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A behavioral framework for control of (max,+) automata is proposed. It is based on behaviors
(formal power series) and a generalized version of the Hadamard product, which is the behavior of a
generalized tensor product of the plant and controller (max,+) automata in their linear representations.

In the tensor product and the Hadamard product, the uncontrollable events that can neither be
disabled nor delayed are distinguished. Supervisory control of (max,+) automata is then studied
using residuation theory applied to our generalization of the Hadamard product of formal power
series. This yields a notion of controllability of formal power series as well as (max,+)-counterparts
of supremal controllable languages. Rationality as an equivalent condition to realizability of the
resulting controller series is discussed together with hints on future use of this approach.

1 Introduction

Supervisory control techniques proposed by Ramadge and Wonham in their seminal paper [23] have
known rapid development. However, these have been proposed for purely logical discrete-event systems,
where only ordering of discrete events, but not the actual timing of events and delays, is considered. Sev-
eral attempts have been made to extend supervisory control theory to Timed Discrete Event (dynamical)
Systems (TDES), starting from discrete time of [8], where time is represented by special discrete events.
Later, supervisory control has been extended to general dense real-time systems like timed automata [25].
This approach is based on abstractions of timed automata into logical automata, called region automata.

An extension of the supervisory control approach to a class of TDES, modeled by (max,+) automata,
is proposed in this paper. Our approach avoids any abstraction and is purely algebraic: it applies gener-
alized inversion theory, called residuation theory, to semirings of formal power series.

(Max,+) automata model an important class of TDES, exhibiting both synchronization of tasks and
resource sharing (choice) phenomena and moreover can be nondeterministic. They have been proposed
by Gaubert in [10] as (possibly nondeterministic) weighted automata with weights (multiplicities) in the
(R ∪ {−∞}, max, +) semiring.

(Max,+) automata may also be viewed as a special class of timed automata, a general model for TDES
introduced in [1]. On one hand, the modeling power of deterministic (max,+) automata in terms of timed
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automata is quite limited. Essentially, deterministic (max,+) automata can be viewed as one clock timed
automata where the clock is reset after any transition. On the other hand, results of [11] show that
(max,+) automata have a strong expressive power in terms of timed Petri nets: every 1-safe timed Petri
net can be represented by a special (max,+) automaton, called heap model (or heap automaton). Hence
heap models, i.e., special non-deterministic (max,+) automata, are capable of modeling concurrent timed
systems as timed Petri nets. This means that (max,+) automata can be used to describe various timed
discrete-event systems such as those arising from manufacturing, transport or communication networks.

We have proposed a behavioral approach (based on formal power series) to supervisory control of
(max+) automata in [15]. It consists of the parallel composition of controller and plant (max,+)-automata
with uncontrollable events. Note that behavioural refers to the fact that formal power series are behaviors
of weighted automata, which fact can be justified using theory of universal coalgebra. This is the same
as in the classical Ramadge-Wonham approach where the supervisory control theory is based on formal
languages that are behaviors of automata and not on state based models (i.e. automata themselves). It
is however different from behavioural control setting of J.C. Willems, where behaviours are trajectories
based on the timed and signal domains. Our systems are taken from computer science, so the philosophy
is different. The controlled (closed-loop) system is given by the parallel composition of the controller
automaton with the plant automaton.

The parallel composition used in this paper for supervisory control is the specialization to the (R ∪
{−∞}, max,+) semiring of the one proposed for weighted automata in [2]. In terms of linear represen-
tations of (max,+) automata it corresponds to the tensor products in the (R ∪ {−∞},max, +) semiring,
where the morphism matrix of the controller is replaced by the identity matrix for uncontrollable events
which cannot be delayed nor disabled.

It is known that the Hadamard product of two series corresponds to the tensor product of automata
[6] (strictly speaking of their linear representations). This means that the behavior of the tensor prod-
uct of (max,+) automata is the Hadamard product of behaviors. More precisely, the proposed parallel
composition takes the form of a generalized Hadamard product (distinguishing uncontrollable events).
Control with respect to the just in time criterion is then based on the residuation of generalized Hadamard
product of formal power series.

In the present paper, results of [15] are extended and presented in detail. Moreover, properties of this
generalized Hadamard product (of a controller and plant formal power series) are investigated.

Controllability as an equivalent condition for attainability of a specification series as the prescribed
behavior of the closed-loop system is studied using residuation theory of (multivariable) formal power
series. A formula for computing (max,+)-counterparts of supremal controllable behaviors is proposed. A
comparison with controllability of formal languages (from classical supervisory control theory) is given
together with intuition behind timing aspects of controllability.

This paper is organized as follows. Necessary algebraic preliminaries are recalled in the next section.
Parallel composition of (max,+) (weighted) automata is introduced in section 3. Then we recall the
behavioral framework, where parallel composition of (max,+) automata corresponds to a generalized
Hadamard product of formal power series. Section 4 is dedicated to the control problem and its optimal
solution. In section 5 controllability and properties of controllable formal power series are investigated
using residuation theory. In section 6, an example is studied to illustrate most of the results proposed in
the paper. Conclusions with hints on future extensions of this work are finally given.

2



2 Preliminaries

In this section necessary algebraic concepts are recalled. The basic algebraic structure that is used across
the paper is that of an idempotent semiring: e.g. formal languages, formal power series, transducers,
number and matrix semirings.

2.1 Dioids and residuation

Definition 2.1. An idempotent semiring (also called dioid) is a set D equipped with two binary oper-
ations: addition and multiplication. The addition ⊕ is commutative, associative, has a zero element ε
(i.e., ε ⊕ a = a for all a ∈ D), and is idempotent (i.e., a ⊕ a = a for all a ∈ D). The multiplication
⊗ is associative, has a unit element e (i.e., e ⊗ a = a ⊗ e = a for all a ∈ D), and distributes over ⊕.
Moreover, ε is absorbing for ⊗, i.e., ∀a ∈ D : a⊗ ε = ε⊗ a = ε.

In any dioid, a natural order ¹ is defined by: a ¹ b ⇔ a ⊕ b = b. A dioid D is complete if each
subset A of D admits a least upper bound denoted

⊕
x∈Ax, and if ⊗ distributes with respect to infinite

sums. In particular, > =
⊕

x∈Dx is the greatest element of D. In a complete dioid, the greatest lower
bound ∧ always exists: a ∧ b =

⊕
x¹a,x¹b x.

Let us recall the dioid Rmax = (R∪ {−∞},max, +) with maximum playing the role of addition ⊕:
a⊕ b = max(a, b), and conventional addition playing the role of multiplication, denoted by a⊗ b (or ab
when unambiguous). Its complete version, completed with> = +∞, is denoted by Rmax. The reader is
reminded that >⊗ ε = ε⊗> = ε.
Operations with matrices are defined as in classical linear algebra. The (max,+) identity matrix of Rn×n

max

is denoted by E.
Let N denote the set of natural numbers with zero. In complete dioids the star operation (sometimes
referred to as Kleene star) can be introduced by the formula

a∗ =
⊕

n∈N
an,

where by convention a0 = e for any a.
Residuation theory (see [7]) allows defining ’pseudo-inverses’ of isotone maps (f is isotone if a ¹

b ⇒ f(a) ¹ f(b)). An isotone map f is said to be residuated if ∀y ∈ C, the least upper bound of subset
{x ∈ D|f(x) ¹ y} exists and belongs to this subset. We recall from [3, §4.4] the following results.

Theorem 2.1. An isotone map f : D → C, where D and C are dioids, is residuated iff there exists an
isotone mapping h : C → D such that

f ◦ h ¹ IdC and h ◦ f º IdD. (1)

IdC and IdD are identity maps of C and D respectively. The map h is unique, it is denoted f ] and is
called residual of f .

Theorem 2.2. A map f : D → C between two complete dioids is residuated iff

(i) f(ε) = ε, and

(ii) f is lower semicontinuous, i.e., f(⊕xi∈Ixi) = ⊕xi∈If(xi) for all I ⊆ D.

It is known that multiplication in complete dioids is residuated [3].

3



Theorem 2.3. The isotone map Ra : x 7→ x ⊗ a in a complete dioid D is residuated. The greatest
solution of x⊗ a ¹ b exists and is equal to Ra

](b), also denoted b◦/a.
This ’quotient’ satisfies the following formulae

(x◦/a)⊗ a ¹ x, (f.1)
(x⊗ a)◦/a º x. (f.2)

2.2 Dioid of formal power series Rmax(A)

Formal languages over an alphabet A are sets of finite sequences of letters (called words) from A. The
set of all finite sequences of letters from A is denoted by A∗, which notation can be viewed as a special
instance (applied to set A in the dioid of languages (Pwr(A∗),∪, .)) of the star operation defined in
subsection 2.1 on elements of complete dioids. Formal languages L ⊆ A∗ are endowed with union of
languages playing the role of addition and concatenation playing the role of multiplication. The zero
language is 0 = {}, the unit language is 1 = {λ} with λ the empty (zero length) string. The dioid of
formal languages is denoted by (Pwr(A∗),∪, .). A string u = u1 . . . uk ∈ A∗ is called a subword of
v ∈ A∗ if there exists a factorization v = v1u1v2 . . . vkukvk+1 with vi ∈ A∗, i = 1, . . . k + 1. The
induced subword order on A∗ is u ¹ v iff u is a subword of v ∈ A∗.
The dioid of formal power series with variables from A and coefficients fromRmax, endowed with point-
wise addition and convolution multiplication, is denoted by Rmax(A). Thus, for s = ⊕w∈A∗s(w)w ∈
Rmax(A) and s′ = ⊕w∈A∗s

′(w)w ∈ Rmax(A), one has:

s⊕ s′ , ⊕w∈A∗(s(w)⊕ s′(w))w ,

s⊗ s′ , ⊕w∈A∗(⊕uv=ws(u)⊗ s′(v))w.

The dioid of formal power series is complete if we work with coefficients in Rmax. Note that for s, s′ ∈
Rmax(A), s ¹ s′ (natural order on Rmax(A)) amounts to s(w) ≤ s′(w) for all w ∈ A∗. The language
supp(s) = {w ∈ A∗ : s(w) 6= −∞} is called the support of the series s.

Another multiplication of formal power series of Rmax(A) (element-wise or word by word), called
Hadamard product, will be needed and is defined below.

Definition 2.2. The Hadamard product of two series s, s′ ∈ Rmax(A) is given by

s¯ s′ , ⊕w∈A∗(s(w)⊗ s′(w))w.

It has been shown in [15] that the Hadamard product is residuated.

Proposition 2.4. The isotone mapping Hy: Rmax(A) → Rmax(A), s 7→ s ¯ y is residuated and its
residual is given by

H]
y(s)(w) = s(w)◦/y(w), (2)

i.e., H]
y(s) =

⊕
w∈A∗(s(w)◦/y(w))w.

Proof. From Theorem 2.1, we need to show that H]
y defined by (2) is isotone and is such that inequalities

(1) are satisfied. Since mapping x 7→ x◦/y on Rmax is isotone, H]
y is also isotone. Using successively

(f.1) and (f.2) in dioid Rmax, we show the required inequalities:

(Hy ◦H]
y)(s) =

⊕

w∈A∗
[(s(w)◦/y(w))⊗ y(w)]w ¹

⊕

w∈A∗
s(w)w = s,

(H]
y ◦Hy)(s) =

⊕

w∈A∗
[(s(w)⊗ y(w))◦/y(w)]w º

⊕

w∈A∗
s(w)w = s.
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Even more, the Hadamard product admits an inverse, which is known as the Hadamard quotient in
the theory of formal power series over rings [24]. However, a generalized version of the Hadamard
product, defined and used further in this paper, is only residuated. Hence, the notation of residuation
theory is kept also for Hy.

Natural projections of languages are now recalled and extended to formal power series. The natural
projection from A∗ to A∗c , where Ac ⊆ A is denoted by Pc. It projects away from any word w ∈ A∗ the
letters from Au = A \Ac, cf. [20].

Formally, Pc : A∗ → A∗c is defined as follows on letters from A

Pc(a) =
{

a if a ∈ Ac,
ε if a ∈ A \Ac,

and Pc is extended to words in such a way that Pc is concatenative: Pc(a1 . . . an) = Pc(a1) . . . Pc(an).
Similarly, Pc is extended to languages (subsets of A∗) in an obvious way: for L ⊆ A∗: Pc(L) =
∪w∈LPc(w) ⊆ A∗c . In the sequel Ac and Au play the role of controllable and uncontrollable events,
respectively. The Lemma below recalls the known properties of natural projections [20].

Lemma 2.5. Let Ac ⊆ A with the corresponding natural projection Pc : A∗ → A∗c and the inverse
projection P−1

c : Pwr(A∗c) → Pwr(A∗), one has

(i) Pc ◦ P−1
c is identity, i.e., ∀L ⊆ A∗c : Pc(P−1

c )(L) = L,

(ii) ∀L ⊆ A∗ : L ⊆ P−1
c (Pc)(L).

A notion of projection of formal power series will be needed. This notion is just an auxiliary con-
cept that is useful in section 4 for better understanding the proposed solution to the supervisory control
problem.

Definition 2.3. For any formal power series s = ⊕w∈A∗s(w)w ∈ Rmax(A) and Ac ⊆ A with the
associated natural projection Pc : A∗ → A∗c , we associate the projected series P (s) given by the
following coefficients:

P (s)(w) = s(Pcw).

Let us note the difference between P (s) and the following formal power series:
P̃ (s) = ⊕w∈A∗s(w)Pcw, i.e., P̃ (s)(w) = ⊕u∈P−1

c (w)s(u). It is easily seen on the series supports (that

are languages). For instance, if Ac = {a} ⊆ {a, u} = A and s = 1 ⊕ 2a ⊕ 2au then P̃ (s) = 1 ⊕ 2a,
but P (s) = 1u∗ ⊕ 2u∗au∗. Indeed, we have by definition P (s)(ε) = s(ε) = 1 as well as P (s)(ui) =
s(ε) = 1 for any i ≥ 1, and similarly, P (s)(w) = s(a) = 2 for any w ∈ u∗au∗. Hence, our operator
P : Rmax(A) → Rmax(A) is not compatible with the projection on words and languages (it is not the
morphic extension of Pc).

A modified projection for series will also be needed.

Definition 2.4. Let y ∈ Rmax(A) and Ac ⊆ A with the associated natural projection Pc : A∗ → A∗c .
We define the modified projection Py : Rmax(A) → Rmax(A) by

Py(s)(w) =
{

s(Pc(w)), if w ∈ supp(y),
ε, if w 6∈ supp(y).
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2.3 (Max,+) automata

Basic definitions and results on automata with multiplicities in the Rmax semiring, also called (max,+)
automata, are recalled (see [10] for more details).

Definition 2.5. A (max,+) automaton over an alphabet A is a quadruple G = (Q,α, t, β), where Q is a
finite set of states, α : Q → Rmax, t : Q×A×Q → Rmax, and β : Q → Rmax, called initial, transition,
and final delays, respectively.

Let us note that instead of initial state we have an initial mapping that is called initial delay. Similarly,
we have final delays that generalize the concept of final state subset. The transition function associates
to a state q ∈ Q, a discrete input a ∈ A and a new state q′ ∈ Q, an output value t(q, a, q′) ∈ R
corresponding to the a−transition from q to q′ or t(q, a, q′) = ε if there is no transition from q to q′

labeled by a. The real output value of a transition is interpreted as the duration of this transition. An
example of a (max,+) automaton is given in Section 6.

Since the state set Q plays only role of the dimension, a (max,+) automaton is determined by a triple
(α, µ, β), where α ∈ R1×|Q|

max , β ∈ R|Q|×1
max and µ is a morphism defined by:

µ : A → R|Q|×|Q|max , µ(a)q q′ , t(q, a, q′).

We will call such a triple a linear representation.
Note that the morphism matrix µ of a (max,+) automaton can also be considered as an element of

Rmax(A)|Q|×|Q|, i.e., µ = ⊕w∈A∗µ(w)w by extending the definition of µ from a ∈ A to w ∈ A∗ using
the morphism property

µ(a1 . . . an) = µ(a1) . . . µ(an).

Recall that µ has the important property of being finitely generated, because it is completely determined
by its values on A. Thus, we have in fact µ∗ = (⊕a∈Aµ(a)a)∗. Since we are interested in behaviors
of (max,+) automata that are given by l = αµ∗β (see below), we abuse the notation and simply write
µ = ⊕a∈Aµ(a)a.

We plan to extend the supervisory control techniques from logical to (max,+) automata. In that case,
it is useful to formulate (max,+) automata in standard automata description (by replacing initial and
final delays by initial and final states), that is as the 4-tuple G = (Q,Q0, t, Qm), where Q is the set
of states, Q0 ⊆ Q is the subset of initial states, Qm ⊆ Q is the subset of final or marked states, and
t : Q × A × Q → Rmax is the (possibly nondeterministic) transition function with inputs in A and
outputs in Rmax.

Let us point out that this definition enables to only consider zero initial and final delays : the delay is
equal to e = 0 if the state is initial or final, ε otherwise. This is because the subsets Q0 ⊆ Q and Qm ⊆ Q
may be viewed as mappings Q0 → B and Qm → B, where B = {e, ε} is the Boolean semiring.

Since (max,+) automata in state based form G = (Q, Q0, t, Qm) are only used to better understand
our generalization of the supervisory control approach 1 and our main results are formulated in terms of
the standard linear description (cf. Definition 2.5), the generality is not lost.

Recall that a formal power series is recognized by a finite (max,+) automaton iff it is rational, i.e., it
can be formed by rational operations from polynomial series (those with finite support).

The formal power series recognized by a (max,+) automaton G = (Q,α, t, β), called its behaviour,
is given by l(G) : A∗ → Rmax defined for w = a1 . . . an ∈ A∗ by

l(G)(w) = max
q0,...,qn∈Q

α(q0)⊗
[

n∑

i=1

t(qi−1, ai, qi)

]
⊗ β(qn). (3)

1in particular the definition of parallel composition that is formulated in terms of more general linear description in Prop.
3.1
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In words, l(G)(w) is the maximal weights of paths labeled by w going from the initial state to a final
state.

Remark 2.6. The series l(G) : A∗ → Rmax is a dater [10]. We shall interpret l(G)(w) as the time
of completion of the sequence of events w, with the convention that l(G)(w) = −∞ = ε if w does not
occur. By specialization to ”boolean” series with values in {ε, e}, we obtain the classical interpretation
of Ramadge and Wonham theory, that is, l(G)(w) 6= ε if w corresponds to an admissible behavior of the
system.
This way one can study logical aspects of (max, +) automata, while working with supports of formal
power series corresponding to logical behaviors. We shall then consider series with boolean coefficients
(in {ε, e}) instead of Rmax (any coefficient different from ε becomes e).

From its linear representation, the behavior of (max, +) automaton is given by

l(G)(w) = α⊗ µ(w)⊗ β,

that is,
l(G) = α⊗ µ∗ ⊗ β. (4)

Similarly as timed event graphs are described by fixed point equations in the dioid of formal power
series Zmax(γ), see [3, §5.3], any (max,+) automaton is described by the following fixed point equation
in the dioid Rmax(A) of formal power series with non commutative variables from A:

{
x = xµ⊕ α,
y = xβ,

with µ =
⊕

a∈A µ(a)a ∈ Rmax(A)|Q|×|Q| the morphism matrix. It is known that the least solution to
these equations is y = l(G) = αµ∗β.

3 Parallel composition of (max,+) automata

Parallel composition (or product) is defined below as an extension of parallel composition (synchronous
product) from logical to timed DES. The first automaton plays the role of the controller and the second is
the system (to be controlled). We assume that the event sets of the controller and the plant automata are
identical, which is a standard assumption in supervisory control. In the case of a controller defined only
on a subalphabet it can be completed by inverse projection (i.e., by self-looping of all states with events
not belonging to the subalphabet) to an automaton over the whole alphabet.

As usual in supervisory control, A = Ac ∪Au is the partition of the event set A into disjoint subsets
of controllable and uncontrollable events, respectively. The parallel product is now defined.

Definition 3.1. Consider the two following (max,+) automata corresponding to the controller and the
system:

Gc = (Qc, Qc,0, tc, Q
c
m), G = (Qg, Qg,0, tg, Q

g
m). (5)

Their parallel composition, modeling the system under control, is

Gc‖G = (Qc ×Qg, Q0, t, Qm)
with Q0 = (Qc,0, Qg,0), Qm = Qc ×Qg

m,

t((qc, qg), a, (q′c, q
′
g)) =
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



tc(qc, a, q′c)⊗ tg(qg, a, q′g), if a ∈ Ac,

tg(qg, a, q′g), if a ∈ Au and qc = q′c,
ε, if a ∈ Au and qc 6= q′c.

(6)

This definition can be seen as an extension of prioritized synchronous composition of [12] or [19]
from Boolean to the (max,+) case. As in the classical supervisory control the controller cannot unmark
the marked states of the original system: for any state that is marked in the original plant G and survives
the logical supervision, the corresponding states in Gc‖G are marked. This means that marked states of
the controller do not play any role and may be ignored, which is expressed by Qm = Qc × Qg

m. In the
sequel we can then assume that all states of the controller are marked without loss of generality.

Controllable transitions (i.e., tg(qg, a, q′g), a ∈ Ac) in the plant G can be disabled (when tc(qc, a, q′c) =
ε) or delayed (when tc(qc, a, q′c) > 0) in the composed system Gc‖G.

On the other hand, uncontrollable transitions (i.e., tg(qg, a, q′g), a ∈ Au) can neither be disabled nor
delayed. It expresses the intuitive requirement that the controller automaton cannot disable an uncontrol-
lable event that occurs in the plant.

The interpretation of the parallel composition of a system with its controller is as follows. The
controller is another (max,+)-automaton running in parallel (in a standard synchronous manner) with
the system’s automaton. The controller (max,+)-automaton observes the events generated in the system
and its state evolves consequently. From a given state qc, if a transition associated to a controllable
event a exists (i.e., ∃q′c such that tc(qc, a, q′c) 6= ε), then this event is authorized in the system and the
corresponding transition (in the system) is delayed by tc(qc, a, q′c) units of time. In the latter case (i.e.,
@q′c such that tc(qc, a, q′c) 6= ε) the event that was possible in the uncontrolled system is disabled in the
parallel composition. Uncontrollable events can neither be prevented from happening nor be delayed, the
uncontrollable transition in the parallel composition inherits the duration from the original uncontrolled
plant G.

3.1 Linear representation of a parallel composition

In the next proposition, the linear representation of the parallel composition of (max,+) automata is
presented. The tensor product of two linear representations is involved. Let us recall that if A = (aij) is
a m×n matrix and B is a p× q matrix over a dioid, then their Kronecker (tensor) product A⊗t B is the
mp× nq block matrix

A⊗t B =




a11 ⊗B · · · a1n ⊗B
...

. . .
...

am1 ⊗B · · · amn ⊗B


 .

In this section the behavioral approach of [15] is recalled and extended.

Proposition 3.1. The parallel composition Gc‖G of two (max,+) automata

Gc = (Qc, αc, tc, βc), G = (Q,αg, tg, βg), (7)

has the following linear representation (α, µ, β)

α = αc ⊗t αg,

∀a ∈ Ac : µ(a) = µc(a)⊗t µg(a),
∀a ∈ Au : µ(a) = E ⊗t µg(a),

β = ec ⊗t βg,
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in which ec = βc denotes the column vector of identity elements e = 0 of length given by |Qc|, µc and
µg are the morphism matrices corresponding to tc and tg, respectively.

Proof. The proof is quite simple and follows from the definition of tensor multiplication and graphical
interpretation of morphism matrices. Let us first consider the case a ∈ Ac. It must be shown that

µ(a) = µc(a)⊗t µg(a),

i.e., that
[µ(a)]ik,jl = [µc(a)]ij ⊗ [µg(a)]kl.

According to the graphical interpretation of morphism matrix, [µ(a)]ik,jl is the weight associated to
a−transition from the state labeled by ik to the state labelled by jl of Gc‖G. According to Definition
3.1 it should be equal to the product ⊗, i.e., usual sum of [µc(a)]ij the weight of the transition from the
state labeled by i to the state labeled by j in the controller Gc and [µg(a)]kl the weight of the transition
from the state labeled by k to the state labeled by l of the plant G .
For the case a ∈ Au, it should be proved that µ(a) = E ⊗t µg(a), which according to the definition of
tensor product can be rewritten as

[µ(a)]ik,jl = Eij ⊗ [µg(a)]kl.

The (max,+)-identity matrix is given by

Eij =
{

e, if i = j,
ε, if i 6= j.

The graphical interpretation of [µ(a)]ik,jl is the weight associated to a−transition from the state labelled
by ik to the state labeled by jl of Gc‖G. According to Definition 3.1 it should be equal either to the
weight of the a−transition from the state labeled by k to the state labelled by l of G in the case i = j,
i.e., to [µg(a)]k,l or to ε otherwise (if i 6= j).
Concerning the initial delay, it is obvious that αi,j = (αc)i⊗ (αg)j , i.e., α = αc⊗T αg expresses exactly
the fact that the composed state is initial iff its components are initial states of C and G.
As discussed following Definition 3.1, it is assumed without loss of generality that all states of the
controller are marked. Then β is deduced similarly to α.

Proposition 3.1 gives the linear representation of the composed system consisting of a controller and
a plant, and the behavior can be computed using (4). Although we have formulated parallel composition
in the state based framework (in order to make a clear connection with the classical supervisory control
theory), the last proposition can be viewed as an equivalent definition of parallel composition for (max,+)
automata in terms of their linear representations that admit nonzero initial and final delays from Rmax.

4 Application to supervisory control

Now the parallel composition introduced at section 3 is applied to the supervisory control of (max,+)
automata.

A behavioral framework is considered: instead of working with (max,+) automata we work with
their behaviors, that is, formal power series from Rmax(A) defined by (3) and (4). This is quite natural,
because control specifications of supervisory control are typically given by languages which play an
analogous role to formal power series of (max, +) automata. The resulting series corresponding to an
optimal supervisor can then be realized by a (max,+) automaton, provided it is rational.
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A two step procedure has been proposed in [15]. It consists in separating the logical and the timing
aspects of control: first the supremal controllable sublanguage of the specification support is computed
and then the timing aspects are considered assuming that all events are controllable (which amounts to
Ac = A). In this paper we propose a more challenging approach and show how to both handle the
logical and timing aspects of the specification, that is, within a single step procedure. To do this, we need
a formula for the behavior of the (max, +) automaton representing the system under supervision, that is,
the parallel composition of the controller (max, +) automaton with the plant (max, +) automaton. This
result is stated in Theorem 4.2 below.

The relationship between tensor product and usual product of matrices, known as the mixed product
property, is recalled first (cf. [13]).

Property 4.1. For matrices A,B, C,D of suitable dimensions over a commutative semiring we have:

(A⊗t C)⊗ (B ⊗t D) = (A⊗B)⊗t (C ⊗D).

Theorem 4.2. The behavior of the parallel composition is the following:

l(Gc‖G)(w) = l(Gc)(Pc(w))⊗ l(G)(w) = yc(Pc(w))⊗ y(w).

Proof. We have
l(Gc‖G)(w) = α⊗ µ(w)⊗ β.

For a given w = a1 . . . an ∈ A∗ we have using morphism property µ(w) = µ(a1) . . . µ(an). From
Proposition 3.1 we know that µ(a) = µc(a) ⊗t µg(a) for a ∈ Ac and µ(a) = E ⊗t µg(a) for a ∈ Auc.
It follows from mixed product property that µ(w) = µc(Pc(w))⊗t µg(w). Hence,

l(Gc‖G)(w) = (αc ⊗t αg)⊗ (µc(Pc(w))⊗t µg(w))⊗ (βc ⊗t βg).

Finally using once again the mixed product property we obtain:

l(Gc‖G)(w) = [αc ⊗ µc(Pc(w))⊗ βc]⊗t [αg ⊗ µg(w)⊗ βg] = l(Gc)(Pc(w))⊗ l(G)(w).

Note that in the tensor product of the last formula scalars are involved. Thus, the tensor product coincides
with the scalar multiplication. Hence, l(Gc‖G)(w) = l(Gc)(Pc(w))⊗ l(G)(w) = yc(Pc(w))⊗ y(w) as
claimed.

By comparing the definition of the Hadamard product with the formula of the last theorem we can
view the right hand side as a kind of generalized Hadamard product (in presence of uncontrollable
events). We propose the following definition that is useful for expressing the behavior of the closed-
loop system.

Definition 4.1. Let A = Ac∪Au with the associated natural projection Pc : A∗ → A∗c . The generalized
Hadamard product of two formal power series s and s′, denoted ¯Au , is defined by (s ¯Au s′)(w) =
s(Pc(w))⊗ s′(w).

It follows from Theorem 4.2 that

l(Gc‖G) = l(Gc)¯Au l(G) = yc ¯Au y.

This can be applied to control of (max,+) automata in a behavioural framework.
The control problem is now described. Let yref ∈ Rmax(A) be a specification series and y be the

behavior of the uncontrolled plant modeled as a (max,+) automaton, the problem is to find the greatest

10



controller series, denoted yC such that the closed-loop behavior satisfies yC ¯Au y ¹ yref . Having in
mind the meaning of the order relation in Rmax(A), one can give the following interpretation. Find the
greatest yC , that is, the greatest coefficients yC(w) for all w, and as a by-product the greatest coefficients
(yC ¯Au y)(w) with (yC ¯Au y)(w) ¹ yref (w). Note that this inequality has both a logical and a timing
aspect. The logical aspect refers to finding the largest support (language) of the controller such that
safety inclusion is still guaranted, which amounts to finding the supremal controllable sublanguage of
the specification support. The timing aspect means that the controller will delay as much as possible the
completion of the sequence of events w in the supervised system (whose behavior is given by yC¯Au y).
In addition, since yC ¯Au y ¹ yref , the completion date in the supervised system (yC ¯Au y)(w) is
earlier than the completion date specified by yref (w) for all sequence w. In other words, the considered
control objective is referred to as just-in-time criterion, notably applied for the control of Timed Event
Graphs (see for example [3, §5.6],[14]).

Let us introduce the notation
HAu

y : s 7→ s¯Au y (8)

for the generalized Hadamard product,otherwise stated,

HAu
y (s) =

⊕

w∈A∗
[s(Pc(w))⊗ y(w)]w.

Proposition 2.4 has the following variant in the presence of uncontrollable events (Au 6= ∅).

Proposition 4.3. The isotone mapping HAu
y : Rmax(A) → Rmax(A) is residuated and its residuated

mapping is given by

(HAu
y )](s)(w) =

{ ∧
u∈P−1

c (w)∩supp(y) s(u)◦/y(u), if w ∈ A∗c ,
>, if w 6∈ A∗c .

(9)

Proof. The proof goes along the same lines as that of Proposition 2.4. We have

(HAu
y ◦HAu

y
]
)(s)(w) = HAu

y [HAu
y

]
(s)](w) = HAu

y
]
(s)(Pc(w))⊗ y(w)

= [
∧

u∈P−1
c Pc(w)∩supp(y)

(s(u)◦/y(u))]⊗ y(w),

because Pc(w) ∈ A∗c . Now, it suffices to notice that the set {P−1
c Pc(w)∩ supp(y)} either includes w (in

case w ∈ supp(y)) or is empty (in case w 6∈ supp(y)). In the former case, we have

[
∧

u∈P−1
c Pc(w)∩supp(y)

(s(u)◦/y(u))] ¹ s(w)◦/y(w)

and [s(w)◦/y(w)] ⊗ y(w) ¹ s(w) using (f.1). In the latter case we have y(w) = ε, i.e., in any case
(HAu

y ◦ (HAu
y )])(s)(w) = ε ¹ s(w).

In the same manner,

(HAu
y

] ◦HAu
y )(s)(w) = HAu

y
]
[HAu

y (s)](w) =

{ ∧
u∈P−1

c (w)∩supp(y) HAu
y (s)(u)◦/y(u) =

∧
u∈P−1

c (w)∩supp(y)[s(Pc(u))⊗ y(u)◦/y(u)], if w ∈ A∗c ,
>, if w 6∈ A∗c .
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Since we always have > º s(w) we only care about the first case (w ∈ A∗c). If u ∈ P−1
c (w) ∩ supp(y),

then Pc(u) ∈ PcP
−1
c (w) = w according to (i) of Lemma 2.5. We then have [s(Pc(w))⊗ y(u)]◦/y(u) º

s(Pc(w)) = s(w) thanks to (f.2). The case {u ∈ P−1
c (w)∩ supp(y)} = ∅ is easy, because the infimum

of an empty set is > and > º s(w). The conclusion is that HAu
y is residuated according to Theorem 2.1

with (HAu
y )] given by the above formula.

Note that while the value (HAu
y )](s)(w) = > for w 6∈ A∗c might seem strange, this value plays no

role in the composite (closed-loop) system, because (HAu
y )](s) that plays the role of the controller is

evaluated only in projected words from A∗c .
Correctness of this result can also be checked by the following alternative approach.
Using the modified projection Py (see Definition 2.4), we have in fact HAu

y = Hy ◦ Py, i.e., ∀s ∈
Rmax(A): HAu

y (s) = Hy(Py(s)). Knowing that ε is absorbing for ⊗ and hence for w 6∈ supp(y) we
can put Py(s)(w) = ε without modifying the Hadamard product HAu

y (s)(w).

Proposition 4.4. The map Py is residuated with its residual given by

P ]
y(s)(w) =

{ ∧
u∈P−1

c (w)∩supp(y) s(u), if w ∈ A∗c ,
>, if w 6∈ A∗c .

Proof. We obtain

Py ◦ P ]
y(s)(w) = P ]

y(s)(Pc(w)) =
∧

u∈P−1
c Pc(w)∩supp(y)

s(u) ¹ s(w),

because Pc(w) ∈ A∗C , hence only the first case in formula for P ]
y can occur.

Similarly, we have
P ]

y ◦ Py(s)(w) =
{ ∧

u∈P−1
c (w)∩supp(y) Py(s)(u) =

∧
u∈P−1

c (w)∩supp(y) s(Pc(u)) º s(w), if w ∈ A∗c ,
> º s(w), if w 6∈ A∗c .

The arguments are again the same as in the proof of Proposition 4.3.

Using the formula from residuation theory (cf. [3]) (HAu
y )] = (Hy ◦ Py)] = P ]

y ◦ H]
y, it remains

to substitute the formulae for P ]
y (see Proposition 4.4) and H]

y (see Proposition 2.4). This yields to the
same formula as the one obtained in Proposition 4.3.

In the next section Proposition 4.3 will be used in the study of controllability of (max,+) formal
power series.

5 Controllability of (max,+) formal power series

In the last section the control problem and its solution based on residuation theory have been formulated
within a behavioral framework. The resulting series corresponding to an optimal supervisor can then be
realized by a (max,+) automaton, provided it is rational.

In the rest of the paper y denotes the formal power series (behavior) of the uncontrolled plant (system)
and yref the control specification (also called reference series). Similarly as in the classical Ramadge-
Wonham (R-W) theory we have y as counterpart of L(G) and yref as counterpart of the specification
language. As in the classical supervisory control theory, not every specification series can be achieved
as a closed-loop behavior. Since it is not at first sight clear how to define controllable (max,+) formal
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power series, controllability is defined by using a property required from a controllable formal power
series. Namely, a series is defined to be controllable if it can be exactly achieved by control actions of a
suitable supervisor. Formally, we introduce the following concept of controllability within our behavioral
framework.

Definition 5.1. A series yref ∈ Rmax(A) is controllable with respect to y and Au if there exists yc ∈
Rmax(A) such that yc ¯Au y = yref , i.e., if HAu

y (yc) = yref .

This concept of controllability may be viewed as an extension of language controllability from R-W
theory. The characterization of controllability below follows easily.

Theorem 5.1. A series yref ∈ Rmax(A) is controllable with respect to y and Au iff

yref = HAu
y ◦ (HAu

y )](yref ).

Proof. The sufficiency is quite obvious: for any yref ∈ Rmax(A) such that yref = HAu
y ◦ (HAu

y )](yref ),
it suffices to take yc = (HAu

y )](yref ) and one has yref = HAu
y (yc). For the converse implication, we

recall that a residuated mapping satisfies f ◦ f ] ◦ f = f (see [3, th.4.56]). Therefore, from yref =
HAu

y (yc) we get HAu
y ◦ (HAu

y )](yref ) = HAu
y ◦ (HAu

y )] ◦HAu
y (yc) = HAu

y (yc) = yref , i.e., necessity
follows.

Theorem 5.1 provides a useful characterization of controllable series as those that are fixed points of
HAu

y ◦ (HAu
y )]. Note that inequality HAu

y ◦ (HAu
y )](s) ¹ s is always satisfied as follows from the very

definition of a residuated mapping, c.f. Theorem 2.1. Since we have the decomposition HAu
y = Hy ◦ Py

using the standard Hadamard product Hy (corresponding to the absence of uncontrollable events, i.e.,
Ac = A), we obtain that yref is controllable with respect to y and Au iff

yref = Hy ◦ Py ◦ P ]
y ◦H]

y(yref ).

Proposition 4.4 will be helpful in order to obtain the following characterization of controllability that
does not refer to the existence of a controller series, but is based purely on the plant and specification
series.

Theorem 5.2. A series yref ∈ Rmax(A) is controllable with respect to y and Au iff ∀w ∈ A∗ :

yref (w)◦/y(w) =
∧

u∈P−1
c Pc(w)∩supp(y)

yref (u)◦/y(u).

Proof. Controllability of yref with respect to y and Au is equivalent to have ∀w ∈ A∗ :

yref (w) = Hy ◦ Py ◦ P ]
y ◦H]

y(yref )(w).

Then Proposition 4.4 is used, i.e., by mechanically substituting the expressions for Py,Hy, P
]
y , and H]

y

we get: ∀w ∈ A∗: yref (w) = {∧u∈P−1
c Pc(w)∩supp(y) yref (u)◦/y(u)} ⊗ y(w), whence

yref (w)◦/y(w) =
∧

u∈P−1
c Pc(w)∩supp(y)

yref (u)◦/y(u)

(for scalars a, b ∈ Rmax we have a = b⊗ x⇔ a = b + x⇔ a− b = x⇔ a◦/b = x).
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The claim of Theorem 5.2 can be reformulated as follows: ∀w ∈ A∗ and ∀u ∈ P−1
c Pc(w)∩ supp(y)

yref (u)◦/y(u) º yref (w)◦/y(w)

Otherwise stated, we must have equality for any w ∈ supp(y), because clearly such w belongs to
{u ∈ P−1

c Pc(w) ∩ supp(y)}. Indeed, if w 6∈ supp(y) then we obtain > on the right (because a◦/ε for
any a ∈ Rmax, included a = ε) and since u ∈ supp(y) we obtain > on the left as well. Formally, the
following corollary holds true.

Corollary 5.3. A series yref ∈ Rmax(A) is controllable with respect to y and Au iff ∀w ∈ supp(y) and
∀u ∈ P−1

c Pc(w) ∩ supp(y), we have

yref (u)◦/y(u) = yref (w)◦/y(w).

5.1 Logical and timing aspects of controllability

Note that in the characterization of controllability above both logical and timing aspects of controllability
are included.
Let us first discuss the timing aspects of controllability. Since yref as well as y are scalar series, i.e., all
coefficients are numbers (including ε), one can reformulate controllability stated in Corollary 5.3 as

∀w ∈ supp(y) and ∀u ∈ P−1
c Pc(w) ∩ supp(y) :

yref (w)◦/yref (u) = y(w)◦/y(u).

Note that u ∈ P−1
c Pc(w) just means that u and w differ only by uncontrollable events. Now, if w º u,

then the formula expresses the requirement that given a time delay between the occurrence of strings u
and w within the system (y(w)◦/y(u)), the same delay between the strings u and w must be prescribed
by the specification series (yref (w)◦/yref (u)). This is a very natural and intuitive requirement, because
the intermediate uncontrollable events (that make the difference between those strings : Pc(u) = Pc(w))
cannot be delayed by any controller automaton.

Let us now discuss the logical aspects of controllability and compare it with controllability of lan-
guages. To do this, we first define a projection P̃c : A∗ → A∗ that removes uncontrollable strings (if any)
at the end of words. Thus, P̃c(w) = v if w = vu, u ∈ A∗u and last(v) ∈ Ac, where last(v) denotes the
last letter of the word v.

Proposition 5.4. A prefix closed language K is controllable with respect to L and Au iff P̃−1
c P̃c(K) ∩

L ⊆ K.

Proof. Follows from the definition of controllability of a language [23] that can be equivalently given
using strings of A∗u instead of events of Au, i.e., KA∗u ∩ L ⊆ K. Indeed, let KA∗u ∩ L ⊆ K and
s ∈ P̃−1

c P̃c(K)∩L, then s ∈ L and P̃c(s) = P̃c(t) for some t ∈ K. From definition of P̃c it follows that
either s = tu with u ∈ A∗u or t = su with u ∈ A∗u. In the first case we get s = tu ∈ K by controllability
of K and in the second case t = su ∈ K implies s ∈ K, because K is prefix closed.
Similarly, if P̃−1

c P̃c(K) ∩ L ⊆ K and s = tu ∈ L with t ∈ K and u ∈ A∗u, then s ∈ P̃−1
c P̃c(K) ∩ L,

i.e., s ∈ K.

Now we return to the characterization of controllability of series and we extract logical aspects of it to
compare with controllability of languages. In this respect, as mentioned in Remark 2.6 it is sufficient to
consider the support of series (i.e., series with Boolean coefficients) instead of series having coefficients
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in Rmax (any coefficient different from ε, including > becomes the unit element e). The series yref

plays the role of the specification language K, i.e., yref (w) = e means that w ∈ K and similarly
y(w) = e means that w ∈ L. One can notably check that Proposition 5.4 implies characterization of
controllability stated in Corollary 5.3. To do this, let us consider a controllable prefix closed language K
and w ∈ K (i.e., yref (w) = e), from Proposition 5.4 we have P̃−1

c P̃c(K) ∩ L ⊆ K, and in particular,
∀u ∈ P̃−1

c P̃c(w)∩L, i.e., y(w) = e and u ∈ P̃−1
c P̃c(w) which implies u ∈ P−1

c Pc(w), we have u ∈ K,
i.e., yref (u) = e. Then ∀w ∈ supp(y), i.e., y(w) = e, we have the condition of Corollary 5.3, that is,

yref (u)◦/y(u) = yref (w)◦/y(w) = e◦/e = e.

The converse implication is not true. More precisely, in the converse reasoning, one cannot argue that
u ∈ P−1

c Pc(w) implies u ∈ P̃−1
c P̃c(w).

This makes a connection between (max,+) controllability and logical controllability. More precisely,
this means that our original notion of controllability for formal power series (with Pc instead of P̃c) is
stronger in its logical aspect than classical R-W controllability of languages. Since there is no notion of
prefix closed behaviors for formal power series, the control problem, that has been formulated for formal
power series that are counterparts of marked languages, is more restrictive (cf. for languages inclusion of
marked languages implies inclusion of prefix closed languages if the systems are nonblocking). Hence,
controllability needs to be stronger.

5.2 Supremal controllable behaviors

If a specification series is not controllable, a natural question is to find an approximation, in particular a
smaller series, that is controllable.
Let us first notice that HAu

y and (HAu
y )] are isotone mappings. The following result holds.

Proposition 5.5. HAu
y ◦ (HAu

y )](yref ) is the greatest controllable (max,+) series with respect to y and
Au smaller or equal to yref .

Proof. Controllability follows from the very definition, cf. proof of Theorem 5.1. It remains to show
the supremality of HAu

y ◦ (HAu
y )](yref ) among all controllable series that are less or equal to yref .

Let ȳ be controllable with respect to y and Au and ȳ ¹ yref . By isotony of HAu
y and (HAu

y )] one
obtains HAu

y ◦ (HAu
y )](ȳ) ¹ HAu

y ◦ (HAu
y )](yref ), and since HAu

y ◦ (HAu
y )](ȳ) = ȳ, we have ȳ ¹

HAu
y ◦ (HAu

y )](yref ) which shows the supremality of HAu
y ◦ (HAu

y )](yref ).

Remark 5.6. There is an analogy with the classical supervisory control theory. If we denote in the
classical supervisory control theory the operator HL(K) = inf C(K, L,Au) the resulting closed-loop
system, which corresponds to the infimal controllable superlanguage of the specification language K
with respect to plant language L and Au, then it can be shown that this mapping is residuated in the
dioid of formal languages and its residuated mapping is nothing else but H]

L(K) = sup C(K, L, Au).
The residuated mapping (HAu

y ) ◦ (HAu
y )](s) plays the role (i.e., is a generalization of) the supremal

controllable sublanguage of specification (reference) series s with respect to the plant y and Au. Firstly,
HAu

y (s) plays the role of closed-loop behavior of the controlled system. In classical supervisory control
it corresponds to the infimal controllable superlanguage. However, in our case, where timing aspect
of control is defined by adding delay, i.e., (max,+) multiplication, we cannot expect that the supremal
controllable subseries of a controllable series is this series itself. Therefore it is not HAu

y )](s), but
(HAu

y )◦(HAu
y )](s) that is the formal power series counterpart of the supremal controllable sublanguage

of s.
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The last proposition can then be viewed as a generalization of the formula for supC operator from
Ramadge-Wonham theory.

Corollary 5.7. If yref is controllable with respect to y and Au then the optimal controller series is simply
given by

yc(w) =
{

yref (w)◦/y(w) , if w ∈ A∗c ,
> , if w /∈ A∗c .

This is similar to classical supervisory control, where controller is simply given by the intersection
of the plant and the specification languages if the specification is controllable.

6 Example

The aim of this section is to illustrate various concepts and results introduced in this paper. To do this a
simple example is preferred to a realistic case study.
A manufacturing system modeled by a (max,+) automaton G displayed on figure 1.(a) is considered. The
three distinct tasks, labeled a, b and c, last respectively 3, 4 and 5 units of time. The system can perform
the following sequences of tasks : a, ab, abc, abcb, abcbc, . . .. The linear representation of G (see section
2.3) is given by

α =
(

e ε ε
)

, β =




ε
e
e


 ,

µ(a) =




ε 3 ε
ε ε ε
ε ε ε


 , µ(b) =




ε ε ε
ε ε 4
ε ε ε


 , µ(c) =




ε ε ε
ε ε ε
ε 5 ε


 .

The behavior of G can be deduced using (4), that is by computing

y = l(G) = α⊗ µ∗ ⊗ β = α⊗ (µ(a)a⊕ µ(b)b⊕ µ(c)c)∗ ⊗ β = α⊗



ε 3a ε
ε ε 4b
ε 5c ε



∗

⊗ β.

We obtain the following series in Rmax(A):

y = 3a(9bc)∗(4b⊕ e).

For instance, y(ab) = 7 means that the sequence ab will be completed at the date 7 (considering that the
system starts to operate at time 0).
It is assumed that the start of tasks a and c can be delayed (we may decide to postpone the execution of
these tasks when they should be performed) or even forbidden (their execution can be prevented). On
the contrary, the task b can neither be delayed nor forbidden which means that this task starts as soon
as it can be performed. Denoting A = {a, b, c} the set of events (alphabet), we have Ac = {a, c} and
Au = {b}.
We would like that the system behaves at the latest according to the following series:

yref = 4a⊕ 9ab⊕ 14abc.

This means that the sequences a, ab and abc should be completed at the latest at dates 4, 9 and 14
respectively. In addition, any other sequence of tasks should not happen. This series is recognized by the
(max,+) automation Gref displayed on figure 1.(b).
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Figure 1: G (a), Gref (b), Gs (c)

The series yref is not controllable with respect to y and Au since for w = abc we have P−1
c Pc(w) =

b∗ab∗cb∗, that is, P−1
c Pc(w) ∩ supp(y) = {abc, abcb} and

yref (abc)◦/y(abc) yref (abc)◦/y(abc) ∧ yref (abcb)◦/y(abcb) =
= 14◦/12 min(14◦/12, ε◦/16) =

= 2 6= ε.

The condition stated in Theorem 5.2 is then violated. This is due to the uncontrollability of event b,
which implies that word abcb (∈ supp(y)) cannot be prevented from happening if abc (∈ supp(yref )))
is enabled.
In addition, for w = ab we have P−1

c Pc(w) = b∗ab∗, that is, P−1
c Pc(w) ∩ supp(y) = {a, ab} and

yref (ab)◦/y(ab) yref (a)◦/y(a) ∧ yref (ab)◦/y(ab) =
= 9◦/7 min(4◦/3, 9◦/7) =

= 2 6= 1.

The condition of Theorem 5.2 is again not satisfied. In that case, this is due to the fact that if event a
has been completed at 4, then event b cannot be delayed (since it is uncontrollable) so that sequence ab
would be completed at 9.

Proposition 5.5 can be used to compute the greatest controllable series with respect to y and Au

smaller or equal to yref . We obtain

HAu
y ◦ (HAu

y )](4a⊕ 9ab⊕ 14abc) = 4a⊕ 8ab.

In fact, we have using (9) for yopt
c = (HAu

y )]

(HAu
y )](ab) = > , (HAu

y )](abc) = > (since ab /∈ A∗c and abc /∈ A∗c)

and
(HAu

y )](a) = yref (a)◦/y(a) ∧ yref (ab)◦/y(ab)
= 1,

(HAu
y )](ac) = yref (abc)◦/y(abc) ∧ yref (abcb)◦/y(abcb)

= ε.
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Since there is no u ∈ P−1
c (ε)∩ supp(y), i.e., A∗uc ∩ supp(y) = ∅ and the infimum of empty set is >, we

have (HAu
y )](ε) = >. Hence, the controller is

yopt
c (ε) = (HAu

y )](ε) = >, yopt
c (a) = (HAu

y )](a) = 1, and

yopt
c (w) = (HAu

y )](w) = ε for w ∈ A∗c , w 6∈ {ε, a}
and yopt

c (w) = > for w 6∈ A∗c .
Also, this leads to

HAu
y ◦ (HAu

y )](abc) = (HAu
y )](Pc(abc))⊗ y(abc)

= (HAu
y )](ac)⊗ y(abc)

= ε⊗ 12 = ε,

HAu
y ◦ (HAu

y )](ab) = (HAu
y )](Pc(ab))⊗ y(ab)

= (HAu
y )](a)⊗ y(ab)

= 1⊗ 7 = 8,

HAu
y ◦ (HAu

y )](a) = (HAu
y )](Pc(a))⊗ y(a)

= (HAu
y )](a)⊗ y(a)

= 1⊗ 3 = 4.

The behavior of the system under control is ys = yopt
c ¯ y =

⊕
w∈A∗

(
yopt

c (Pc(w))⊗ y(w)
)

w =
4a ⊕ 8ab. A (max,+) automation Gs which realizes ys is displayed in figure 1.(c). The role of the
controller in this example is to delay the first event (a) by 1 unit and to disable the event c after the string
ab has been generated by the system.

7 Rationality and decidability issues

This section is dedicated to rationality and decidability issues related to (max,+) formal power series.
Let us recall that a series is (max,+)- rational (respectively (min,+)- rational) if it is in the rational

closure of series with finite supports, i.e., if it can be formed from polynomial series (i.e., those with
finite support) by rational operation ⊕ (corresponding to max, respectively to min), ⊗, and the Kleene
star.

Interestingly, it has been shown in [22] that the class of formal power series that are at the same
time (max,+) and (min,+) rational coincides with the so called unambiguous series. For these families
of series, the equality (and inequality) of series is proved to be decidable. Unambiguous series are
recognized by unambiguous automata, that is, automata in which there is at most one successful path
labeled by w for every word w. If we confine ourselves to this class of automata (series), which roughly
consist to consider deterministic automata, there is no problem with decidability of inequalities. This
will be adopted in our future extensions of the proposed framework, in particular in decentralized control
of synchronous products of deterministic (max,+) automata. Synchronous product of (max,+) automata
will be defined as a multi-event (max,+) automaton, more precisely (max,+) automaton defined over local
sequences based alphabet. This way a use of nondeterminism to model temporal aspects of concurrency
(as in heap automata from [11]) may be avoided.

Another important question is whether/when the resulting controller is rational. This amounts to
study the rationality of residuated mapping of Hadamard product. The Hadamard product of two rational
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power series is still a rational power series when the underlying semiring of coefficients is a commuta-
tive semiring. The situation is more complicated when the Hadamard inverse (quotient) is considered. It
turns out to be a difficult problem, but the results of [22] are again helpful in this respect. Actually, the
residuated mapping of a Hadamard product can be formulated in terms of Hadamard product using the
series that has inversed coefficients. More precisely, for any series r ∈ Rmax(A) let us denote by C(r)
the series with the coefficients C(r)(w) = −r(w) ∈ Rmax. Then the residuated mapping of Hadamard
product can be written by H]

y(s)(w) = s(w)◦/y(w) = s ¯ Cy. Since Hadamard product is known to
be a rational operation (realized by tensor product of linear representations, while realizable and rational
formal power series coincide according to Schutzenberger’s theorem), residuated mapping of Hadamard
product is rational iff the ”inversion” operator C : Rmax(A) → Rmax(A) preserves rationality. It has
been shown in [22] that for a formal power series s ∈ Rmax(A) we have C(s) ∈ Rmax(A) iff s is un-
ambiguous. Moreover we recall that it is proven therein that s ∈ Rmax(A) is unambiguous iff it is at
the same time (max,+) and (min,+) rational. It is then clear in view of our formula (9) that if the series
y ∈ Rmax(A) (corresponding to the uncontrolled plant ) is not at the same time (max,+) and (min,+)
rational, the residuated mapping of Hadamard product can neither be rational.
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8 Conclusion

We have presented a control mechanism for (max,+) automata based on the tensor product of their linear
representations, i.e., the Hadamard product of the corresponding formal power series. Both logical and
timing aspects of their control have been studied using behavioral (formal power series) framework. In
presence of uncontrollable events an approach based on a generalized version of Hadamard product and
on direct application of residuation theory is developed. This way both logical and timing aspects of
supervisory control are handled at the same time.

The proposed solution to a control problem for (max,+) automata is used in the study of controllabil-
ity. Controllability of (max,+) formal power series is investigated using residuation theory applied to a
generalized Hadamard product of formal power series. Both logical and timing aspects of controllability
are characterized within a single formula. Supremal controllable behaviors have been studied and for-
mulae are proposed for supremal controllable series. In a future investigation it would be nice to handle
unobservable events and to develop decentralized and modular control of concurrent (max,+) automata.
It would be also interesting to specify results to (max,+) automata with only positive transition values,
that is the more realistic case where durations associated to events are all positive or zero (in case of
instantaneous actions). Moreover, the algebraic approach could be extended to more general classes of
timed automata.
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