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Abstract A large class of timed discrete event systems can be modeled by
means of (max,+) automata, that is automata with weights in the so-called
(max,+) algebra. In this contribution, specific recursive equations over
(max,+) and (min,+) algebras are shown to be suitable for describing extremal
behaviors of (max,+) automata. Several pertinent performance indicators can
be easily derived or approximated from these representations with a low com-
putation complexity. It is also shown how to define inputs which model ex-
ogenous influences on their dynamic evolution, and a new approach for the
control of (max,+) automata is proposed.

1 Introduction

Several formalisms have been introduced and experienced for studying Discrete
Event Systems (DES). Within the theory initiated by Ramadge and Wonham
[26], events correspond to letters and DES are modeled by finite state machines.
Most of the results pertain to logical behavior of DES (e.g. to restrict their
behavior such that some forbidden states cannot be reached). On the contrary,
the approach based on (max,+) algebra focuses on timed behavior of DES (e.g.
to find out cycle times, earliest and/or latest dates of sequences-completion)
[2]. While automata model naturally nondeterminisms inherent in conflicts or
choices (e.g. to capture several possible schedules), (max,+) systems rather fit
DES with deterministic behavior (by fixing the schedules in this case).

Stéphane Gaubert has first shown in [10] that automata with multiplicities
in (max,+) algebra (also called (max,+) automata) combine these two ap-
proaches: concepts on automata can be used with results from (max,+) alge-
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bra to study at the same time logical and timing aspects of DES. In particular,
(max,+) automata have been applied to performance evaluation [10, 12, 28],
scheduling [29, 14] and control problems [17, 3, 27]1. The behavior of (max,+)
automata is then represented:

– either by recurrent equations over letters which can be seen as a generali-
zation of the state representation with daters for (max,+) linear systems
(see Eq. (5) below),

– and/or by formal power series with coefficients in (max,+) algebra which
play an equivalent role to languages for logical (boolean) automata (see
Eq. (7) below).

Unfortunately, many important problems turn out to be difficult, or even
undecidable for general (max,+) automata with these representations. In par-
ticular, let us mention that:

– equality and inequality of formal power series representing (max,+) au-
tomata, is undecidable [19];

– the pseudo-inverse (i.e. residuation) of the product of rational formal power
series is rational only for restrictive assumptions [3]. As a by-product, to
expect the realizability of controllers, the supervisory control approach in
[17] has to be restricted to small subclasses of (max,+) automata.

The present contribution proposes alternative representations for (max,+)
automata. These representations describe the behavior of automata less accu-
rately, since only their extremal behaviors are depicted. However, it is hoped
that these representations make it possible to deal with problems of significant
interest with reasonable complexity.

More precisely, we define recursive equations over (max,+) and (min,+)
algebras in order to describe the so-called worst-case and optimal-case behav-
iors of the automata. It is then shown that these representations have direct
applications to evaluate the performances of the systems with low computa-
tion complexity. In addition, it is possible to model the influence of exoge-
nous inputs by an additive term in these representations. We then get model
equations that are analogous to standard nonautonomous state equations in
(max,+) and (min,+) algebras, and we can consider to adapt existing control
laws for (max,+) linear systems. As a first attempt in doing so, an open-loop
control is investigated for (max,+) automata.

This paper is organized as follows. Next Section contains a brief reminder
on idempotent semirings, (max,+) automata and their properties. In Section
3, the representations for extremal behaviors of (max,+) automata are in-
troduced. These lead to some performance evaluation elements described and
compared with related results in the literature. In Section 4, inputs are de-
fined for the representations in order to capture some external influences on

1 Beyond the scope of discrete event systems, there are important applications for image
and speech processing, and more generally, weighted automata constitute a theoretical object
which is extensively studied (see [9] for an overview).
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(max,+) automata. This makes it possible to deal with control, and an open-
loop control law is then proposed. The concepts and results are illustrated by
means of elementary examples through the paper. A more realistic example is
studied in section 5: a jobshop system is considered and some potential contri-
butions for performance evaluation and control of this system are mentioned.
A conclusion and some prospects are given in Section 6.

2 PRELIMINARIES

2.1 Dioids

Necessary algebraic concepts on dioids are briefly recalled in this section (see
the monographs [2] and [13] for an exhaustive presentation).
A dioid is a semiring in which the addition ⊕ is idempotent. The addition
(resp. the multiplication ⊗) admits as null element ε (resp. as identity ele-
ment e)2. Due to the idempotency of ⊕, a natural order relation is defined
by a � b ⇐⇒ a ⊕ b = a (a ⊕ b is the least upper bound of {a, b}). A dioid
is complete if ⊗ distributes over infinite sums and if every subset admits a
least upper bound. The greatest lower bound of {a, b}, noted ∧, then exists as
a ∧ b defined by ⊕{x�a,x�b}x belongs to the dioid. The greatest element of a
complete dioid is noted > and is equal to the ⊕-sum of all its elements.

Example 1 If Σ is a finite set (alphabet), the free monoid on Σ is defined as
the set Σ∗ of finite words with letters in Σ. A word w ∈ Σ∗ can be written as a
sequence w = a1a2 . . . an with a1, a2, . . ., an ∈ Σ and n a natural number. For-
mal languages are subsets of the free monoid Σ∗. The set of formal languages,
with the union of languages playing the role of addition and concatenation of
languages playing the role of multiplication, is a dioid. The zero language is
ε = {}, the unit language is denoted e = {ε} where ε is the empty (zero length)
string. We say that u = u1 . . . uk ∈ Σ∗ is a subword of w ∈ Σ∗ if there exists
a factorization w = w1u1w2 . . . wkukwk+1 with wi ∈ Σ∗, i = 1, . . . k + 1. The
corresponding subword order on Σ∗ is u � w iff u is a subword of w ∈ Σ∗.

Example 2 The set R∪{±∞} with the maximum (resp. the minimum) playing
the role of addition and conventional addition playing the role of multiplica-
tion is a complete dioid, denoted Rmax (resp. Rmin) , with e = 0 and ε = −∞
(resp. ε = +∞) and is usually called (max,+) algebra (resp. (min,+) algebra).

The set of n × n matrices with coefficients in dioid Rmax (resp. Rmin),
endowed with the matrix addition and multiplication conventionally defined

from ⊕ and ⊗, is also a dioid, denoted R
n×n

max (resp. R
n×n

min ). The zero element is
the matrix exclusively composed of ε. We denote In the identity element, which

2 As usual, we will often omit the multiplication sign ⊗, that is for example we write AB
instead of A ⊗ B.
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is the matrix with e on the diagonal and ε elsewhere. Note that, to be able to
multiply a n × n matrix with a n × 1 vector, this vector should be embedded

in R
n×n

max by adding n − 1 columns full of ε. To lighten the presentation, this
construction is often omitted in the following (without affecting the results).

2.2 (Max,+) automata

Automata with multiplicities in the Rmax semiring are called (max,+) au-
tomata (see [10] for a deeper introduction).
A (max,+) automaton G is a quadruple (Q, Σ, α, µ) where

– Q and Σ are finite sets of states and of events;

– α ∈ R
1×|Q|

max is such that αq = ε or e, and a state is said to be initial when
αq = e (Qi ⊂ Q denotes the set of initial states);

– µ : Σ∗ → R
|Q|×|Q|

max is a morphism specified by the matrix family µ(a) ∈

R
|Q|×|Q|

max , a ∈ Σ. For a string w = a1 . . . an, we have

µ(w) = µ(a1 . . . an) = µ(a1) . . . µ(an),

where the matrix multiplication involved here, is the one of R
|Q|×|Q|

max . A
coefficient [µ(a)]pq 6= ε means that the occurrence of event a causes a state
transition from p to q, and the value [µ(a)]pq is interpreted as the duration
associated to a (namely, the time activation of event a before it can occur).

Remark 1 This definition is slightly different from that in [10] where initial
and final delays are considered. In the present paper, we restrict our attention
to (max,+) automata in which the initial delays (that is the coefficients in α
different from ε) are all equal to e = 0 (this assumption is without loss of
generality since an adequate transformation is always possible). In addition,
the vector of final delays is not considered, hence all states can be thought of
as final (marked) states (as it is the case for heap automata [12]).

Example 3 Figure 1 is an example of graphic representation which can be
associated with every (max,+) automaton:

– the nodes correspond to states q ∈ Q;
– an arrow exists from state p ∈ Q to state q if there exists an event a ∈ Σ

such that [µ(a)]pq 6= ε: it represents the state transition when event a
occurs. The arrow is labelled by the event and the multiplicity associated
with the state-transition, namely ’a/[µ(a)]pq’.

– an input arrow symbolizes an initial state.

For this example, we have Q = {I, II}, Σ = {a, b}, and

α =
(

e e
)

, µ(a) =

(

ε 3
ε 2

)

, µ(b) =

(

ε ε
2 ε

)

.
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I II

a/3

b/2

a/2

Fig. 1 A (max,+) automaton.

If [µ(a)]pq 6= ε, (p, a, q) denotes the transition in G, and H refers to the set
of transitions

H , {(p, a, q) ∈ Q × Σ × Q | [µ(a)]pq 6= ε}. (1)

In order to lighten the presentation, an element of H can also be denoted by
an integer corresponding to its position in the set (it is then assumed that
H constitutes a fixed sequence). For a given state p ∈ Q, we define the set
Hp ⊂ H by:

Hp = {(r, a′, s) ∈ H | r = p}.

Let m ≥ 1 and π = (q0, a1, q1)(q1, a2, q2) . . . (qm−1, am, qm) be a sequence of
transitions. We call π a path from q0 to qm. We denote σ(π) the product ⊗ of
the weights on π, that is

σ(π) =
⊗

i=1,...,m

[µ(ai)]qi−1,qi
=

∑

i=1,...,m

[µ(ai)]qi−1,qi
. (2)

Let p, q ∈ Q and w ∈ Σ∗. We denote by p
w
 q the set of paths from p to q

which are labeled by w (for P, R ⊂ Q, P
w
 R denotes the union of p

w
 q for

every p ∈ P , q ∈ R). It can be shown that

[µ(a1a2 . . . am)]q0qm
=

⊕

π∈q0

a1...am
 qm

σ(π) . (3)

The usual representation for a (max,+) automaton describes its dynamic

evolution by means of a vector x(w) ∈ R
1×|Q|

max defined by

x(w) = αµ(w). (4)

The element [x(w)]q is interpreted as the greatest date over all initial states
at which state q is reached when w is completed (with the convention that
[x(w)]q = ε if the state q is not reached when w is completed). The elements
of x are generalized daters, and we have

{

x(ε) = α,
x(wa) = x(w)µ(a).

(5)
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It is easy to check that

x(w)q =
⊕

π∈Qi
w
 q

σ(π) . (6)

The generalized daters can equivalently be written as formal series

x =
⊕

w∈Σ∗

x(w)w. (7)

These formal power series are often referred to as the behavior of the (max,+)
automaton.

A (max, +) automaton is said to be deterministic if

– it has a unique initial state, namely, there is a unique q ∈ Q such that
αq 6= ε;

– and from each state, no two state transitions share the same event, namely,
if for all a ∈ Σ each line of µ(a) contains at most one element not equal to
ε.

Different definitions can be found for the notion of ambiguity in the lit-
erature. Commonly, an automaton is said to be unambiguous if there is at
most one path with a given origin, end, and label (see for example [4]), that

is ∀p, q ∈ Q, ∀w ∈ Σ∗; |p
w
 q| ≤ 1. Whereas in [16, 15] ”unambiguous” rather

characterizes automata in which there is at most one successful path for any
label, that is ∀w ∈ Σ∗; |Qi

w
 Qf | ≤ 1 (Qf stands for the subset of final states).

The latter definition is more restrictive than the former. In the present paper,
we need to distinguish automata with a related property that we call ”strongly
unambiguous” (to signify a restriction compared to the common definition for
unambiguous, but it is a more general notion than the second definition above).

Definition 1 A (max,+) automaton is said to be strongly unambiguous if
there is at most one path with given end and label starting from any initial
state, that is ∀q ∈ Q, ∀w ∈ Σ∗; |Qi

w
 q| ≤ 1.

Deterministic automata are (strongly) unambiguous. In strongly unambiguous

(max, +) automata, for given qm ∈ Q, w ∈ Σ∗, Qi
w
 qm is the empty set or

a singleton. Let us denote π = (q0, a1, q1)(q1, a2, q2) . . . (qm−1, am, qm) the
unique path recognizing a1a2 . . . am (q0 ∈ Qi), Eqs. (3)-(6) are then reduced
to

x(w)qm
= [αµ(a1a2 . . . am)]qm

= µ(a1a2 . . . am)q0,qm
=

⊗

i=1...m

[µ(ai)]qi−1,qi

(8)
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3 Representations for extremal behaviors of (max,+) automata

In this section, several representations are introduced to model the extremal
behaviors of (max,+) automata. Instead of exactly describing their evolution
like the usual models (5)-(7) (by differentiating each event-occurrence), these
representations bring only bounds for the behavior of the corresponding DES
(by considering all the possible event-occurrences). These representations are
proposed in Subsections 3.1 and 3.2. We can argue that the loss of accuracy
is compensated by the low complexity of the manipulations with these new
models. In particular, it is shown in Subsection 3.3 that several performance
indicators can then be evaluated in polynomial time complexity. Another ad-
vantage of these representations is underlined in next section: it is possible to
define the influence of exogenous inputs to get standard nonautonomous state
equations in (max,+) and (min,+) algebras, and we can consider to transpose
existing control laws for (max,+) linear systems.

3.1 Representation for extremal behaviors in terms of sequence durations

Let us define matrix A ∈ D|H|×|H| as follows (D can stand for Rmax or Rmin).
For j and k indices of transitions (p, a, q) and (r, a′, s) in H ,

Ajk =

{

[µ(a′)]rs if s = p,

ε otherwise.
(9)

Example 4 The nondeterministic, but strongly unambiguous, (max,+)
automaton G1 represented in figure 2 is such that

H = {(I, a, I), (I, b, II), (II, c, II)},

and

A =





3 ε ε
3 ε ε
ε 2 1



 .

For example A2,1 = 3 brings the information that transition (I, b, II) can occur
consecutively to the occurrence of transition (I, a, I) which has a duration
equal to 3 time units.

Definition 2 A vector x ∈ D|H|×1 is said to be homogeneous if ∀p ∈ Q,
∀i, j ∈ Hp, xi = xj , i.e., the entry of an homogeneous vector corresponding to
a transition (p, a, q) ∈ H depends only on the origin p of the transition. Since
the sum of D is idempotent, this value is also equal to

⊕

i∈Hp
xi. We shall let

xp denote this value.
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I II

b/2

c/1a/3

Fig. 2 Automaton G1.

Since the rows of A corresponding to transitions with the same origin are
identical, we deduce that for every homogeneous vector y ∈ D|H|×1, the vector
x = A ⊗ y is homogeneous. We define inductively the following sequence of
homogeneous vectors x(n) ∈ D|H|×1 for n ∈ N by:

{

x(1)(p,a,q) = αp for every (p, a, q) ∈ H

x(n + 1) = A ⊗ x(n) for n ≥ 1.
(10)

Proposition 1 Let A and x(n), n ∈ N be defined respectively by (9) and (10)
with D corresponding to Rmax. Then x(n+1)p, n ∈ N, p ∈ Q is the maximum
element of σn,p = {x(w)p | |w| = n} for each p ∈ Q, that is the maximum
completion date among sequences of length n leading to state p.

Proof 1 The proof proceeds by induction.
Base case. For every p ∈ Q, we have by definition

x(1)p = αp = x(ε)p = {x(w)p | |w| = 0}

Inductive case.

maxσn+1,p

=
⊕

{w||w|=n+1} x(w)p

=
⊕

q∈Q

⊕

{a|(q,a,p)∈H}

⊕

{w′||w′|=n} x(w′)q ⊗ µ(a)qp (by Eq. (5))

=
⊕

q∈Q(
⊕

{w′||w′|=n} x(w′)q) ⊗ (
⊕

{a|(q,a,p)∈H} µ(a)qp)

=
⊕

q∈Q x(n + 1)q ⊗ (
⊕

{a|(q,a,p)∈H} µ(a)qp) (by inductive hyp.)

=
⊕

q∈Q

⊕

(q,a,p)∈Hq
µ(a)qp ⊗ x(n + 1)(q,a,p)

=
⊕

(q,a,p)∈Hq

⊕

j∈Hp
Aj,(q,a,p) ⊗ x(n + 1)(q,a,p) (by Eq. (9))

= [A ⊗ x(n + 1)]p
= x(n + 2)p

Example 5 Let us consider again automaton G1 studied in Example 4 and
depicted in figure 2. We have

x(n) =





x(n)(I,a,I)

x(n)(I,b,II)

x(n)(II,c,II)



 .
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Vector x satisfies Eq. (10), that is:

x(1) =





e
e
e



 , x(n + 1) =





3 ε ε
3 ε ε
ε 2 1



 ⊗ x(n).

Table 1 contains the first values obtained thanks to this recurrence in Rmax.

Table 1

n 1 2 3 4 5 ...
x(I,a,I)(n) e 3 6 9 12 ...

x(I,b,II)(n) e 3 6 9 12 ...

x(II,c,II)(n) e 2 5 8 11 ...

For example, the possible sequences of length 4 leading to state II are
{cccc, bccc, abcc, aabc, aaab}. We obtain by means of usual representation (5)

x(cccc)II = 4, x(bccc)II = 5, x(abcc)II = 7, x(aabc)II = 9, x(aaab)II = 11,

which leads to σ4,II = {4, 5, 7, 9, 11}.
On the other hand, we have

HII = {(II, c, II)},

hence
x(5)II = x(5)(II,c,II) = 11,

which corresponds to the maximum element of σ4,II , that is the maximum
completion time for sequences of length 4 leading to state II.

The next proposition contributes to characterize the optimal behavior of
automata. This representation is formulated in (min,+) algebra but we must
keep in mind that it describes (max,+) automata.

Proposition 2 Let A and x(n), n ∈ N be defined respectively by (9) and (10)
with D corresponding to Rmin. Then x(n + 1)p, n ∈ N, p ∈ Q is a minorant
of σn,p = {x(w)p | |w| = n} for each p ∈ Q, that is a minorant of the possible
completion dates of sequences of length n leading to state p.

Proof 2 ∀qn+1 ∈ Q,

x(n + 1)qn+1
= [A ⊗ x(n)]qn+1

(using (10)),
=

⊕

l∈H

Aqn+1,l ⊗ x(n)l,

=
⊕

qn∈Q

⊕

k∈Hqn

Aqn+1,k ⊗ x(n)k,

=
⊕

qn∈Q

⊕

k∈Hqn

Aqn+1,k ⊗ x(n)qn
, (x is homogeneous).
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By Eq. (9) defining A, we have

∀qn+1 ∈ Q,
⊕

k∈Hqn

Aqn+1,k =
⊕

an∈Σ

µ(an)qn,qn+1
.

This leads to, ∀qn+1 ∈ Q,

x(n + 1)qn+1

=
⊕

qn∈Q

⊕

an∈Σ

µ(an)qn,qn+1
⊗ x(n)qn

,

=
⊕

qn∈Q

⊕

an∈Σ

x(n)qn
⊗ µ(an)qn,qn+1

,

=
⊕

qn∈Q

. . .
⊕

q1∈Q

⊕

an∈Σ

. . .
⊕

an∈Σ

x(1)q1
⊗ µ(a1)q1,q2

⊗ . . . ⊗ µ(an)qn,qn+1
,

=
⊕

qn∈Q

. . .
⊕

q1∈Q

⊕

an∈Σ

. . .
⊕

a1∈Σ

αq1
⊗ µ(a1)q1,q2

⊗ . . . ⊗ µ(an)qn,qn+1
, (∗)

= min
qn∈Q

. . . min
q1∈Q

min
an∈Σ

. . . min
a1∈Σ

x(1)q1
+ µ(a1)q1,q2

+ . . . + µ(an)qn,qn+1
, (∗∗)

Clearly, the term αq1
⊗µ(a1)q1,q2

⊗ . . .⊗µ(an)qn,qn+1
is not equal to ε(= +∞)

if q1 is an initial state and if the path (q1, a1, q2) . . . (qn, an, qn+1) exists in
the automaton. We then have [x(n + 1)]qn+1

= ε if there is no sequence of
length n leading to qn+1. Let us assume that [x(n + 1)]qn+1

6= ε and denote
a1 . . . an ∈ Σ∗ a label successful for the minimization in (∗∗). We consider two
cases:

(i) If set Qi

a
1
...a

n
 qn+1 is a singleton, no minqi∈Q, i = 1, . . . n, operates in

(∗∗) and x(n+1)qn+1
is equal to [αµ(a1)⊗. . .⊗µ(an)]qn+1

= x(a1 . . . an)qn+1

(by identification with Eq. (8)).
(ii) If there exist several paths with label a1 . . . an from a state in Qi to qn+1,

then µ(a1)q1,q2
⊗ . . . ⊗ µ(an)qn,qn+1

with q1 ∈ Qi may take different val-
ues. In this case, Eq. (∗∗) computes the minimum of these values whereas
the weight in the (max,+) automaton x(a1 . . . an)qn+1

= [αµ(a1) ⊗ . . . ⊗
µ(an)]qn+1

corresponds to the maximum of these values. In other words,
the value computed by Eq. (∗∗) may be strictly less than x(a1 . . . an)qn+1

.

Arguments stated in (i) and (ii) lead to conclude that is x(n + 1)qn+1
is a

minorant of σn,qn+1
= {x(w)qn+1

| |w| = n}.

Proposition 3 If G is strongly unambiguous, then x(n+1)p is the minimum
element of σn,p.

Proof 3 If G is strongly unambiguous, then Qi

a
1
...an
 qn+1 ≤ 1 for every

qn+1 ∈ Q and every a1 . . . an ∈ Σ∗. Only the case (i) in the proof of Prop. 2 is
possible, and x(n + 1)qn+1

then belongs to set σn,qn+1
= {x(w)n+1 | |w| = n}.

Example 6 Let us consider again automaton G1 represented in figure 2. It is
strongly unambiguous, and as claimed in Proposition 3, then x(n + 1)p gives
the minimum completion time for sequences of length n leading to state p.
Table 2 contains the first values obtained for x by means of recurrence (10) in
Rmin.



New representations for (max,+) automata 11

Table 2

n 1 2 3 4 5 ...
xI,a,I(n) e 3 6 9 12 ...

xI,b,II (n) e 3 6 9 12 ...

xII,c,II(n) e 1 2 3 4 ...

We have mentioned in example 5 that the set of possible completion dates
for the sequences of length 4 and leading to state II, is given by

σ4,II = {4, 5, 7, 9, 11},

and HII = {(II, c, II)}. The minimum element of set σ4,II is given by:

x(5)(II,c,II) = 4.

3.2 Representations for extremal behaviors in terms of sequence lengths

Propositions 1-3 make it possible to evaluate the maximum and minimum
execution time for a given length of sequences. Dually, the next propositions
estimate the minimum and maximum lengths for sequences completed before
a given date. Note that we use variables which depend on time t and which can
wrongly remind counter variables exclusively manipulated in (min,+) algebra
(see for ex. [2, §5.2]). The present variables are implied in representations
over (max,+) and (min,+) algebras to model extremal behaviors of (max,+)
automata.

Notation 1 Let T denote the set of possible durations associated with events,
that is,

T , {τ | ∃a ∈ Σ, ∃p ∈ Q, ∃q ∈ Q with [µ(a)]pq = τ}.

We assume that T ⊂ N \ {0}.

We define the matrices denoted Eτ ∈ D|H|×|H|, τ ∈ T , as follows. For j and k
indices of transitions (p, a, q) and (r, a′, s) in H .

[Eτ ]jk =

{

1 if s = p and [µ(a′)]rs = τ,

ε otherwise.
(11)

Note that for any homogeneous vector x ∈ D|H|×1 the vectors Eτ ⊗ x, τ ∈ T ,
are also homogeneous. We define inductively the following sequence of homo-
geneous vectors z(t) ∈ D|H|×1 for t ∈ N:







z(0)(p,a,q) = αp for every (p, a, q) ∈ H

z(t) =
⊕

τ∈T,τ≤t

Eτ ⊗ z(t − τ) ⊕ z(t − 1) for t > 0.

(12)
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Proposition 4 Let Eτ , τ =∈ T , and z(t), t ∈ N be defined respectively by
(11) and (12) with D corresponding to Rmax. Then z(t)p, t ∈ N, p ∈ Q, is a
majorant of set γt,p = {|w| | x(w)q ≤ t}, that is a majorant of the possible
lengths among sequences leading to state p before or at date t.
If G is a strongly unambiguous automaton, then z(t)p is the maximum element
of γt,p.

Proof 4 Let n ≥ 0 and w ∈ Σ∗ with |w| = n, we denote πn a path from an

initial state with label w, that is πn ∈ Qi
w
 qn, qn ∈ Q. We use mathematical

induction to prove that z(σ(πn))qn
≥ n.

Base case. For n = 0, we have q0 an initial state, σ(π0) = 0 and z(0)q0
=

αq0
= 0.

Inductive step. We denote (q0, a1, q1) . . . (qn1
, an, qn) the successive transi-

tions in πn and [Eτ ]qn,k, k ∈ H, the entries [Eτ ](qn,an+1,qn+1),k identical for
all an+1 ∈ Σ and qn+1 ∈ Q. We have

[z(σ(πn))]qn

=
⊕

τ∈T,t≥τ

z(σ(πn) − τ)qn
⊕ z(σ(πn) − 1)qn

≥
⊕

τ∈T,t≥τ

z(σ(πn) − τ)qn

=
⊕

τ∈T,t≥τ

⊕

k∈H

[Eτ ]qn,k ⊗ z(σ(πn) − τ)k

≥
⊕

τ∈T,t≥τ

[Eτ ]qn,(qn−1,an,qn) ⊗ [z(σ(πn) − τ)](qn−1,an,qn),

(by specifying for k = (qn−1, an, qn))

≥
⊕

τ∈T,t≥τ

[Eτ ]qn,(qn−1,an,qn) ⊗ [z(σ(πn−1) + µ(an)qn−1qn
− τ)](qn−1,an,qn),

(by definition of σ and πn)
= 1 ⊗ z(σ(πn−1))qn−1

,
(since ∃τ ∈ T such that [µ(an)]qn−1,qn

= τ)
≥ 1 + (n − 1) (= n) (by inductive assumption).

Now let t ∈ R such that x(w)qn
≤ t. Since z is monotone (i.e. z(t) ≥ z(t− 1))

we have (based on Eq. (6) for the last inequality):

z(t)qn
≥ z(x(w)qn

)qn
≥ z(σ(πn))qn

.

We first have shown that z(σ(πn))]qn
≥ |πn|(= n) and we deduce that

z(t)qn
≥ |πn|.

The same reasoning leads to the same conclusion for any path π′ with label
w′ such that t ≥ x(w′)qn

, and we can conclude that z(t)qn
is a majorant of

γt,qn
= {|w||x(w)qn

≤ t}.
Let us now consider the case of G being strongly unambiguous. We can

check that

z(t)qn
6= ε
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implies that there exists (q0, a1, q1) . . . (qn−1, an, qn) with q0 ∈ Qi such that

µ(a1)q0q1
. . . µ(an)qn−1qn

≤ t .

By the definition of strong unambiguity, set Qi
a1...a0
 qn is a singleton and by

Eq. (8)

x(a1 . . . an)qn
= µ(a1)q0q1

. . . µ(an)qn−1qn
.

We then have x(a1 . . . an)qn
≤ t which means that z(t)qn

= |a1 . . . an| belongs
to γt,qn

= {|w||x(w)qn
≤ t}. As it has been shown to be a majorant, we can

conclude that z(t)qn
is the maximum element of this set.

Example 7 We consider (max,+) automaton G2 represented in figure 3. Note
that G2 is nondeterministic (from state II two transitions are possible accord-
ing to b) but is strongly unambiguous.

II

III

a/1 d/2

b/1

IV

I

c/1

b/3

Fig. 3 Automaton G2.

We have

H = {(I, a, II), (II, b, III), (III, c, IV ), (II, b, IV ), (IV, d, I)}, T = {1, 2, 3}.

Using definition given by Eq. (11)), we get

E1 =













ε ε ε ε ε
1 ε ε ε ε
ε 1 ε ε ε
1 ε ε ε ε
ε ε 1 ε ε













, E2 =













ε ε ε ε 1
ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε













, E3 =













ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε
ε ε ε 1 ε













.

Based on Eqs. (12), we have :

z(t) =













z(t)(I,a,II)

z(t)(II,b,III)

z(t)(III,c,IV )

z(t)(II,b,IV )

z(t)(IV,d,I)













,
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z(0) =













ε
e
ε
e
ε













, z(t) =
⊕

τ∈T,τ≥t

Eτ ⊗ z(t − τ) ⊕ z(t − 1) for t > 0.

Table 3 contains the first values obtained by means of this recurrence in
Rmax.

Table 3

t 0 1 2 3 4 5 6 7 ...
z(t)(I,a,II) ε ε ε ε 3 3 3 3 ...

z(t)(II,b,III) e e e e e 4 4 4 ...

z(t)(III,c,IV ) ε 1 1 1 1 1 5 5 ...

z(t)(II,b,IV ) e e e e e 4 4 4 ...

z(t)(IV,d,I) ε ε 2 2 2 2 2 6 ...

For example, the possible sequences leading to state IV and completed at
date t = 7 are: {b, bc, bcdabc}. We have γ7,IV = {1, 2, 6}.
On the other hand, we have

z(7)IV = z(IV,d,I)(7) = 6,

which corresponds to the maximum element of γ7,IV , that is the maximum
length of sequences leading to state IV and completed before or at t = 7.

Proposition 5 Let Eτ , τ =∈ T , and z(t), t ∈ N be defined respectively by
(11) and (12) with D corresponding to Rmin. Then z(t)p, t ∈ N, p ∈ Q, is a
minorant of set γt,p, that is a minorant of the possible lengths among sequences
leading to state p before or at date t.
If G is a strongly unambiguous (max,+) automaton, then z(t)p is the minimum
element of γt,p.

Proof 5 Straightforward by rewriting proof of Prop. 4 in Rmin (⊕ then corre-
sponds to min and the order is inverted).

Example 8 Let us consider again (max,+) automaton G2 represented in figure
3. Matrices z and Eτ are replicas in Rmin of z and Eτ given in Ex. 7. Table 4
contains the first values obtained for z(t).

For example, the possible sequences leading to state I and completed at
t = 5 are: {bd, bcd}. We have γ5,I = {2, 3}.
On the other hand,

z(5)I = z(5)(I,a,II) = 2,

which corresponds to the minimum element of γ5,I .

Remark 2 The results in Propositions 1-5 can be refined as follows.
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Table 4

t 0 1 2 3 4 5 6 7 ...
zI,a,II(t) ε ε ε ε 3 2 2 2 ...

zII,b,III (t) e e e e e e e e ...

zIII,c,IV (t) ε 1 1 1 1 1 1 1 ...

zII,b,IV (t) e e e e e e e e ...

zIV,d,I (t) ε ε 2 1 1 1 1 1 ...

– In Rmax, x(n+1)(p,a,q) gives the latest date at which the transition (p, a, q)
can occur consecutively to n events.
Then x(n+1)(p,a,q)+[µ(a)]pq is the maximum execution time for sequences
of length (n + 1) ending with event a and leading to q.

– In Rmin, x(n+1)p,a,q minors the date at which transition (p, a, q) can occur
consecutively to n events.
Then x(n + 1)(p,a,q) + [µ(a)]pq is a minorant for the completion dates of
sequences of length (n + 1) ending with event a and leading to q.

– In Rmax, z(t)p majors the length of sequences preceding transition (p, a, q)
and completed at t.
Then z(t)p + 1 majors the length of sequences ending by event a, leading
to state q and completed at t + [µ(a)]pq .

– In Rmin, z(t)p minors the length of sequences preceding transition (p, a, q)
and completed at t.
Then z(t)p + 1 minors the length of sequences ending by event a, leading
to state q and completed at t + [µ(a)]pq .

Note that by iterating this reasoning, it is possible to specify a suffixing sub-
sequence (instead of only an event) to refine the indicators. In addition, it is
possible to define symmetric representations to get the indicators refined for
prefixing subsequences.

3.3 Applications to performance evaluation

Let us now focus on applications of the new representations for performance
evaluation and compare them with closely related paper [10]. The next sub-
section is devoted to a more general discussion regarding related work.

For some systems, it is important to have knowledge of the maximum
execution time for sequences of given length n, that is the maximum element
of the set composed of completion times for sequences corresponding to n
events. Its calculation is presented in [10] as follows in Rmax:

lworst
n =

⊕

w∈Σn

⊕

p∈Q

[x(w)]p,

=
⊕

w∈Σn

⊕

p∈Q

[αµ(a1)...µ(an)]p,

=
⊕

p∈Q

[αMn]p,
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with
M =

⊕

a∈Σ

µ(a). (13)

The time complexity of the computation above is O(n|Q|3) (complexity for

n multiplications in R
|Q|×|Q|

max ).
The representation introduced in Proposition 1 also enables us to evaluate this
indicator since

lworst
n =

⊕

j∈H

[x(n + 1)]j =
⊕

j∈H

[A
n
x(1)]j . (14)

A direct application of this formula would lead to a complexity in O(n|H |3)
time. Nevertheless, it is possible to reduce the complexity by exploiting the
particular form of matrix A derived from A defined by Eq. (9). In fact, one can
observe that, by definition, all the non-ε entries of a column of A are identical.
Let us then denote

– A•,k the column of A with index k,
– Hk for k = (r, a′, s), the subset of H defined by Hk = {(p, a, q) ∈ H |p = s},
– a•,k the identical value for the non-ε entries in column k of A.

It is easy to check that

[An]•,k =





⊕

j∈Hk

A•,j



 ⊗ an
•,k .

This property makes it possible to compute lworst
n expressed by Eq. (14) in

O(n+ |H |2) time. For automata in which the number of arcs |H | is close to the
number of states |Q|, we can claim that our approach has a lower complexity
than the method in [10]3. In addition, time complexity of our approach is less
affected when length n of the sequence grows.

Remark 3 In [10], authors show how to compute the maximum execution time
when constrained in a sublanguage. This increases noticeably time complexity
because matrix M in (13) then corresponds to a tensor product of matrices µ.
As mentioned in Remark 2, our approach also makes it possible to refine the
indicator by specifying chosen transitions (or even subsequences) which prefix
or suffix the sequences. Note that for these refinements, time complexity of
our approach is not affected.

For other systems, it is important to be able to compute the minimum
execution time for sequences of given length n. It is referred to as the optimal
case in [10] and formulated as follows in Rmin:

lopt
n =

⊕

w∈Σn

⊕

p∈Q

x(w)p.

3 It must be noted that there exist automata in which |Q| < |H|, as well as others in which
|Q| > |H|, and the comparison between methods complexity may then lead to contradictory
conclusions.
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The algorithm which is given in [10] only applies to a reduced class of (max,+)
automata (deterministic automata) and is announced to ”suffer of a greater
complexity” than the worst case. In [28], it is shown that the computation of
the ”optimal-case” is NP-complete4.
In proposition 2, based on the new representation (10), a minorant of this
element (or even the minimum element if the automaton is strongly unam-
biguous) is obtained by a simple recurrence in Rmin, as:

lopt
n ≥

⊕

j∈H

[x(n + 1)]j =
⊕

j∈H

[Anx(1)]j .

The time complexity of this computation is the same as that of the ”maxi-
mum execution time”, that is O(n + |H |2). Let us stress that, compared to
[10], Proposition 1 extends the class of (max,+) automata (from determinis-
tic to strongly unambiguous)5 for which the minimum execution time can be
computed, and has a better time complexity. To the best of our knowledge,
there does not exist algorithm for computing the minimum execution time for
ambiguous automata. Our approach makes it possible to compute a minorant
with linear complexity.

Remark 4 As in [10], our approach can take profit of the spectral properties
of matrices defined over Rmax or Rmin. In few words (see Section V in [10]
for details) a matrix A ∈ Dk×k (D stands for Rmax or Rmin) can admit a
cyclicity property, that is, we have An+c = λcAn for n large enough and
c ∈ N, λ ∈ R. The scalar λ corresponds to the spectral radius of A and several
algorithms exist to compute it. Let us remind that if A is irreducible, then
Karp’s algorithm computes λ in O(|H | × E) time where E is the number
of non-ε entries of A and Howard’s algorithm shows experimentally an almost
linear average execution time [7]. For A (resp. A), λ characterizes the growth of
the maximum (resp. minimum) execution time for n large enough, and these
indicators can be easily deduced for larger lengths of sequences. In future
works, we plan to exploit the particular forms of the matrices we manipulate
in order to make more explicit the contributions of spectral theory for our
performance indicators, and in particular:

– to identify conditions on (max,+) automata for the irreducibility of matri-
ces A, and more generally to study their robustness [6], that is conditions
for which A admits a cyclicity property;

4 The result is actually stated for a subclass of systems (see discussion in §3.4) with direct
extension to any (max,+) automaton.

5 Note that, unlike (boolean) finite automata, nondeterministic (max,+) automata cannot
always be determinized, that is transformed into equivalent deterministic (max,+) automata
(see e.g. [10, 23]). Despite the fact that it was studied by numerous researchers, this problem
is still rather open, and to the best of our knowledge, strongly unambiguous (max,+) au-
tomata don’t satisfy necessarily conditions which are known in the literature to be sufficient
for determinization.
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– to study eigenvectors of A which would give initial vectors for recurrence
(10) so that execution times grow according to λ immediately (i.e. from
sequence length n = 0).

The representations from Prop. 4 and 5 proposed in section 3.3 enable us to
compute two other performance indicators which, to the best of our knowledge,
have not been studied in the literature:

(i) A majorant of the greatest number of events occurring until a given time
instant is obtained using:

⊕

j∈H

[z(t)]j .

(ii) A minorant of the least number of events executed before, or at, a given
time instant is obtained using:

⊕

j∈H

[z(t)]j .

For strongly unambiguous automata greatest and least numbers of events are
obtained (instead of majorants and minorants). The computation of these in-
dicators has a similar time complexity than the indicators presented previously
since it merely implies matrixes multiplications in Rmax and Rmin.

Remark 5 The refinements mentioned in Remark 3 have analogous formula-
tions for the minimum execution time and the two indicators (i)-(ii) (using
arguments in Remark 2).

Remark 6 To give more explicit illustrations of the results, let us sketch out
some possible realistic applications:

– For verification and validation activities of real-time systems, maximum
and minimum execution times give guarantees about the worst and best
case completion times, whereas indicators (i)-(ii) provide guarantees on the
minimum and maximum amount of tasks completed at a given date.

– For manufacturing systems in which several schedules are possible, max-
imum and minimum execution times give bounds for the makespan, and
indicators (i)-(ii) provide bounds on the number of parts that can be de-
livered at a given date.

3.4 Related work

In [28, 27] authors consider time-weighted systems by associating to finite-
state automata a ”time-weighted function” and a ”mutual exclusion function”.
The time-weighted function assigns a nonnegative value to each event, inter-
preted as the duration of executing the event. From a time-weighted system,
they build a heap model (heap models are particular (max,+) automata, see
[12]) in which the upper contour of the piece associated to an event is de-
fined from the time-weighted function. In this case, the upper contour has
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the same value for all the slots occupied by the piece. In the corresponding
(max,+) automaton, all the transitions involving a given event have the same
weight (one possible duration for an event whatever the current state). As a
consequence, paths with a same label have an identical weight. For these sys-
tems, it is shown in [28] that the computation of minimum execution time is
NP-complete, and an efficient algorithm is presented for the computation of
the maximum execution time (time complexity is O(|H ||R|2), where R is a
clique covering of Σ). The comparison with the results in this paper has to be
weighted by the fact that a more restrictive class of systems is considered. At
first sight, this class is less general than strongly unambiguous automata. In
fact, on the one hand, one can observe that as paths with a same label have
equal weights, then maximization in Eq. (6) doesn’t operate and the differen-
tiation upon ambiguity is no more meaningful. More precisely, since for any
w ∈ Σ∗, q ∈ Q, we have x(w)q = σ(π) for all π ∈ Qi

w
 q, we can claim that

all the results specified in this paper for strongly unambiguous automata also
apply to (max,+) automata derived from time-weighted systems as in [28, 27].
On the other hand, strongly unambiguous automata in which events have sev-
eral possible durations cannot be captured by time-weighted systems defined
in [28].

Our work is also to be compared with other approaches for discrete event
systems, and in particular, quantitative analysis of timed and time Petri nets.
Several methods have used enumerative methods (that is techniques based on
the construction of the state classes graph and the discrete reachability graph)
which suffer from the state space explosion problem. A recent approach [5]
proposes to compute efficiently (in polynomial time on the size of the net
model) bounds through the solution of linear programming problems derived
from the structure of the net, the initial marking and the time interpretation.
They consider time Petri nets with firing frequency intervals (that is nets in
which conflicting transitions are in extended free-choice conflicts and behave
according to frequency interval constraints), as well as a stochastic extension
of time Petri nets. In addition, a so-called average operational behavior is
assumed, that is, basically: during the observation period an equal number
of tokens enter and leave each place. A confrontation of our results extent
requires to compare the modeling power of (max,+) automata with the class
of Petri nets considered in [5]. Unfortunately, we only have partial answers to
this question. It is shown in [12] that the behavior of any safe6 timed Petri
net can be expressed by a so-called heap automaton which is a special type of
(max,+) automaton. We have to admit that the class of systems considered
this way is restricted. Nevertheless, note that there is no assumption on the
structure of the net (compared with extended free-choice conflicts), all the
logical feasible choices for conflicts are considered (preselection policy) and
there is no balance assumption. In addition, we are convinced that a wider class
of Petri nets can be equivalently modeled by (max,+) automata. First, safeness

6 At most one token can be in a place at any time.
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is only a sufficient condition in the result of [12]. This has motivated an attempt
towards the modeling of bounded7 timed Petri nets which is presented in [21],
together with compositions techniques making it possible to build (max,+)
automata models in a modular manner. Secondly, automata with weights in
real-interval based semiring (instead of (max,+) semiring) are introduced in
[18], and the relations with time Petri nets (more precisely nets obtained by
means of synchronous products of T-time state machines) are shown.

4 Representations for non-autonomous (max,+) automata

Discrete event systems which are modeled by (max,+) automata with the usual
representation (4) or with the representations introduced in Propositions 1-5,
can be considered as autonomous in the sense that their dynamic evolution
isn’t subjected to exogenous influences. To the best of our knowledge, it is
still an open problem to define inputs for the usual representation (4) in or-
der to model external influences. This section investigates how to enrich the
new representations for (max,+) automata such that exogenous inputs can
be taken into account. For this first attempt, we restrict our attention on the
representation for the worst-case behavior in terms of sequence durations de-
fined in Proposition 1. It appears in §4.1 that the definition of inputs then
leads to a model for (max,+) automata which is similar to a state equation
for nonautonomous systems. The next subsection tends to demonstrate that
such a representation can be exploited for the control of (max,+) automata.
In particular, a well-known open-loop control law for (max,+) linear systems
[2, 20] is here adapted to (max,+) automata.

4.1 Definition of exogenous inputs for the worst-case behavior in terms of
sequence duration

For a system modeled by a (max,+) automaton, we consider external influences
acting on controllable state-transitions.

Definition 3 A state-transition is said to be controllable if the validation of
the event implied in the transition can be delayed.

It is assumed that events-occurrences can be observed and counted8. In
other words, at any time it is possible to know the number of transitions hav-
ing occurred until then.

Let A be defined by (9) with D corresponding to Rmax, and v(n) ∈ R
|H|×1

max ,
n ∈ N, a vector modeling the external influence. We define inductively the

7 At most a bounded number of tokens can be in a place at any time.
8 The case of unobservable events should be considered in future work.
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following sequence of vectors xc(n) ∈ R
|H|×1

max for n ∈ N by:

{

xc(0) = ε,

xc(n + 1) = Axc(n) ⊕ Bv(n) .
(15)

with B ∈ R
|H|×|H|

max given by

Bjk =

{

e if j = k and j is a controllable transition,

ε otherwise.

Let us note that if a transition j is uncontrollable, then Bjk = ε for every
k ∈ H and

xc(n + 1)j = [Axc(n)]j , (16)

which means that input v(n)j has no influence on signal xc(n + 1). In the
inverse case,

xc(n + 1)j = [Axc(n)]j ⊕ v(n)j , (17)

and signal xc(n + 1) then depends on v(n)j .

Proposition 6 For every j ∈ H, let variable v(n)j denote the date at which
transition j is authorized once n state-transitions have been observed (assum-
ing v(0) = α), then xc(n + 1)j corresponds to the maximum value of the set
containing the dates from which transition j can occur consecutively to n state-
transitions.

Proof On one hand, it is easy to see that xc(n + 1) ≥ x(n + 1) where x(n +
1)j (defined in Proposition 1 without considering exogenous influences) is the
maximum completion date among sequences of length n and at the conclusion
of which j can occur.
On the other hand, we have xc(n + 1) ≥ Bv(n) in which [Bv(n)]j corresponds
to the date from which transition j is authorized once n state-transitions have
been observed.
From these two observations, we conclude that xc(n + 1)j corresponds to the
maximum among the dates from which transition j can occur consecutively to
n state-transitions.

Remark 7 For conventional (boolean) automata, the influence of a control (su-
pervision) is modeled by means of a (synchronous) product with the language
[26]. The situation is comparable for the control of (max,+) automata based
on their behavioral representation [17]. In these approaches, the control isn’t
considered as an exogenous input acting on the state of the system (i.e. an
additive term in the state equation as in Eq. (15)), and this makes it difficult
to adapt the numerous control results developed for (max,+) linear systems
see for example [25, 8, 24, 1]).
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Remark 8 With the approach described above, an input can influence a state-
transition while assuming the worst-case for the past evolution (i.e. by con-
sidering that sequences with maximum completion dates have occurred). For
example, if we consider a system with several possible schedules (and the
schedule-choice is unknown), then the input is going to apply as if the worst
schedule (with the largest makespan) had been selected until then. Afterwards,
this representation makes it possible to compute control laws guaranteeing ob-
jectives for the system (typically some deadlines for the completion of given
length sequences) whatever is the schedule applied in practice. It is a significant
difference with the control law proposed in [17]: it is based on the behavioral
representation and the control depends both on the current state and on the
word denoting the sequence having lead to this state. Pursuing the previous
illustration, the control is then specified according to the chosen schedule.
It is also worth mentioning that v(n)j can be chosen to be equal to > = +∞,
which means that a controllable transition j can be authorized at the end
of infinitely large delay. This is equivalent to forbid this transition and logic
control of the system can be tackled this way.

Note that recurrence (15) leads to

xc(n + 1) =
n

⊕

j=0

A
j
Bv(n − j). (18)

4.2 A control approach

The representation defined by Eqs. (15) and (18) is used to deal with the
following control problem:

Find the greatest trajectory {v(n)}n∈N such that

n
⊕

j=0

A
j
Bv(n − j) � z(n) (19)

where [z(n)]j corresponds to a deadline for the sequences of length n preceding
transition j. In other words, we specify that all sequences of length n prefixing
transition j have to be completed at date [z(n)]j .

The motivations are as follows.

– The inequality (19) means that the input v is such that xc(n+1)j ≤ z(n)j

for all n ∈ N, j ∈ H . This means that the maximum among the dates
from which transition j can occur consecutively to n state-transitions is
less than the deadline z(n)j .

– Seeking the greatest input {v(n)}n∈N means that we want to authorize the
transitions at the latest.

In this sense, the input satisfies the so-called just-in-time criterion.
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Remark 9 We can select z such that z(n)j = > = +∞ (infinite deadline) for
given transition j and for n greater than a given value N . This leads to a
control input which delays indefinitely (i.e. forbids) controllable transition j.
This can be useful

– for logic control purpose,
– or if {z(n)}n∈N is partially known. In this case, it can be considered that

beyond horizon N the deadlines are +∞. When we deal with the control
of a manufacturing system, this may mean that either only a finite number
(N) of products must be delivered, or, the production schedule is not known
beyond the N -th product to deliver. In both cases, the missing, or unknown
future orders, are then supposed not to constrain the current running of
the manufacturing system.

The following Propositions 7 and 8 give a positive answer to control prob-
lem (19), and can be seen as adaptations of results for (max,+) linear systems
[2, §5.6], [20]. The results are based on residuation theory. Let us recall that

a mapping f : C 7→ D, where C and D are ordered sets, is residuated if
for all y ∈ D, the least upper bound of subset {x ∈ C | f(x) � y} exists and
belongs to this subset. It is then denoted f ](y). Mapping f ] : D 7→ C is called
the residual of f . In a complete dioid, mapping x 7→ a ⊗ x is residuated; its
residual is denoted y 7→ a ◦\y. Some standard formulæ [2, §4.4] will be useful
later on:

a ⊗ (a ◦\x) � x , (f.1)
a ◦\(x ∧ y) = (a ◦\x) ∧ (a ◦\y) , (f.2)

(a ⊗ b) ◦\x = b ◦\(a ◦\x) . (f.3)

Proposition 7 The trajectory {vopt(n)}n∈N defined by

n ∈ N, vopt(n) =
∧

i≥0

(A
i
B) ◦\z(n + i) (20)

is the greatest solution of (19).

Proof 6 Let {v(n)}n∈N be a solution of (19). We have

∀n ∈ N,
n
⊕

j=0

A
j
Bv(n − j) � z(n),

⇔ ∀n ∈ N, ∀j s.t. j ≥ 0 and j ≤ n, A
j
Bv(n − j) � z(n),

⇔ ∀n ∈ N, ∀j s.t. j ≥ 0 and j ≤ n, v(n − j) � (A
j
B) ◦\z(n),

⇔ ∀n′ ∈ N, ∀j s.t. j ≥ 0 and n′ ≥ 0, v(n′) � (A
j
B) ◦\z(n′ + j),

(with n′ = n − j)

⇔ ∀n′ ∈ N, ∀j ≥ 0, v(n′) � (A
j
B) ◦\z(n′ + j),

⇔ ∀n′ ∈ N, v(n′) �
∧

j≥0

(A
j
B) ◦\z(n′ + j) = vopt(n

′).
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In the following proposition, we show that vopt is a solution of a system of
recurrent equations which proceed backwards.

Proposition 8 The trajectory {vopt(n)}n∈N defined by (20) is the greatest
solution v of:

{

ξ(n) = A ◦\ξ(n + 1) ∧ z(n)
v(n) = B ◦\ξ(n)

(21)

Proof 7 Let us first show that {vopt(n)}n∈N is a solution of (21).
We define {ξopt(n)}n∈N such that vopt(n) = B ◦\ξopt(n), and then:

ξopt(n) =
∧

i≥0

A
i
◦\z(n + i) (according to (f.3)).

We then check that {ξopt(n)}n∈N is a solution of the first equation in (21) :

[

A ◦\ξopt(n + 1)
]

∧ z(n) =
[

A ◦\(
∧

i≥0

A
i
◦\z(n + i + 1))

]

∧ z(n),

=
∧

i≥0

[

A ◦\(A
i
◦\z(n + i + 1))

]

∧ z(n), (using (f.2))

=
∧

i≥0

[

(A
i+1

◦\z(n + i + 1))
]

∧ z(n), (using (f.3))

=
∧

i≥0

(A
i
◦\z(n + i)),

= ξopt(n).

Let us now show that any solution of (21) is smaller than {vopt(n)}n∈N.
Let {v(n)}n∈N be a solution of (21), we have

v(n) = B ◦\
(

A ◦\ξ(n + 1) ∧ z(n)
)

,

= B ◦\
(

A ◦\
[

A ◦\ξ(n + 2) ∧ z(n + 1)
]

∧ z(n)
)

,

= B ◦\
(

A
2
◦\ξ(n + 2) ∧ A ◦\z(n + 1) ∧ z(n)

)

,

...

= A
i
B ◦\ξ(n + i) ∧

i−1
∧

j=0

A
j
B ◦\z(n + j), (∀i > 0)

�
∧

j≥0

A
j
B ◦\z(n + j),

� vopt(n).

5 Applications to a jobshop example

We consider a jobshop system (inspired by the example in [12])with two re-
sources R1, R2 processing two jobs types J1, J2. There are six elementary
tasks a, b, c, d, e and f whose durations are respectively 2, 2, 2, 1, 1 and 3.
The production sequence for job J1 is abc, which means that the elementary
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tasks a, b and c have to be performed in this order in order to complete one
job J1. The production sequence for job J2 is def . Resources process tasks one
by one. Tasks a and d (resp. c and f) are processed using resource R1 (resp.
R2). Both resources R1 and R2 are required for tasks b and e. In addition, two
occurrences of a same job cannot be processed simultaneously: for example in
sequence J1J1 the first job must be completed before the second can start
(but in the case of sequence J1J2 the second job can start before the first one
is completed). We consider all the possible sequences with the earliest func-
tioning rule (tasks are completed as soon as possible). We also assume that
the system starts operating at date 0.

The system can be modeled by timed Petri net in figure 4 in which:

– timings are associated with transitions (notation a/τ means that transition
labeled a has τ for firing time),

– a preselection policy is used to decide on which transition is to fire when
a place has several output transitions (to be able to code all the possible
choices),

– a token from the initial marking is supposed to have arrived in the Petri
net at time instant 0.

This Petri net is proposed only for illustration (in order to clarify the ex-
planations) since the jobshop is going to be studied by means of a (max,+)
automaton model, in this case the automaton in figure 5. Let us point out that,
to the best of our knowledge, there are only partial answers to the question
on how to transform a Petri net into a (max,+) automaton (and vice-versa).
As mentioned in Subsection 3.4, the approach from [12] associates a (max,+)
automaton to any safe timed Petri net. This (max,+) automaton is generally
non-deterministic and may admit a language which is larger than the lan-
guage of the Petri (i.e., it recognizes sequences which aren’t possible firing
sequences). A procedure based on completion of heap automata in [11] can be
used to build a deterministic automaton corresponding to the Petri for the job-
shop. The recent contribution [22] proposes a recursive procedure which builds
a deterministic (max,+) automaton equivalent to a safe timed Petri net. The
equivalence corresponds to the facts that the automaton and the Petri net
have the same language, and that the completion date of a firing sequence in
the Petri net is the same as the one of the corresponding state-transitions se-
quence in the (max,+) automaton. In addition, it is shown that this procedure
terminates if the oriented path between any two transitions contains at most
one ”conflict-place” (with more than one output transition). This condition is
satisfied by the Petri net in figure 4 and this procedure9 has been used to
obtain (max,+) automaton in figure 5.

Let us first illustrate how the results from section 3 can be used to study
the performance of the jobshop.

1. We can apply the representation introduced in Prop. 1 to find out the
maximum completion date for a given number of jobs. As each of the jobs

9 Please note that the complexity of this procedure remains to be shown.
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Fig. 4 Safe jobshop represented as a Petri net.
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Fig. 5 Safe jobshop represented as a (max,+) automaton..

J1 and J2 consists of three tasks, n jobs are represented by 3n transitions
in the automaton. In addition, we are interested with sequences leading to
states 6, 8 and 13 since these are sequences for which both J1 and J2 are
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completed. For example, we obtain for n = 10:

⊕

j∈H6∪H8∪H13

[x(31)]j = 60,

which means that the maximum execution time for 10 jobs is 60 units of
time. This corresponds to the makespan of the worst schedule, i.e. 10 jobs
J1.

2. We can apply the representation introduced in Prop. 3 (the automaton
is strongly unambiguous) to evaluate the minimum completion date for n
jobs. As for the previous item, we are interested by sequences of length 3n
leading to states 6, 8 and 13. In Rmin, we obtain for n = 10:

⊕

j∈H6∪H8∪H13

[x(31)]j = 41

which means that the minimum makespan for 10 jobs is equal to 41 units
of time. This corresponds to the makespan of the best schedule,
i.e. J2J1J2J1J2J1J2J1J2J1 whose timing is depicted in figure 6.

3. The representation introduced in Prop. 4 can be used to evaluate the max-
imum number of jobs that can be performed until a date t. We focus on
sequences leading to states 6, 8 and 13 and we obtain for t = 41:

⊕

j∈H6∪H8∪H13

[z(41)]j = 30

This result is coherent with the one obtained at the previous item, since it
reveals that 10 jobs can be completed before time instant 41.

0 5 10 15 20 25 30 35 40 45

d e f

a b c

d e f

a b c a b c a b c a b c

d e f d e f d e f

Fig. 6 Timing for schedule J2J1J2J1J2J1J2J1J2J1.

Let us now illustrate how results from Section 4 (Prop. 7 and 8) can con-
tribute to the control of this system.
We consider the following reference input z:

[z(n)]j =

{

70 if j ∈ H6 ∪ H8 ∪ H13 and 0 ≤ n ≤ 30,

T otherwise.
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The control objective can then be interpreted as follows: delay the system as
much as possible while guaranteeing that 10 jobs are completed at t=70. As
discussed in Remark 9, value T = +∞ is used to code unknown deadlines or
undesired occurrences.

– We first assume that all the transitions are controllable, that is B is equal
to identity matrix In. Using recurrence (21) we obtain :

vopt(0)(1,a,2) = 10.

This means that if the first job is J1, then its processing is authorized from
date 10. In this case, even if the worst schedule is applied (that is ten times
J1 with 60 as completion time), 10 jobs are completed at the latest at date
70.
We also obtain,

vopt(0)(1,d,3) = 13

which gives the starting date in the case where the first job is J2. Like this,
even if 9 jobs J1 are consecutively processed (with a processing time equal
to 57), then 10 jobs are also completed at the latest at date 70.

– Let us now consider that all transitions with events a, b and c (i.e. tasks for
job J1) are uncontrollable. In that case, matrix B isn’t equal to identity
matrix In, since coefficients corresponding to uncontrollable transitions are
equal to ε = −∞.

The schedules with only jobs J1 are uncontrollable, in the sense that the
processing cannot be delayed. For example, we obtain:

vopt(n)(1,a,2) = T, ∀n ∈ N,

knowing that Bj,(1,a,2) = ε, ∀j (transition (1, a, 2) is uncontrollable) and so
vopt(n)(1,a,2) has no influence.

Any other schedule is controllable in the sense that one occurrence of job J2

(with controllable associated transitions) is sufficient to meet the control
objective. For example, we obtain

vopt(0)(1,d,3) = 13,

which is the latest processing time for J2 as first job so that 10 jobs are
completed at the latest at date 70. We also get

vopt(27)(9,f,2) = 65,

which means that the last transition of J2 as 9th job is delayed such that
J1 as 10th job is completed at 70. In fact, last transitions to complete 10

jobs are then 9
f
→ 2

b
→ 4

c
→ 6 with duration equal to 5 (see figure 7).
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65 70

a b c

d e f

605550

bbb

bbb

Fig. 7 Timing for a schedule with J2J1 as 9th and 10th jobs and with the just-in-time
control.

6 Conclusion

We have proposed new representations for (max,+) automata in order to de-
scribe their extremal behaviors. We have shown that these representations
can be applied to efficiently evaluate performances of systems. In future work,
results from the spectral theory of (max,+) matrices should be exploited to
enrich our approach. Using representation of the worst-case behavior in terms
of sequence durations, we have illustrated how exogenous inputs can be taken
into account. Taking advantage from the fact that the model is then strictly
similar to state equations of (max,+) linear systems, a control approach has
been sketched out. It would be interesting to study the control of the other
extremal behaviors. It is also envisaged to adapt other control laws developed
for (max,+) and (min,+) linear systems.
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