to th&-transform (used to represent discrete-time trajectanes
conventional theory) can be introduced for TEG: the)-transform. This transform enables
us to manipulate formal power series, with two commutatigeiablesy and ¢, representing
dater trajectories. The set of these formal series is a catmplioid denoted\%*[~,d] with
e = ~%5° as neutral element of the product and= (y~!)*(§')* as neutral element of the
sum (the construction of this dioid is detailed in [1]). Iretifiollowing, we denote by: the
corresponding element dfc(k) }rez in M [~,d]. For instance, the formal series associated
to the corresponding transition in fig. 1 is related to thenfak seriesx; and z, as follows:
xg = 0oy @ 6%z, We can interprety as the backward shift operator in event domain éracs

the backward shift operator in time domain. M?*[~, ], the state representation (5) becomes

xr = Ax ® Bu, (6)

in which entries of matricesl and B are elements aM?*[~, §]. The least solution is given by
r = A*Bu with A* = @, _ A, A’ = e and A" = A® A" [1, Th 4.75], andA* B corresponds

to thetransfer betweenu and .

1€N

Assumption 1:We assume that the input matriX is a diagonal square matrix with entries
equal toe or ¢.

Assumption 1 is not restrictive since it can always be satidfly extending the state and input
vectors and permuting states. We assume that it holds thoutghe remainder of the paper.
Note that the assumed structure Bfis such thatB < e and B” = B for n > 1.

Example 3:The TEG drawn in fig. 1 can be modeled by (6) with

A=16 162 ¢ € ¢ |,
€ € P e ¢
M e e o0 ¢
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and, according to assumption B, a diagonal matrix s.tB;; = e if i € {1,2} and B;; = ¢

otherwise.

B. Causality and causal upper approximation

The variablest € M%*[~, §] used to model TEG satisfy the causality property [1].

Definition 1: Let x € M%[v, 4], = is said to be causal if either = ¢ or all exponents of
x are inN. A matrix is saidcausalif its entries are all causal. The set of causal elements of
M= [~, 5] is a complete dioid denoted %[, d].

Considering a TEG, a causal transfer means that the systemra require any anticipation
(either in time or in event). We now introduce the notion ofisa upper approximation (see
[10, §2.4]) which will be used later to find a causal controllee.( without any anticipation).

Proposition 7: Let = € M%*[~,d]. The two following assertions are equivalent:
(i) x~ has no negative exponent in
(ii) there exists a least’ € M{**[v,d] such thatr’ = z. It means that: admits a causal
upper approximation.
Proof: If x is causal, the proof is obvious and = x. We now consider: not causal.
We can limit the proof to the case of monomials since a sese®thing more than a sum of
monomial.
(i)=(ii) : Let z = 4%, with n > 0 andt < 0. It is easy to see that the monomigld® is
the least element aM{**[~, §] such thatr’ = z. Hence,z’ = 7"¢".
(ii)=(i) : If there exists a least’ € M *[v,d] such thatz’ > z with 2/ = 6" and
r =~"¢", we haven’ < n andt’ > t. Howeverz’ € M{**[,d], hencen’ > 0 and we obtain
n > 0. [ |
We can remark that proposition (7) is also valid for matriegth entries inM¢*[, o].
We now demonstrate that if an elementadmits a causal upper approximation then every
element less tham admits a causal approximation too.
Corollary 2: Let 2 be an element ofM¢*[~, 6] which admits a causal approximation. Every
elementy such thaty < = admits also a causal approximation.
Proof: The seriesz can be rewritten ass = @,_,7"¢". Since z admits a causal
~"i6% is

approximation, we hav®i € I, n; > 0, in other wordsmin;c;n; > 0. If y = EBJEJ
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such thatz > y, we obtain

. ! .
minn; = minn,
jeJ i€l

and hencerj € J, n; > 0. We conclude thay has no negative exponentjnand consequently

y admits a causal approximation. [ |

IV. CONTROLLERS SYNTHESIS FOR CONSTRAINED SYSTEMS
A. Problem statement

Considering DEDS modeled by their state equation (6), wardesested in the synthesis of
state feedbackontrollers for(mazx, +)-linear systems. More precisely, if we consider a DEDS
modeled by a TEG, using its transfer representatioMfi’ [y, /], we will compute a transfer
for the feedback controller. This transfer will be realizegla TEG and the application of the
controller will lead to merge the TEG of the controller withet TEG of the system. In this
controlled TEG, the additional arcs due to the controllahartize or prohibit the firing of the
controlled transitions (see figure 1). This control stroetis comparable with some Petri nets
methods for controlled DEDS [9].

The synthesis of feedback for TEG has previously been tdakigpapers such as [5], [12].
In these works, the feedback is aimed at delaying eventsisyatem as much as possible such
that the controlled system is not slower than a referenceeinod

In this paper, the control objective is different :

e We aim at ensuring some given constraints on the stat@ther than satisfying a refer-

ence model matching) for all inputs. These constraints afsed by a matrixp and are

formulated by the implicit inequality :
pr X . (7)

e we look for a feedback which delays the functioning of thetesysas less as possible (that
is, which postpones input events as less as possible, appogast-in-time criterion). In
other words, we aim at computing the least feedback suchtlieastate of the controlled
system satisfies the constraints given by (7).

In the following, we illustrate three constraints which danimposed on the controlled systems

as an inequality (7). Next, the control problem is formalizend solved as a state feedback

synthesis.

February 7, 2013 DRAFT



10

B. Constraints specification

We now detail three kinds of constraints for DEDS describgd BEG, that can be formulated
by inequality (7):

« Some inner variables can be subject to a minimum time separbétween two successive
firings. For a state variable; and a time separation denotéd,;,, we require thatr;(k +
1) = Apin z3(k). Then, the counterpart of this constraintA e[y, 6] is yd4minz; < ;.

« We can also aim at bounding the sojourn times of tokens inngpaghs of a TEG (critical
time constraints). Let us consider a path from transitiprio transitionz; containinga
tokens initially and we denote the desired maximum sojourn time in this path. This yields
z;(k + a) — z;(k) =< 7, which can be formulated iM{*[~, 0] by v~ 0 "z; < ;.

« We may also limit the number of tokens in some paths of a TE®.ulseconsider a path
from z; to x; containinga tokens initially, we denote: the desired maximum number of

tokens in this path. This constraint can be specifiedyby*z; < z; in M& [y, d].

C. Formalization

We consider a state feedback controller. In this structucerdroller, denoted by, is added
between internal state. and inputu. The process input is described by= Fz. & v, with v the
reference input. Such a controller implies that the delagxehts are only the inputs one. The
concerned variables are the ones belonging to thé/set {u;|B;; = ¢} . The state evolution

of the controlled system is then described by
r. = Azv. ® BFxz.® Bu.

By considering the earliest functioning rule, the trangtdation of such controlled system is

z.=(A® BF)"Bv = H.. (8)

Remark 2: Assumption 1 implies that the feedback on inputs has an teffacthe state
variables that are directly controllable, these statealdesx; such thatB,; = e. These state
variablesz; are such that; = u;, since there is no shift between them. We denote this set by
X. = {x;| By = e}.

From (8), it is obvious that the state of the controlled syste such thatz. > A*Bwv, Vo.
Furthermoreg. should satisfy the control objective (7)., z. = ¢x., thenz. = A*Bv®ox,., Vv.
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We aim at delaying the system as less as possible, theretose@k the least controlled given
by z. = ¢*A*Bv,Vv. Using (8), we then look for the least feedbakksuch that

(A® BF)"Bv = ¢"A*Bv, Y,
< (A® BF)'B = ¢*A*B. (9)

We can easily prove that (9) is equivalent to

(A® BF)'B = ¢TA*B, (10)

in which ¢* = ¢¢* = @, ¢' and therefores* = ¢ © ¢*. We have(9) = (10) sinces* = ¢*,
and consequently*A*B = ¢+t A*B, and (10) = (9) :

(A® BF)*B = ¢tA*B
= (A®@BF)B&A'B » ¢TA'B& A*B
= (A®BF)B@®A'B = ¢"A'B since¢t A*B @ A*B = ¢*A*B
- (A® BF)‘B = ¢*A*B since(A @ BF)*B = A*B

Assumption 2:The matrix of constraint® is supposed to satisfio = ¢.
This assumption comes down to formulating all constraifts,; < z; (see§lV-B) such that
r; € X, that is, on states; that are directly controllable. For a given constraint onashp
between two state variables ¢ X, andx; ¢ X, our approach requires to recast the constraint
such thatr; € &, or z; € X.. For example, consider the TEG of fig.1 and suppose that soken
must not sojourn more that 4 units of time in the path betweansitionsz; andz5. Hence, it
leads to a matrixp that does not satisfy assumption 2. Nonetheless, it is Iples& recast this
constraint in a way that assumption 2 is satisfied. Insteadookidering the path between
andzxs, we can select the paths betwegnandx; and a maximum sojourn time of 5 unit times.
This new constraint implies the original one but also inpléenew constraint for the sojourn
time betweenr; andzz (at most 2 units of time). Note that, another possibilityascbnsider
the path between, andz; and a maximum sojourn time of 6 units of time.

The following proposition gives a necessary and sufficiemtdition on the given constraints

¢ for the existence of a causal feedback satisfying (10).
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Proposition 8: There exists a causal feedbaEksatisfying (10) if, and only ifp™ A* B admits
a causal upper approximation. If it exists, the causal upp@roximation is denoted b§.
Proof:
= If a causal feedback’ exists, then A® BF)*B is also causal (sincd and B are causal).
We can derive from corollary 2 and (10) that A* B admits a causal upper approximation.
< If ¢ A*B admits a causal upper approximation, then one can find aloalesaentX such
that X = ¢*A*B. SinceB?> = B andB¢™ = B(¢p ® 9o @ ...) = ¢+, we have

BXB - ¢TA*B
= (BX)*B = ¢TA*B sincea* = a
= (BX)*'B@®A*B » ¢tA*B
= ((BX)*® A*)B > ¢TA*B
= ((BX)® A)*B = ¢tA*B since(a @ b)* = a* G b*

which proves that a causal feedback (here dendfgdatisfying (10) exists.

[
Corollary 3: The causal upper approximatié# if it exists, is such thatzB = G and BG =
G.

Proof: We first demonstrate that*B = G. Since B < e, we haveGB =< G. From
proposition 8,G is such thatG = ¢™A*B and we haveZB = ¢TA*B (B? = B). The matrix
G B is causal sinc& and B are, and as7 is the least causal element greater thidm* B, we
deduceGB > G. By the same reasoning, we can easily pr&@€ = G. [ |

Remark 3:In [13], considering the dater functions on a predictionizmm, (max,+)-linear
systems are described by the state equation (5) and thetcegpationy(k) = Cx(k). The
MPC is extended to this class of systems by defining a controkbn, a cost criterion as well
as constraints given by

E(k)u(k) + F(k)y(k) < h(k), (11)

in which E(k), F (k) and h(k) (matrices of adequate dimensions) are chosen accordirgeto t
control goals. The MPC has been considered for the justrie-butput tracking problem in
[13], and it can also be applied to the present control prableet us mention the outlines of

such a formulation:
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« Consider a cost criterion which leads to a minimization @& thput time instants.
« Assume that each constraint expressed by (7) applies betaeenput and an output of
the system to recast it (with a possible increase of the gtiedi horizon) as a constraint
in (11).
. Take into account the reference inpués inequality—u(k) < —v(k) compatible with (11).
Formulated this way, that is as a nonlinear convex optinonaproblem, several algorithms
have been proposed to solve the MPC problem. It should be #iaathis solution depends on
the reference input. This implies thatv must be known (at least on the prediction horizon)
and that the control law must be implemented online. In @stfrthe feedback proposed in this
paper is computed offline (using proposition 9) and is vadid dll possible reference input
(i.e.,v is assumed to be unknown). Furthermore, with the MPC appragach constraint must
apply between an input and an output of the system (see tlmdetem above) and this is

more restrictive than assumption 2.

D. Feedback computation

In this section, we investigate how to compute a solution1®¥).(

Proposition 9: Suppose thap™ A* B admits a causal upper approximation denate¢heces-
sary and sufficient condition for the existence of a causadiiback satisfying (10)). Solutions
of (10) are elements of, (see Notation 1) witly : F' — B(G e (A® BF)*).

Proof: Causal feedbacks used are such that

(A® BF)*B - G
< (A® BF)* - G (sinceGB =G and B < ¢)
& BF@®(A®BF) = G (since(A @ BF)* = BF)
< BF = Go (A® BF)* (T aeBr)- is dually residuated)
& F ~ B(Ge (A® BF)").

For the last equivalence :

(=) BF=Ge (A® BF)* = B’F > B(Ge (A® BF))
= F > B(Ge (A® BF)*) (since F = BF = B?F)
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(<) F=B(Ge (A®BF)*) = BF = B*Ge (A® BF)*)
=~ BF» B(Ge (A® BF))
= BF > BGe B(A& BF)* (sincea(z e b) = ax o ab)
= BF > BGe (A& BF)* (z — a e z is antitone)
= BF»Go (A® BF) (BG = G).
|

Corollary 4: The computation of = Sup F,2 (using Proposition 3) gives a feedback ensuring
(10) (sincev € Q,, see prop. 6).

Remark 4:To summarize, Proposition 8 gives a necessary and sufficemdition for the
existence of a solution to our control problem. If it is si#d, then Corollary 4 states how to
compute a solution, namely = Sup F,.. As pointed out in remark 1y is a good solution to

our control problem since it approximates or corresponds toinimal feedback.

E. Example

We consider the DEDS modeled by the TEG in fig.1 and whose septation is given in
section IlI-A.

To begin with, we will illustrate that not all constraintsfobed as in IV-B are suitable.
Nonetheless, as stated in proposition 8, the computatign df B enables us to detect unsuitable
constraints if it contains at least one entry with a negagxgonent iny. For example, bounding
the sojourn time of tokens in the path between transitionand 25 leads to a matrixp™ A*B
containing an entry with a negative exponentynA natural explanation is that if transition
uy is never fired (the feedback is designed for all possible ts)puhen the token initially in
the place between, and z3; will remain indefinitely in the considered path. In this caaay
relevant feedback cannot be found.

We now consider suitable constraints:

« tokens must not sojourn more than 5 time units in the pathsdsst transitions:; and s,

thendoz; < 4,
« the number of tokens in the path betweenand z, must not exceed 3, hencx, < .
We havegps = 675, ¢35 = 7 and ¢;; = ¢ otherwise { <i,j < 5).

According to§lV-D, we can compute the following feedback
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X4

Fig. 1. A TEG (thick lines) merged with a realization of itsntwller (thin lines) and the (external) reference inputstied

lines).

,}/252(7253)* 71(7253)* e £ ¢

€ € € € €
F=v= € € € € €
€ € € € ¢
€ € € € €

which satisfies both constraints. A realization of this colir is represented in thin lines
in fig.1. The computation of’ has been implemented with the C++ librdiyminmaxgd 2
handling formal power series iM% [~, d].

Let us note that, for this example, we have# 1, and hence we cannot argue, thanks to
corollary 1, that is a minimal feedback. In fact, there exists a feedbBGkdefined byF;; = v;;
for (i,7) # (1,1) and F}, = ¢, which is less tharf’ and which satisfies (10). Nevertheless, let
us point out that the controlled system witi has the same transfer as the controlled system

with F', that is(A ® BF')*B = (A @ BF)*B (see Eq. (8). This means that delays are equally

Zwww.istia.univ-angers.fr/-hardouin/outils.html
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minimized by F’ and F'. This observation reinforces our suggestion that= v constitutes a

good approximated solution for our control problem (seeaml).

V. CONCLUSION

We have presented a new control problem(inaz, +)-linear system theory: ensure some

given constraints while delaying the systems as less ashp@sbsing results on antitone and

isotone mappings, we propose a state feedback. It must el nioat the controller obtained

is not necessarily minimal. In the future, we will focus outeation on improvements of our

control approach in that sense.
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