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Abstract This paper presents a compositional modeling approach by means
of (max,+) automata. The motivation is to be able to model a complex discrete
event system by composing sub-models representing its elementary parts.
A direct modeling of safe timed Petri nets using (max,+) automata is first in-
troduced. Based on this result, two types of synchronous product of (max,+)
automata are proposed to model safe timed Petri nets obtained by merging
places and/or transitions in subnets. An asynchronous product is finally pro-
posed to represent particular bounded timed Petri nets.

1 Introduction

Timed Petri nets have been introduced in [20] as an important class of timed
discrete event systems (TDES) with deterministic timing of places and/or
transitions. However, automata based models have the advantage that dura-
tions of sequences of transitions can be computed in a much easier (algebraic)
way. Corresponding class of timed automata with deterministic timing of tran-
sitions is known as (max,+) automata [6]. These automata with weights (mul-
tiplicities) in the idempotent semiring (R∪{−∞},max,+) form an important
class of timed automata. Their modeling power in terms of timed Petri net is
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studied in [8], where it is shown that the behavior of any safe1 timed Petri
net can be expressed by a so-called heap automaton, which is a special type
of (max,+) automaton. (Max,+) automata have been applied in particular to
performance evaluation [6], scheduling [9] and control [13, 22] problems for a
large class of TDES.

This paper is focused on the modeling of TDES using (max,+) automata.
As a first result, a direct transformation is proposed to describe safe timed
Petri nets by (max,+) automata, whereas a two-steps procedure is specified
for this in [8] (using a heap of pieces as intermediate model). Based on this
result, two types of synchronous compositions for (max,+) automata are pro-
posed in order to model merging of places and/or transitions between the
corresponding Petri nets. These contributions can be seen as natural exten-
sions of results in [8] towards compositional modeling. In fact, the (max,+)
automaton of a complex and modularly structured TDES can then be obtained
as composition(s) of (max,+) automata corresponding to subsystems.

These compositions lead to nondeterministic (max,+) automata, but these
are defined over the standard union alphabet and moreover, their number
of states is considerably smaller than the number of states in standard syn-
chronous products of Boolean automata (cf. [4]) or in other approaches to
synchronous product of (max,+) automata [3, 22]. Indeed, in all these prod-
ucts the number of states is bounded by the product of the number of states
of the component automata, while in our case it is equal to the sum of the
number of states. This means that description of timing phenomena does not
suffer from the combinatorial state space explosion. Nevertheless, if we want
to model the logical phenomena, the refinement by (logical) product is needed
(the resulting automaton is obtained by the tensor product with Boolean au-
tomaton of the composition of the corresponding Boolean automata).

Note that we have already sketched these results in [15] with restrictions to
safe timed state graphs and on the transition structure. Let us also evoke that
a synchronous composition of (max,+) automata has been proposed in [12],
where the product automaton is defined as a deterministic (max,+) automa-
ton, but over an extended alphabet that is composed of tuples of strings of
events that can be executed in parallel. Since the resulting (max,+) automaton
is deterministic, this product finds its application in decentralized supervisory
control of (max,+) automata, while the synchronous products proposed in this
paper is better suited for verification and performance evaluation.

We also propose an asynchronous product of (max,+) automata that have
isomorphic state-transition structure (the same number of states and identical
morphism matrices). It is shown to be suitable to represent m-bounded timed
state graphs (with m > 1).

The paper is organised as follows. In the following section, preliminaries
necessary to understand the paper are briefly recalled. In Section 3 we propose
a new direct modeling of timed Petri nets by (max,+) automata. Section 4 is

1 The marking of any place is bounded by 1.
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dedicated to the definition of synchronous products of (max,+) automata to-
gether with their applications. In Section 5, asynchronous product of (max,+)
automata is introduced, and we discuss how it can used to model bounded
timed Petri nets. Finally, in Section 6, concluding remarks with hints on fu-
ture extensions of our modeling approach are given.

2 Preliminaries

The necessary concepts and results about idempotent semirings, (max,+) au-
tomata and Petri nets are briefly recalled in this section. For some more ex-
haustive presentations, the reader is invited to consult the references [1], [6]
and [5].

Definition 1 (dioid) A dioid is a semiring in which the addition ⊕ is idem-
potent. The addition (resp, the multiplication ⊗) has a null element ε (resp.,
identity element e).

Example 1 The set (R ∪ {−∞}) with the maximum playing the role of addi-
tion and the conventional addition playing the role of multiplication is a dioid,
denoted Rmax (and usually called (max,+) algebra), with e = 0 and ε = −∞.
The set of n × n matrices with coefficients in Rmax, endowed with the ma-
trix addition and multiplication conventionally defined from ⊕ and ⊗, is also
a dioid, denoted Rn×n

max . The neutral elements for the addition (resp. multi-
plication) is the matrix denoted εn (resp. In) and exclusively composed of
ε (= −∞) (resp. composed of e (= 0) on the diagonal and ε (= −∞) else-
where). Note that, to be able to multiply a 1× n vector with a n× n matrix,
this vector should be embedded in Rn×n

max by adding n − 1 lines full of ε. To
ligthen the presentation, this construction is often omitted in the following
(without affecting the results), and the coefficients equal to ε in the matrices
will be replaced by ’·’.

Example 2 If A is a finite set (alphabet), the free monoid on A is defined as
the set A∗ of finite words with letters in A. A word w ∈ A∗ can be written as a
sequence w = a1a2 . . . ap with a1, a2, . . ., ap ∈ A and p a natural number. For-
mal languages are subsets of the free monoid A∗. The set of formal languages,
with the union of languages playing the role of addition and concatenation
of languages playing the role of multiplication, is a dioid, denoted (2A

∗

,∪, .).
The zero language is ε = {}, the unit language is denoted e = {ǫ} where ǫ is
the empty (zero length) string. The prefix closure of a language corresponds
to the set of prefixes of the words in the language.

Automata with multiplicities in Rmax semiring are called (max,+) au-
tomata.

Definition 2 ((max,+) automaton) A (max,+) automaton G is a quadru-
ple (Q,A, α, µ) where
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– Q and A are finite sets of states and of events ;

– α ∈ R
1×|Q|
max is such that αq = ε or αq = e, and a state q is said to be an

initial state when αq = e ;

– µ : A∗ → R
|Q|×|Q|
max is a morphism specified by the family of matrices µ(a) ∈

R
|Q|×|Q|
max , a ∈ A, and for a string w = a1 . . . an, we have

µ(w) = µ(a1 . . . an) = µ(a1) . . . µ(an),

where the matrix multiplication involved here, is the one of R
|Q|×|Q|
max . A

coefficient [µ(a)]qq′ 6= ε means that, from state q, the occurrence of event
a causes a state transition to state q′.

This definition is slightly different from that in [6] where initial and final delays
are considered. In the present paper, we restrict our attention to (max,+)
automata in which the initial delays (that is the coefficients in α different
from ε) are all equal to e = 02. In addition, the vector of final delays is not
considered, hence all states can be thought of as final states (as it is the case
for heap automata [8]).

Example 3 Figure 1 illustrates the graphical representation of a (max,+) au-
tomaton:

– the nodes correspond to states q ∈ Q ;
– an arrow exists from state q ∈ Q to state q′ if there exists an event a ∈ A

such that [µ(a)]qq′ 6= ε : the arrow is labelled by a/[µ(a)]qq′ and represents
the state transition when event a occurs. The value of [µ(a)]qq′ is inter-
preted as the duration associated to event a (namely, the activation time
of event a before it can occur) ;

– an input edge symbolizes an initial state.

For this example, we have Q = {q1, q2, q3, q4}, A = {a, b}, and

α =
(

e · e e
)

, µ(a) =









· 2 · 2
· · · ·
· 1 · 1
· 3 · 3









, µ(b) =









· · · ·
2 · 2 ·
· · · ·
· · · 0









.

In order to describe the dynamic evolution of a (max,+) automaton, vector

xG(w) ∈ R
1×|Q|
max for w ∈ A∗ is defined by

xG(w) = αµ(w) . (1)

An element [xG(w)]q is interpreted as the date at which state q is reached at
the conclusion of sequence w starting from an initial state (with the convention

2 This assumption is without loss of generality since an automaton with initial delays
can always be transformed into an equivalent automaton with null initial delays by adding
new states and by considering these delays as state transitions durations associated to new
fictive initial events.
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q1

a/1

a/3, b/0

a/3

q2 q3

q4

a/2

a/1

b/2

b/2

a/2

Fig. 1 A (max,+) automaton G1.

that [xG(w)]q = ε if state q is not reached from an initial state using the input
sequence w). The elements of xG are generalized daters, and we have

{

xG(ǫ) = α,
xG(wa) = xG(w)µ(a).

(2)

Vector xG can be written equivalently as a vector of formal series:

xG =
⊕

w∈Σ∗

xG(w)w,

which is sometimes referred to as the behavior of G. The underlying language
of a (max,+) automaton corresponds to the support of its behavior series. Note
that, as all states are assumed to be final, this language is always prefix-closed.

Definition 3 (Petri net) A Petri net G is a 4-tuple (P , T ,F ,M), in which
P is a finite set of places, T is a finite set of transitions, F ⊆ (P×T )∪(T ×P)
is a relation between places and transitions , M : P → N defines the initial
marking of places.

The marking evolves according to the following rules:

1. Transition a is enabled at M if there exists at least one token in each of
its input places.

2. An enabled transition a can fire. The firing of a transforms M into M ′ by
removing one token from each of the input places and adding one token in
each of the output places of a.
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We say that a word w = a1a2 . . . an ∈ T ∗ is a firing sequence starting from
marking M0 if there is a sequence of markings M1M2 . . .Mn such that tran-
sition ai is enabled at Mi−1 and its firing transforms Mi−1 into Mi. We call
language of the Petri net the set L ⊂ T ∗ of firing sequences starting from
initial marking M0.

A Petri net is said to be safe (resp. m-bounded) if for all accessible marking
each place contains at most one token (resp. at most m tokens).

For transition a ∈ T , •a (resp. a•) denotes the set of its input (resp. output)
places. If for all the transitions these sets are singletons, then the Petri net is
a state graph.

We restrict our attention to free-labelled Petri nets in which each transition
(resp., each place) has a single label and there are no two transitions (resp.,
places) with the same label.

We consider timed Petri nets in which

– a finite firing duration τa is associated with each transition a: τa is the
minimal time that must elapse, starting from the time at which a is enabled,
until this transition can fire;

– a finite sojourn duration τp is associated with each place p: τp is the minimal
time that must elapse, starting from the time at which a token enters p,
until this token becomes available for enabling downstream transitions.

Several assumptions on the functioning of Petri nets are considered here-
after:

– a token from the initial marking is supposed to have arrived in the Petri
net at time instant 0;

– if a place has several output transitions, then for each token in this place it
needs to be decided which transition is to fire (that is, in case of a conflict).
In the present work, all the logically feasible choices are considered for the
decision (preselection policy, in contrast to models for which the decision
is rather based on time considerations);

– when a transition is to be fired, then it is fired as soon as possible.

Example 4 A Petri net is usually represented by a bipartite directed graph
as in Figure 2. The two types of nodes are places in P and transitions in
T represented respectively by circles and bars with the associated labels and
durations. An element of F is displayed by an arrow from a place to a transition
or from a transition to a place. The marking is figured out by M(q) tokens in
place q. Petri net G1 is safe.

For Petri nets, we define xG(w) ∈ R
1×|P|
max , the vector of variables associated

with places q ∈ P and function of firing sequence w ∈ T ∗ by

[xG(w)]q =







instant at which the last token arrived in q after w
(assuming that it is still contained in q),

ε if q does not contain any token.
(3)
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q1/1

b/2

q2/0 q3/0

q4/2

a/1

Fig. 2 A Petri net G1.

3 Direct description of safe timed Petri nets by (max,+) automata

In [8], Stéphane Gaubert and Jean Mairesse have shown that the behavior
of any safe timed Petri net can be modeled by a (max,+) automaton. Their
approach consists of two steps: a heap representation for such Petri nets is first
proposed, and a (max,+) automaton is then derived from the heap model. The
following proposition specifies how to directly derive a (max,+) automaton
representing a safe timed Petri net.

Proposition 1 Let G = (P , T ,F ,M) be a safe timed Petri Net. A (max,+)
automaton G = (Q,A, α, µ) is derived from G as follows:

1. Q = P,
2. A = T ,
3. ∀q ∈ Q,

αq =

{

e if Mq = 1,
ε otherwise.

4. ∀q, q′ ∈ Q, ∀a ∈ A,

[µ(a)]qq′ =







τa + τq if q ∈ •a and q′ ∈ a•,
e if q = q′ and q /∈ •a ∪ a•,
ε otherwise.

We have

xG(w) = xG(w) , (4)

for all w ∈ T ∗ a possible firing sequence in G (i.e., w belongs to the language
of G).

Proof For the empty string w = ǫ we have by construction

[xG(ǫ)]q = αq =

{

e if Mq = 1,
ε otherwise,

= [xG(ǫ)]q,
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since we consider that initial tokens arrived at time instant e = 0. Let us
assume that equality

xG(w) = xG(w),

is true at the conclusion of firing sequence w ∈ T ∗ in the language of G. We
check that xG(wa) = xG(wa), ∀a ∈ T such that wa belongs to the language
of G. According to (2), we have

∀q′ ∈ P , [xG(wa)]q′ = [xG(w)µ(a)]q′ =
⊕

q∈Q

[xG(w)]q ⊗ [µ(a)]qq′ .

We consider the following cases for q′.

– If q′ ∈ a•, then we have

[xG(wa)]q′ = max
q∈•a

([xG(w)]q + τq + τa) (according to the def. of µ)

= max
q∈•a

([xG(w)]q + τq + τa) (by assumption)

= [xG(wa)]q′

The last equality models that transition a is enabled as soon as a token is
available in each of the places in •a, that is at time instant max

q∈•a
([xG(w)]q+

tq). It is then fired and a token enters q′ ∈ a• at max
q∈•a

([xG(w)]q + τq + τa).

– If q′ /∈ a• but q′ ∈ •a, then we have

[xG(wa)]q′ = ε since [µ(a)]qq′ = ε, ∀q.

We can claim that [xG(wa)]q′ = [xG(wa)]q′ because, when transition a is
fired, any input place (which isn’t also an output place of a) is then empty.

– Finally, if q′ /∈ •a ∪ a•, then we have

[xG(wa)]q′ = [xG(w)]q′ since [µ(a)]q′q′ = e and [µ(a)]qq′ = ε for q 6= q′.

We can claim that [xG(wa)]q′ = [xG(wa)]q′ because, when transition a is
fired, the marking of a place which is neither an input nor an output place
doesn’t evolve (and the instant at which the last token has arrived remains
unchanged).

Example 5 We consider the same Petri net as the one introduced in [8] to
model and study a safe jobshop. This Petri net G is displayed in Figure 3.
Using Proposition 1, we define automaton G = (Q,A, α, µ) (depicted in Figure
4) representing G by:

Q = {q1, q2, q3, q4, q5, q6}, A = {a, b, c, d}, α =
(

e · e e · e
)

,

µ(a) =

















· 2 · 2 · ·
· · · · · ·
· 1 · 1 · ·
· 3 · 3 · ·
· · · · e ·
· · · · · e

















, µ(b) =

















· · · · · ·
2 · 2 · · ·
· · · · · ·
· · · e · ·
· · · · e ·
· · · · · e

















,
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µ(c) =

















e · · · · ·
· e · · · ·
· · · · 2 ·
· · · e · ·
· · · · · ·
· · · · 2 ·

















, µ(d) =

















e · · · · ·
· e · · · ·
· · · · · ·
· · 3 3 · 3
· · 1 1 · 1
· · · · · ·

















.

For example, we obtain

xG(abcdabcd) = αµ(abcdabcd) =
(

13 · 16 16 · 16
)

which means that at the conclusion of firing sequence abcdabcd

– places q2 and q5 are empty,
– the token in q1 (resp., q3, q4 and q6) entered this place at time instant 13

(resp., 16, 16 and 16).

q1/1

b/2

q2/0 q3/0

q4/2

a/1

q5/0

q6/0

d/1

c/2

Fig. 3 A safe timed Petri net G modeling a JobShop.

Remark 1 It must be pointed out that the result from Proposition 1 is nothing
more than an alternative to the approach introduced in [8]. In fact, S. Gaubert
and J. Mairesse have also explained how to represent a safe timed Petri net
by means of a (max,+) automaton: from the Petri net they build a heap
model (which provides a convenient and intuitive graphical representation),
and from this heap model they derive a heap automaton (particular (max,+)
automaton). For a given Petri net, the (max,+) automata obtained by means
of the two approaches are not identical but they are equivalent in the sense
that they both enable to compute the same dater function (as in Eq. (4)). It
would be hazardous to claim that one is better than the other. In particular,
these automata are nondeterministic in the same cases and have the same
number of states. For example, the heap automaton which can be derived
from the heap model proposed in Ex. IV.2 of [8] to model Petri net G has
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q2c/0, d/0

a/2

q1

q5

q4

b/2

c/2

d/1

a/2

a/3

q3

a/1

a/0, b/0

q6

c/2

d/1

a/0, b/0

d/3

a/3, d/3, b/0, c/0

b/2

c/0, d/0

a/1

d/3 d/1

Fig. 4 (Max,+) automaton G representing the safe timed Petri net G.

the same dimension as the (max,+) automaton G obtained in example 5 (note
that a procedure to reduce the heap automaton realization is proposed for safe
Petri nets admitting a state machine covering in [8]). Nevertheless, in order to
justify the present contribution, one can argue that the compositions which are
proposed in the next sections are based on Proposition 1 and make possible
a compositional approach for the modeling of TDES by means of (max,+)
automata.

Remark 2 For a safe timed Petri net G represented by a (max,+) automaton
G according to Proposition 1, it is worth noticing that the language of G
is then larger than the one of G, that is G recognizes words which are not
possible firing sequences in G. As it is done classically in automata theory, it is
possible to get a (max,+) automaton computing the dater of G and having the
same language by using the tensor product of G with the (boolean) marking
automaton derived from G.

Remark 3 Note that (max,+) automaton G defined in Proposition 1 is gener-
ally nondeterministic. In fact,
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– if the corresponding Petri net G has several places initially marked, then
G has several initial states;

– if the corresponding Petri net G has a transition a with several output
places (i.e., a• > 1), then there exists at least a line in µ(a) which contains
more than one non-ε element.

Note that, in similar situations, the (max,+) automata obtained following
[8] are also nondeterministic. This is a serious drawback. In fact, unlike any
(boolean) finite automaton, a nondeterministic (max,+) automaton cannot
always be determinized, that is transformed into an equivalent deterministic
(max,+) automaton. Despite the fact that it was studied by numerous re-
searchers (references [7, 17, 11, 16, 10] constitute a very partial survey), this
determinization problem is still quite open. This problem is important both
from theoretical and practical point of views. For example and regarding only
applications, to manipulate deterministic models makes it possible to

– do efficient computations in speech processing [18];
– compute the optimal, as well as the average behavior, for DES [6];
– build supervisors for DES [13, 2].

For a positive example, let us consider (max,+) automaton G1 displayed in
figure 1, which is the (max,+) automaton that represents the timed Petri net
G1 in figure 2 thanks to Proposition 1. One can easily check that deterministic
automaton G′

1 displayed in figure 5 has the same dater and language as Petri
net G1. In this case, procedures from [7] and [17] could be used to get such a
deterministic representation.

q′
1

a/3

a/2

b/2

q′
2

q′3

Fig. 5 Deterministic (max,+) automaton G′
1 having the same dater and the same language

as the safe timed Petri net G1.

4 Synchronous compositions of (max,+) automata for the
compositional modeling of safe timed Petri nets

In this section, two synchronous compositions are defined for (max,+) au-
tomata. More precisely, assuming that Proposition 1 has been applied to get
(max,+) automata representing safe timed Petri nets, it is investigated how to
compose these automata in order to model that the corresponding Petri nets
are combined by merging places and/or transitions.
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4.1 Synchronous composition of (max,+) automata corresponding to
merging places

Proposition 1 states how to represent any safe timed Petri net G by a (max,+)
automaton G. Now we consider several safe timed Petri nets G1, . . . ,Gn which
are composed by merging places. In the following, a composition for the corre-
sponding (max,+) automata Gi = (Qi, Ai, αi, µi), i = 1, . . . , n, is proposed to
capture such a combination of subnets. We then assume that Qi, i = 1, . . . , n,
are intersecting sets (common elements correspond to places to be merged).
We furthermore consider that sets Ai are all disjoint since, should the oppo-
site occur, the Petri net obtained by merging places from Gi’s wouldn’t be
free-labelled.

Before defining the synchronous composition, we introduce a notation that
shall be used several times in the following (even with sets Ai not necessarily
disjoint).

Notation 1 For matrices µi(a) ∈ R
|Qi|×|Qi|
max , i = 1, . . . , n, a ∈ Ai, we shall

denote •aµi
and •aµ the subsets of

⋃

i=1,...,n Qi defined by

•aµi
= {q ∈ Qi|∃q

′ ∈ Qi with [µi(a)]qq′ 6= ε},

and
•aµ =

⋃

i=1,...,n

•aµi
,

with the convention that [µi(a)]qq′ = ε if [µi(a)]qq′ is undefined.
In a similar manner

a•µi
= {q′ ∈ Qi|∃q ∈ Qi with [µi(a)]qq′ 6= ε},

and

a•µ =
⋃

i=1,...,n

a•µi
.

Proposition 2 below states what is the modeling power obtained by means
of the synchronous product introduced in the next definition. It is expressed
as a Petri net resulting from the merging of common places in subnets Gi

(represented by automata Gi). It is supposed that such a common place has
an identical sojourn duration in the Gi’s it belongs to. This assumption is
natural since such a common place typically models a same resource in the
TDES.

Definition 4 (synchronous product) We denoteG1 ⋊⋉ · · · ⋊⋉ Gn = (Q,A, α, µ)
the automaton resulting from the synchronous product of G1, . . . , Gn defined
by:

1. Q = ∪n
i=1Qi,

2. A = ∪n
i=1Ai,
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3. ∀q ∈ Q,

αq =

{

e if ∃i such that [αi]q is defined and [αi]q = e,
ε otherwise.

,

4. ∀q, q′ ∈ Q, ∀a ∈ A,

[µ(a)]qq′ =







[µi(a)]qq′ , if q ∈ •aµi
and q′ ∈ a•µi

,
e, if q = q′ and q 6∈ •aµ ∪ a•µ,
ε, otherwise,

Proposition 2 Let Gi = (Qi, Ai, αi, µi), i = 1, . . . , n, be safe timed Petri nets
represented by (max,+) automata Gi with sets Qi and Ai being respectively in-
tersecting and disjoint. We consider that common places from Gi, i = 1, . . . , n
are merged and we assume that the resulting timed Petri net G1 ⋊⋉ · · · ⋊⋉ Gn is
safe. We have

xG1⋊⋉···⋊⋉Gn
(w) = xG1⋊⋉···⋊⋉Gn

(w),

for all w ∈ A∗ corresponding to a firing sequence in G1 ⋊⋉ · · · ⋊⋉ Gn.

Proof Definition 4 for G1 ⋊⋉ · · · ⋊⋉ Gn is identical to the definition according
to Proposition 1 that can be obtained for automaton G representing G = G1 ⋊⋉
· · · ⋊⋉ Gn. Then Proposition 1 proves that

xG1⋊⋉···⋊⋉Gn
(w) = xG1⋊⋉···⋊⋉Gn

(w),

for all w ∈ A∗ corresponding to a firing sequence in G1 ⋊⋉ · · · ⋊⋉ Gn.

Remark 4

– In Proposition 2, it is assumed that timed Petri net G1 ⋊⋉ · · · ⋊⋉ Gn is safe.
This is the case when the modeling approach consists in describing a TDES
by a safe Petri net (possibly large and complex), which is modularly struc-
tured so that it can be decomposed in subnets (generally small and simple)
sharing common places. Apart from this favorable case, let us remind that
there exist numerous structural criteria characterizing the safeness of a
Petri net, see for example [19, §VI.B]. These criteria generally depend on
the subclass (state graph, event graph, free-choice net,. . .) the Petri net
belongs to, and they should be combined for examining the safeness of the
net resulting from merging places in subnets.

– Associativity and commutativity of this synchronous composition are ob-
vious.

– The attribute ’synchronous’ is used with this composition to describe the
fact that merged places (resp. common states) in the Petri nets (resp. au-
tomata) are marked (resp. reached) at the same instant in the components.

– If we fully extend the reasoning, safe timed Petri nets can be represented as
the synchronous compositions of subnets composed of only one transition
with its input and output places.

Example 6 Let us return to the timed Petri net G which is displayed in Figure
3. Now we consider this timed Petri net as two safe event graphs that have
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q1/1

b/2

q2/0 q3/0

q4/2

a/1

q5/0

q6/0

d/1

c/2

q3/0

q4/2

G1 G2

q2

a/2

q1

q4

b/2 a/2

a/3

q3

a/1

a/3, b/0

b/2

a/1

G1

q5

q4

c/2

d/1

q3 q6

c/2

d/1

d/3

d/3, c/0

d/3

G2

d/1

Fig. 6 Petri net G decomposed as subnets G1,G2 sharing places with their corresponding
(max,+) automata G1, G2.

common places. They are depicted in Figure 6 with the corresponding (max,+)
automata G1, G2.

We have

α1 =
(

e . e e
)

, µ1(a) =









. 2 . 2

. . . .

. 1 . 1

. 3 . 3









, µ1(b) =









. . . .
2 . 2 .
. . . .
. . . e









,

α2 =
(

e e . e
)

, µ2(c) =









. . 2 .

. e . .

. . . .

. . 2 .









, µ2(d) =









. . . .
3 3 . 3
1 1 . 1
. . . .









.
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Hence, the composed automaton using Definition 4 and representing the whole
timed Petri net coincides with the automaton G obtained in example 5.

4.2 Synchronous composition of (max,+) automata corresponding to
merging transitions

Another (symmetric towards Def. 4) type of synchronous composition is intro-
duced for (max,+) automata Gi, i = 1, . . . , n. When automata Gi represent
safe timed Petri nets Gi, this composition makes it possible to model merging
of common transitions in subnets Gi. Sets Ai are then assumed to intersect
(common elements are the transitions to be merged), but set Qi are supposed
to be disjoint in order to preserve the free-labelled property of the Petri net
obtained by merging transitions.

The next proposition states the modeling power obtained by means of the
synchronous product introduced in Definition 5. It is expressed as a Petri
net resulting from the merging of common transitions in the corresponding
subnets. It is assumed that such a common transition has an identical firing
duration in all the Gi’s it belongs to (this assumption is ordinary since it
typically models a same event).

Definition 5 (synchronous product) We denote G1‖ . . . ‖Gn = (Q,A, α, µ)
the (max,+) automaton resulting from the synchronous product of G1, . . . , Gn

defined by:

1. Q = ∪n
i=1Qi,

2. A = ∪n
i=1Ai,

3. ∀q ∈ Q,

αq =

{

e if ∃i such that [αi]q is defined and [αi]q = e,
ε otherwise.

,

4. ∀q, q′ ∈ Q, ∀a ∈ A,

[µ(a)]qq′ =















[µi(a)]qq′ , if q ∈ •aµi
and q′ ∈ a•µi

,
⊕

{p∈a•

µi
}[µi(a)]qp, if q ∈ •aµi

and q′ ∈ a•µ \ a•µi
,

e, if q = q′ and q 6∈ •aµ ∪ a•µ,
ε, otherwise.

Proposition 3 Let Gi = (Qi, Ai, αi, µi), i = 1, . . . , n, be safe timed Petri nets
represented by (max,+) automata Gi with sets Qi and Ai being respectively
disjoint and intersecting. We consider that common transitions in Gi, i =
1, . . . , n are merged and we denote G1‖ . . . ‖Gn the resulting safe timed Petri
nets. We have

xG1‖...‖Gn
(w) = xG1‖...‖Gn

(w),

for all w ∈ A∗ corresponding to a firing sequence in G1‖ . . . ‖Gn.

Proof Since subnets are free-labelled, and, in particular, since only one tran-
sition in Gi can have label a, the corresponding automaton Gi is such that we
have for q ∈ •aµi

[µi(a)]qp = [µi(a)]qp′ ,
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for all p, p′ ∈ a•µi
. This implies that maximisation in the second item defining

[µ(a)]qq′ in Def. 5 doesn’t operate for such automata Gi. The definition for
G1‖ . . . ‖Gn according to Definition 5 is identical to the definition according to
Proposition 1 that can be obtained for automaton G representing G1‖ . . . ‖Gn.
Then Proposition 1 proves that

xG1‖...‖Gn
(w) = xG1‖...‖Gn

(w),

for all w ∈ A∗ corresponding to a firing sequence in G1‖ . . . ‖Gn.

Remark 5

– Merging transitions of safe subnets always results in a safe Petri net. This
is why, unlike in Proposition 2, no additional assumption is required for
G1‖ . . . ‖Gn in Proposition 3.

– It should be noted here that, compared to the automata definition of [14],
where timed subnets are abstracted away, the definition of morphism ma-
trix from Definition 5 is much simpler.

– This composition is said to be synchronous to express the fact that common
transitions in the Petri nets (resp. in the automata) are fired (resp. crossed)
at the same time.

– Associativity and commutativity of this synchronous composition are ob-
vious.

Example 7 Let us consider again safe timed Petri net G displayed in Figure
3. Now we consider this net as four safe state graphs that share common
transitions. Together with the corresponding (max,+) automata G1, . . . , G4,
they are depicted on Figure 7.

We have

α1 =
(

e .
)

, µ1(a) =

(

. 2

. .

)

, µ1(b) =

(

. .
2 .

)

,

α2 =
(

e . .
)

, µ2(a) =





. 1 .

. . .

. . .



 , µ2(b) =





. . .
2 . .
. . .



 ,

µ2(c) =





. . 2

. . .

. . .



 , µ2(d) =





. . .

. . .
1 . .





α3 = (e) , µ3(a) = (3) , µ3(d) = (3) ,

α4 =
(

e .
)

, µ4(c) =

(

. 2

. .

)

, µ4(d) =

(

. .
1 .

)

.

Hence, the composed automaton G1‖ . . . ‖G4 representing timed Petri net
G is illustrated on Figure 8 and has the following linear representation (with
states ordered according to the sequence (q1, q2, q3, q

′
2, q

′
5, q4, q6, q5)).
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q1/1

b/2

q′
2
/0

q3/0

q4/2

a/1

q5/0

q6/0

d/1

c/2

q2

q4

q3

c/2

d/1

q1

a/2

a/3, d/3

b/2

d/1

a/1

b/2

q2/0

a/1

c/2

d/1

q′5/0

G1 G2

G3

G4

q′
2

q′
5

a/1

b/2

q5

q6

c/2 d/1

G2

G3

G1 G4

Fig. 7 Petri net G decomposed as subnets G1, . . . ,G4 sharing transitions with their corre-
sponding (max,+) automata G1, . . . , G4.

α =
(

e . e . . e e .
)

,

µ(a) =

























. 2 . 2 . 2 . .

. . . . . . . .

. 1 . 1 . 1 . .

. . . . . . . .

. . . . . . . .

. 3 . 3 . 3 . .

. . . . . . e .

. . . . . . . e

























, µ(b) =

























. . . . . . . .
2 . 2 . . . . .
. . . . . . . .
2 . 2 . . . . .
. . . . . . . .
. . . . . e . .
. . . . . . e .
. . . . . . . e

























,
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µ(c) =

























e . . . . . . .
. e . . . . . .
. . . . 2 . . 2
. . . . . . . .
. . . . . . . .
. . . . . e . .
. . . . 2 . . 2
. . . . . . . .

























, µ(d) =

























e . . . . . . .
. e . . . . . .
. . . . . . . .
. . . . . . . .
. . 1 . . 1 1 .
. . 3 . . 3 3 .
. . . . . . . .
. . 1 . . 1 1 .

























.

a/2

1

a/3, b/0, c/0, d/3

2

4 3

6

a/1

a/2

a/2 a/1

a/3

a/3

a/1

5 7

c/2c/2

c/2

8c/0, d/0

c/0, d/0

a/0, b/0

a/0, b/0

b/2

b/2
b/2

b/2
c/2

d/1

d/1

d/1

d/3

d/3

d/1

d/1

d/1

Fig. 8 (Max,+) automaton G1‖ . . . ‖G4 resulting from the synchronous composition of
G1, . . . , G4 displayed on figure 7.

5 Asynchronous composition of (max,+) automata towards the
modeling of bounded timed Petri nets

We now define a so-called asynchronous composition of several (max,+) au-
tomata admitting isomorphic state-transition structures (i.e. identical struc-
tures for matrices µ). This enables us to model similar (max,+) automata
operating simultaneously and independently (asynchronously).

Definition 6 (asynchronous product) Let Gi = (Qi, Ai, αi, µi), i =
1,. . .,n, be several (max,+) automata defined on the same set of events Ai but
with disjoint sets of states Qi. We assume that for all i, j ∈ {1, 2, . . . , n}, we
have Ai = Aj , |Qi| = |Qj|, and µi(a) = µj(a) for all a ∈ Ai, that we denote
indifferently A0, |Q0| and µ0(a). This implies that Gi and Gj possibly differ
only through vectors αi and αj . We denote G1 ∦ · · · ∦ Gn = (Q,A, δ, ν) = G the
(max,+) automaton resulting from the asynchronous product of G1, . . . , Gn

defined by:

– Q = ∪n
i=1Qi,

– A = ∪n
i=1Ai = A0,
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– δ =
(

α1 α2 . . . αn

)

,

– for a ∈ A, ν(a) ∈ R
n|Q0|×n|Q0|
max ,

ν(a) = M⊕ λ(a)

with

M =

















ε|Q0| . . . . . . ε|Q0|

I|Q0|

. . .
...

ε|Q0| I|Q0|

...
. . .

. . .
. . .

...
ε|Q0| . . . ε|Q0| I|Q0| ε|Q0|

















, λ(a) =

















ε|Q0| . . . ε|Q0| µ0(a)
...

. . . ε|Q0|

...
. . .

...
ε|Q0| . . . . . . ε|Q0|

















.

Remark 6 In Definition 6, if n = 1 we then have ν(a) = µ0(a) = µ1(a) for all
a, and δ = α1. This implies that G = G1.

With the considered assumptions on Petri nets (preselection policy consid-
ering all feasible choices and earliest functioning, see Section 2), tokens in a
n-bounded state graph evolve independently (firings caused by a given token
aren’t influenced by other tokens). Next proposition shows that asynchronous
composition of Definition 6 makes it possible to compute daters which describe
the evolution ’in isolation’ of each of the tokens in a n-bounded timed state
graph, that is, to model properly the behavior of such a Petri net.

Let us consider a n-bounded timed state-graph G . We associate n safe
state-graphs Gi to G , each corresponding to G in which only one of the initial
tokens has been kept. We denote Mi the vectors of initial markings and Li, the
languages associated to Gi, i = 1, . . . , n. According to Proposition 1, these safe
state graphs are represented by (max,+) automata Gi = (Qi, A0, αi, µi), i =
1, . . . , n, defined on the same set of events A0, with disjoint sets of states and
such that for all i, j ∈ {1, 2, . . . , n}, |Qi| = |Qj | and µi(a) = µj(a) for all a ∈
A0. The next proposition states that the asynchronous product (cf. Definition
6) of these automata Gi can be used to evaluate the daters associated with
safe state graphs Gi, and consequently to represent n-bounded state graph G .

Proposition 4 Let xG be the vector of generalized daters defined for (max,+)
automaton G = G1 ∦ · · · ∦ Gn and satisfying the recurrence

{

xG(ǫ) = δ,
xG(wa) = xG(w)ν(a).

(5)

Then xG and the vector of generalized daters associated to state graphs Gi, i =
1, . . . , n are related as follows. For a string

w = a1,1a1,2 . . . a1,na2,1 . . . a2,n . . . ak,1 . . . ak,j , k, j ∈ N
with a1,ia2,i . . . al,i ∈ Li for i = 1, . . . , n, l = k or k − 1,

(6)
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we have

xG(w) =























xGj+1
(a1,j+1a2,j+1 . . . ak−1,j+1)

.

.

.

xGn
(a1,na2,n . . . ak−1,n)

xG1
(a1,1a2,1 . . . ak,1)

.

.

.

xGj
(a1,ja2,j . . . ak,j)























T

. (7)

Proof We show by induction that for all j, k we have for w defined according
to (6)

xG(w) =























αj+1µ0(a1,j+1a2,j+1 . . . ak−1,j+1)
..
.

αnµ0(a1,na2,n . . . ak−1,n)
α1µ0(a1,1a2,1 . . . ak,1)

..

.
αjµ0(a1,ja2,j . . . ak,j)























T

. (8)

In fact, for k = 1, j = 1, l = 1 we have w = a1,1 and

xG(a1,1) = δν(a1,1)
=

(

α2 . . . αn α1µ0(a1,1)
)

.

Let us assume that (8) is satisfied for w given by (6), we then check that
(8) is also satisfied for wak,j+1 with a1,j+1a2,j+1 . . . ak,j+1 ∈ Lj+1:

xG(wak,j+1) = xG(w)ν(ak,j+1)

=





















αj+2µ0(a1,j+2a2,j+2 . . . ak−1,j+2)
...

αnµ0(a1,na2,n . . . ak−1,n)
α1µ0(a1,1a2,1 . . . ak,1)

...
αj+1µ0(a1,j+1a2,j+1 . . . ak,j+1)





















T

.

In (8), each term αjµ0(a1,ja2,j . . . ak,j) corresponds to xGj
(a1,ja2,j . . . ak,j),

that is to the generalized dater associated with deterministic (max,+) au-
tomaton Gj . As Gj represents safe state graph Gj , this term is equal to
xGj

(a1,ja2,j . . . ak,j).

Remark 7 Note that only strings corresponding to interlacements of words of
Li (as defined in (6)) are considered in (7) and not all w ∈ A∗. The set of these
strings can be obtained by means of the prefix closure of the free product of
L1, L2 . . . Ln (as defined for example in [21, sec. 6.1]).

Remark 8 If timed state graph G is 1-bounded, that is safe, it is seen as a single
safe state graph G1 with corresponding (max,+) automaton G1. As noticed in
Remark 6, G derived from Definition 6 is then equal to G1 and recurrence (5)
then coincides with (2) for G1.
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Example 8 Let us consider the 2-bounded state graph G represented in figure
9. Associated safe state graphs G1 and G2 are also represented in the figure,
and their equivalent (max,+) automata G1 and G2 are defined by α1 =

(

e ·
)

,

α2 =
(

· e
)

and for i = 1, 2

µi(a) =

(

· ·
2 ·

)

, µi(b) =

(

· 1
· ·

)

, µi(c) =

(

3 ·
· ·

)

.

b/1 a/2

c/3

a/2b/1

c/3

a/2b/1

c/3

G

G1

G2

P2

P1

P2,1

P1,1

P2,2

P1,2

Fig. 9 A 2-bounded state graph G and associated safe state graphs G1, G2.

Their asynchronous composition G1 ∦ G2 is defined by

δ =
(

e · · e
)

, ν(a) =









· · · ·
· · 2 ·
e · · ·
· e · ·









, ν(b) =









· · · 1
· · · ·
e · · ·
· e · ·









, ν(c) =









· · 3 ·
· · · ·
e · · ·
· e · ·









.

For example, we obtain xG(cacbba) =
(

· 7 5 ·
)

.
According to decomposition (6), sequence ’cacbba’ corresponds to firing

sequences ’ccb’ in G1 and ’aba’ in G2.
From Prop. 4, sub-vector

(

· 7
)

(resp.
(

5 ·
)

) of xG(cacbba) is equal to
xG1

(ccb) (resp. xG2
(aba)) which contains the daters associated to G1 (resp.

G2). It indicates that a token arrives at time instant 7 in P2,1 (resp. at 5 in
P1,2) and no token is contained in P1,1 (resp. in P2,2) at the conclusion of firing
sequence ’ccb’ in G1 (resp. ’aba’ in G2).
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6 Conclusion

We have presented a new direct modeling approach that associates a (max,+)
automaton with any safe timed Petri net. Two complementary types of syn-
chronous product of (max,+) automata are proposed and their counterparts
for timed Petri nets are mergings of subnets on shared places or shared tran-
sitions. We have also proposed asynchronous product of (max,+) automata
that enables us to model bounded timed state graphs.

In the future work, we would like to investigate in the combinations of
synchronous and asynchronous compositions in order to represent more general
bounded timed Petri nets.

In addition, the observations in Remark 3 suggest an open question: de-
pending on wether the approach in Section 3 or the modeling approach in
[8] is used, does the determinization problem find positive answers for the
same classes of systems? It has also been discussed in the paper that syn-
chronous products of (max,+) automata yield nondeterministic (max,+) au-
tomata. Another open direction is to investigate determinization of these par-
ticular (max,+) automata.

References

1. F. Baccelli, G. Cohen, G.-J. Olsder, and J.-P. Quadrat. Synchronization
and Linearity. Wiley, 1992.

2. E. Badouel, A. Bouillard, P. Darondeau, and J. Komenda. Residuation
of tropical series: rationality issues. In joint 50th IEEE Conference on
Decision and Control and European Control Conference (CDC-ECC’11),
pages 3855–3861, 2011.

3. P. Buchholz and P. Kemper. Weak bisimulation for (max/+) automata
and related models. J. Autom. Lang. Comb., 8:187–218, April 2003.

4. C. G. Cassandras and S. Lafortune. Introduction to DES. Springer-Verlag
New York, Inc., 2006.

5. R. David and H. Alla. Discrete, continuous, and hybrid Petri Nets (2nd
edition). Springer, Paris, 2010.

6. S. Gaubert. Performance Evaluation of (max,+) Automata. IEEE Trans-
actions on Automatic Control, 40(12):2014–2025, 1995.

7. S. Gaubert and J. Mairesse. Asymptotic analysis of heaps of pieces and
application to timed petri nets. In Petri nets and performance models
(PNPM’99), pages 158 – 169, 1999.



Compositions of (max,+) automata 23

8. S. Gaubert and J. Mairesse. Modeling and Analysis of Timed Petri
Nets using Heaps of Pieces. IEEE Transactions on Automatic Control,
44(4):683–698, 1999.

9. L. Houssin. Cyclic jobshop problem and (max,plus) algebra. In 18th IFAC
World Congress, pages 2717–2721, Milan, Italy, 2011.

10. D. Kirsten. A burnside approach to the termination of mohri’s algorithm
for polynomially ambiguous min-plus-automata. RAIRO - Theoretical In-
formatics and Applications, 42(3):553–581, 2008.

11. I. Klimann, S. Lombardy, J. Mairesse, and C. Prieur. Deciding unambi-
guity and sequentiality from a finitely ambiguous max-plus automaton.
Theoretical Computer Science, pages 349–373, 2004.

12. J. Komenda, S. Lahaye, and J.-L. Boimond. Le produit synchrone des
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