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Abstract: Controllability of (max,+) automata and formal power serig studied within a behavioral
framework. An extension of classical tensor product ofrthieear representations as a parallel compo-
sition of controller with the plant (max,+) automaton is ds€ontrollability is studied using residuation
theory of (multivariable) formal power series and (maxg¢e)nterpats of supremal controllable behav-
iors are derived.
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1. INTRODUCTION guages). In section 4 controllability and properties oftoaln

lable formal power series are studied using residuatioarthe

(Max,+) automata model an important class of Timed Discret®n illustrating example is proposed. Conclusion with hiois

Event (dynamical) Systems (TDES), where both synchroniz&Jture extensions of this work are given in Section 5.

tion of tasks and resource sharing occur. They have been pro-

posed by S. Gaubert in (4) as weighted automata with weights 2. (MAX,+)-AUTOMATA AND THEIR PROPERTIES

(multiplicities) in the(R U {—oc0}, max, 4+) semiring. (max,+)

automata have a strong expressive power in terms of timéal this section necessary algebraic concepts are recalied.

Petri nets: 1-safe timed Petri net can be represented byaspeddempotent semirindalso called dioid) is a seD equipped

(max,+) automata, called heap models, c.f. (5). with two binary operations: addition and multiplicationhé

. addition® is commutative, associative, has a unit elemdne.
We have _proposed a pehaworal approach (based on for a = a for eacha € M), and is idempotent (i.e.® a = a
power series) to supervisory control of (max+)-automal@)n o eachy e M), The multiplications is associative, has a unit

It is based on the parallel composition of controller anchpla gjement, and distributes over. Moreovery is absorbing for
(max,+)-automata with uncontrollable events. This COMPOSy o Ve M: a®ec—=c®a=-.

tion corresponds to a modified (due to uncontrollable eyents

version of tensor product in terms of linear representatisghe  In any dioid, a natural order is defined by=< b < a®b = b. A
(RU{—oc}, max, +) semiring and to a generalized Hadamardlioid D is complete if each subset of D admits a least upper
product (distinguishing uncontrollable events) in termde- bound denotedP, . ,», and if ® distributes with respect to
haviors. infinite sums. In particulafl’ = @, ., is the greatest element
D. In a complete dioid, the greatest lower bound, denoted by

. . . . f
In this paper, we build upon these results and investigate tli always existsy A b — & N
) - r=a,r=b""

properties of this generalized Hadamard product of a ctietro
and plant formal power series. Controllability as an equiva et us recall the dioidR,.x = (R U {—o0}, max, +) with
lent condition for attainability of a specification seriestae  maximum playing the role of addition, denoted by a &
prescribed behavior of the closed-loop system is studitftjus , — max(a, b), and conventional addition playing the role of
residuation theory of (multivariable) formal power serids multiplication, denoted by ® b (or ab when unambiguous). Its
formula for computing (max,+)-counterparts of supremaid-co complete version witl = +oco added is denoted B, ax.
trollable behavior is proposed. An interesting comparistth  Operations with matrices are defined as in the classicadine
controllability of formal languages (from classical swdsory algebra. The (max,+) identity matrix &"<" is denoted byE.

max

control theory) is given together with intuition behind g | ety denote the set of natural numbers with zero. In complete

aspects of controllability. dioids the star operation can be introduced by the formula
This paper is organized as follows. In the next section neces at = @a”,
sary algebraic preliminaries are recalled together wittalpel neN

composition of (max,+) (weighted) automata. In Section 3 w
recall the behavioral framework, where parallel compositi
of (max,+) automata corresponds to a generalized HadamaRdsiduation theory allows defining ‘pseudo-inverses’ ofase
product of formal power series and a control problem is posadaps (f is isotone ifa < b = f(a) < f(b)).

that takes into account both nondecreasing and generaafornpefinition 2.1. (2), §4.4.4 An isotone mag : D — C, where
power series (counterpart of prefix closed and marked la andc are dioids, is said to be residuated if there exists an

* This work was supported by the Academy of Sciences of thelCRepublic, isotone mapping : C — D such that
Inst. Research Plan No. AV0Z10190503 and by EU.ICT proje&® foh=1Idecand ho f = Idp. D)

Where by convention® = e for anya.




Ide andIdp are identity maps of andD respectivelys is  product, defined and used further in this paper, is only tesid
unique, it is denoted® and is called residual of. ated. Hence, the notation of residuation theory is kept falso

If fis residuated theky € C, the least upper bound of subset Y L
{z € D|f(x) = y} exists and belongs to this subset. It is equd}\latural projections of languages are now recalled and eletin
to f*(y). We recall from (2) the following result. to formal power series. The natural projection frethto A,

L CAi .
Theorem 2.1.f : C — D between two complete dioids is whereA. C Alis denoted by,

residuated iff It projects away from any string € A* events from4,, = A\
. A, cf. (10). Formally,P. : A* — A is defined as follows on
() fle)=e,and _ events fromA ‘
(i) fis lower semicontinuous, i.ef (Dicrz;) = ®icr f(x;). facA
P, _Jala ¢
It is well known that multiplication in complete dioids is (a) {E ifae A\ A,

residuated. andP, is extended to words in such a way tifatis catenative:
Theorem 2.2 The isotone mafR,, : = — = ® a in acomplete P.(a;...an) = P:(a1)...P.(ay). Similarly, P, is extended
dioid D is residuated. The greatest solutionab a < b exists  to languages (subsets df‘) in an obvious way: fol, C A*:

and is equal td?,*(b), also denotedfa. Pe(L) = UyerPe(w) C A7. Inthe sequeld. and 4, play the
This 'quotient’ satisfies the following formulae role of controllable and uncontrollable events, respetyiv
(zpa) ® a Xz, £1) A notion of projection of formal power series will be needed.

~

(r ®a)da = . f2)

Definition 2.2. For any formal power series= @, a+s(w)w €
Riax(A) and A, C A with the associated natural projection
Formal languages over an alphabétare sets of finite se- I : A* — A7 we associate the projected serié@) given by
quences of letters (called words) fram The zero language the following coefficients:
is0 = {}, the unit language i = {s} with e the empty string. P(s)(w) = s(Paw).
Astringu = u;p...u € A* is called a subword of € A*
if there exists a factorization = wviuqvs ... vpurve+1 With  Let us note the difference betwedf(s) and the following
v; € A*, i=1,.. .k + 1. The induced subword order off is  formal power seriesﬁ(s) = Bueas(W)Paw € Ryax(A).
u 2 viff uisasubwordob € A*. _ It is easily seen on the series supports (that are languages)
The dioid of formal power series with variables framand  \ijle the operator®(s) can only decrease the support, our
coefficients fromR, .., endowed with point-wise addition and gperatorp(s) can only increase the support. In particular, let
convolution multiplication, is denoted B§.x(A). Thus, for 5 notice that P has values Ry (A) and not iR,y (A. ).
§ = Buears(ww € Ruax(4) ands’ = Suea-s'(w)w € For instance, ifd, = {a} C {a,u} = Aands = 1 & 2a
Rmax(4), one has: then P(s) = 1u* @ 2u*au*. Indeed, we have by definition
S@S/ A @wGA*(S(W)@S/(W))w, P(S)I(€|) ?(P))((S)gu) :( [;(S)(U'Qf) = ... = S(E) :Hl and
/A , similarly, P(s)(w) = s(a) = 2 for anyw € u*au*. Hence,
s® 8 = Buear (Duv=ws(u) @ s'(v))w. our operatorP : Rpax(A) — Rmax(A) is not compatible

Rumax(A) is isomorphic to the dioid of generalized dater funcyyith projection on words and languages (it is not the morphic
tions from A* to R,,.«. The dioid of formal power series is axtension ofP,).

complete if we work with coefficients ifR,,... Notice that o

for s,5' € Ruax(A), s < s (natural order onRyax(A)) On the other hand, natural projectidgh : A* — A7 can
amounts tos(w) =< s'(w) for all w € A*. The language be extended t&® : Rpax(A) — Ruax(Ac) by the formula
supp(s) = {w € A* : s(w) # —oo} is called the support P(s) = ®yea-s(w)Pew € Rypax(A), which corresponds to
of the.sgries. Recall thataform_al'pc.)wer .series.is rgcqgnize@oefﬁciems given byp(s)(pcw) = s(w), i.e. P(s)(w) =
by a finite (max,+) automaton iff it is rational, i.e. iff it na @uepgl(w)s(u)- This is to explain the difference betweéh

be formed by rational operations from polynomial serieegth ) I
with finite support). andP : Ryax(A4) — Ryax(A) of Definition 2.2.

Another multiplication of series (element-wise or word b)):mally, basic definitions of tensor products are recalled.

word), called Hadamard product, will be needed and is defingfl 4 — (ai;) is am x n matrix and B is g x ¢ matrix over

by: a dioid, then theikronecker (tensor) productl ®! B is the
5,8 € Rpax(A), s © 8" 2 @ypea-(s(w) @ s’ (w))w. mp x ng block matrix
It has been shown in (8) that Hadamard product, denoted a1 ®B - a;, ® B
Hy : Ryax(A) — Ruax(A), s — s @ y is residuated. Aot B — "
Proposition 2.3.The mappingH,: Ruax(4) — Rpax(A4), ) B - : B
s — s @ yis isotone, residuated, and its residual is given by am1 @ B -+ amp ®
Hg(s)(w) = s(w)dy(w), (2) Now we recall automata with multiplicities in th®,,., semir-
- ing, called (max,+) automata (4).
€. HE(5) = B, - (s(w)y(w)w. 9. called (max.+) ®

Definition 2.3. A (max,+) automaton over an alphahétis a
Even more, Hadamard product admits an inverse, which @adrupleG = (Q, a,t,3), where@ is a finite set of states,
known as Hadamard quotient in the theory of formal powet : Q — Ryax, t: Q X A X Q — Ryax, andg : Q — Ryax,
series over rings. However, a generalized version of Hadhmecalled input, transition, and output delays, respectively



The transition function associates to a state (), a discrete 85.3), any (max,+) automaton is described by the following
inputa € A and a new state/ € (@, an output value fixed point equation in the dioi®R,,..(A) of formal power
t(¢q,a,q’) € R corresponding to the—transition fromq to ¢’  series with non commutative variables from A:

ort(q,a,q’) = ¢ if there is no transition frong to ¢’ labeled

by a. The real output value of a transition is interpreted as the T=Tp®a (4)
duration of this transition.

, . : y=uzp, (5)
A (max,+) automaton is determined by a trigle, 1, ), where iy, Docal@)a € Riax(A) 191 the morphism

a € RIXQ 3 c RYX! andy is a morphism defined by:

piA—=REE, pwla)gy = t(q,a,q).
We will call such a triple a linear representation.

matrix.
Itis known that the least solution to this equationyis ap* 3.

The parallel composition below is defined as an extension of
parallel composition (synchronous product) from logical t
timed DES. The first automaton plays the role of the controlle
and the second is the system (to be controlled). As usual in
supervisory controld = A.U A, is the partition of event set
pwar...an) = p(ar). .. plan). into disjoint subsets of controllable and uncontrollableres,
Recall that;, has an important property of being finitely genertespectively.

ated, because it is completely determined by its valueslon pefintion 2.4. Consider the two following (max,+) automata
Hence we have in fach™ = (Gacap(a)a)”. Since we are cqrresponding to the controller and the system:

interested in behaviors of (max,+) automata that are giyen b G — c 4y G- a4 6

I = au*j3 (see below) we abuse the notation and simply write ~~ ~¢ ~ (Qe: Ge.o; m ): - (Qg: 9.0, Qs tg)- (6)
U= Dacapla)a. Theirparallel compositionmodeling the system under control,

Note that the morphism matrix of a (max,+) automaton can
also be considered as an elementRof,.(4)%*?, i.e. u =
Duwearu(w)w by extending the definition gf froma € A to
w € A* using the morphism property

. ) . . s
Since the plan is to extend the supervisory control tectegqu
from logical to (max,+) automata, it is useful to formulate

(max,+) automata in standard automata description (usiRg i Gell 4. G = (Qe X Qg, 90, @m; 1)

tial and final states). With go = (¢c,0, ¢g,0), @m = Qc X QY.

For purposes of supervisory control it is useful to see a{non t({ge, ag)- a, (e, a5)) =

deterministic) (max,+) automaton over an event alphabas te(Gesa,q.) @ ty(qqe,a,q), if a € A,

the 4-tupleG = (Q, qo, Qm, 1), WwhereqQ is the set of stategy to(qg a qi) g ifac A, andg. =q.  (7)
Wy dg )y u C c

is the initial state(,, is the subset of final or marked states,
andt : @ x A x @ — Ry, is the (possibly nondeterministic)

transition function with inputs inl and outputs iRy This definition can be seen as an extension of prioritized syn
However, the last definition does not consider nonzeroainiti Cronous composition of (6) or (7) from Boolean to the (max, +

delays, resp. final delays : these are only Boolean and egual®Se- Let us stress that it expresses t_he intuitive reqamem
e iff the corresponding state is initial, resp. final. that the controller automaton can not disable an uncoatts|

event that occurs in the plant. Similarly as in the classical
The formal power series recognized by a (max,+) automat@upervisory control the controller can not unmark the merke
G = (Q,a,t, ), called its behaviour, is given ByG) : A* —  states of the original system : for any state that is marked in
Rpnax defined forw = a; .. .a, € A* by the original plantG' and survives the logical supervision, the
corresponding state i || 4, G is marked. This means that
®@ B(qn)- marked states of the controller do not play any role and may
be ignored, which is expressed I, = Q. x Q2,. In the
. ) ] (3) sequel we can then assume that all states of the controdler ar
In words,/(G)(w) is the maximal weights of paths labeled bymarked without loss of generality.
w going from the initial state to a final state. i ) , )
Remark 2.4.The seried(G) : A* — Ry.x iS a dater (4). Controllable trgnsmons (i€ly(g9, 0 q9), 0 € Ac) n the
We shall interprei(G)(w) as the time of completion of the P/antG can be in the composed systé| 4, & both disabled
sequence of events, with the convention that(G)(w) = (due_tc_)s absorblngformult_|pl|cat|on_. when the Isynchronlzmg
—o0 = ¢ if w does not occur. By specialization to "boolean‘iransition of the controller is not definéd(qc, a, ¢c) = ) and
series with values irfz, e}, we obtain the classical interpreta-9€/ayed (whert(qc, a,qc) > 0). The delay is added to the
tion of Ramadge and Wonham theory, thal(i§) (w) # & if w duration of the corresponding transition @it.[| 4, G; On the
corresponds to an admissible behavior of the system. other hand, uncontrollable transitions (i§(¢y, a,q;), a <
By extension, to study logical aspects (@fiax, +) automata Au) in the plantG can be in the composed syste || 4, G
it is sufficient to work with supports of series correspongin Neither disabled nor delayed.

to behaviors. We shall then consider series with booleafiicoe ¢ interpretation of the parallel composition of a systeith w
cients (infe, e}) instead ofRyy,. (any coefficient differentfrom jis controller is as follows. The controller is another (migx

¢ becomeg). automaton running in parallel (in a standard synchronous-ma
ner) with the system’s automaton, that observes the geaterat
events and either generates the same event as the controller
Similarly as timed event graphs are described by fixed poiimt which case it may delay the execution of the corresponding
equations in the dioid of formal power serig€s,..(v) of (2, transition by the number of time units given by the weights of

g, if ac Au andqc # q;:

n

Zt(Qi—haiv%l)

i=1

(@) (w)= max «a(q) ®

q0,---,qn €Q

In terms of linear representation(G)(w) = a ® pu(w) ® S.



the transition in the controller (in case of a controllabler&) or | et us notice that the mappirfg;/“u is isotone. SinceHj“)T .

does not generate this event. In the latter case the eveémtdlsa —1 supp —1 supp . . . .

possible in the uncontrolled system is disabled in the feral Rmax. (A). — Ry (A) IS again a frles%dﬁuated mapping

composition (this event should be controllable in accoegan (With its residuated mapping denoted(dy,)" *), there exists

with definition). Uncontrollable events can neither be preed  the greatesyc such that(H:«)! =< y,..r, namelyy?* :=

from happening and can nor be delayed, the uncontrollab@@]&“u)T “(Yres)-

transition in the parallel composition inherits the duatfrom . . .

the original uncontrolled plarg. The following Proposition has been proven in (9).
Proposition 3.3.The mapping A+ : Ryax(A) — Rupax(A)

3. BEHAVIORAL APPROACH TO CONTROL OF (MAX,+) is residuated and its residuateé’ mapping is given by

AUTOMATA (qulu)ﬁ(s)(w) - (9)
Lr:(ttgri%sgction the behavioral approach of (9) is recalled an /\ ((s(u)fy(u)), if w e A*
o - w€P; ! (w)NSUPP(y)
Proposition 3.1.(9) The parallel compositiorof two (max,+) T, if we A
automata
Ge = (s fies Be), G = (ag, fig, By)- (8) Let us recall that one need not worry about the valle=

oo, because when one computes the resulting series, one is
interested only in values of projected words, i.e. delays of
controllable transitions.

has the following linear representation

Gc w G= a,t, ﬁ . .. . .
I ( ) In the next section Proposition 9 will be used in the study of

a=a. @ ay, controllability of (max,+) formal power series.

Vae Ao pla) = pela) & pgla),

Vae A, : pla)=E Q" py(a), 4. CONTROLLABILITY OF (MAX,+) FORMAL POWER
ﬁ =e, ®t ﬁ!]’ SERIES

wheree. = 3. denotes the column vector of identity element

e — 0 of length given by Q. |. Tn the last section the control problem and its solution bdase

on residuation theory have been formulated within a betavio
Proposition 3.1 is useful for computing the behavior of th&rfamework. The resulting series corresponding to an opsma
composed system consisting of a controller and a plant. Rrvisor can then be realized by a (max,+) automaton, peavid
may simply be viewed as an equivalent definition of parallef IS rational.

composition for (max,+) automata in terms of their lineasimilarly as in the classical supervisory control theoryae@ry
representations that admit nonzero initial and final defey®  specification series can be achieved. Since it is not cleartto

Ruax- define controllable (max,+) formal power series, it is nattw
Let us recall from (9) the following theorem about behavibr od€fin€ & series to be controllable if it can be exactly achiéye
closed-loop systems. control actions of a suitable supervisor. More preciseljhiw

our behavioral framework we introduce the following coricep

Theorem 3.2.The behavior of the parallel composition is theof controllability
following: '

Definition 4.1. A seriesy,.r € Ruax(A) is controllable with
(G, =1.(P. l . . : . =

(Gel|G)(w) (Pe(w)) ® ly(w) respect toy and A,, if there existsy. € Rpax(A4) such that
By comparing the definition of Hadamard product with theye ©a, ¥ = Yref, i€ if H' (ye) = yres.
formula of the last theorem we can view the right hand side

akind of generalized Hadamard product (in presence of uncoh'€ following characterization of controllability that e not
trollable events). This is proposed in the following deforit refer to the existence of a controller series, but is baseelyu

. . ) on the plant and specification series.
Definition 3.1.Let A = A. U A, with the associated natural P P

projectionP, : A* — A*. The generalized Hadamard product/Neorem 4.1A seriesy,.; € Ruax(A) is controllable with
of two formal power series ands’, denoteds 4, is defined "espectty andA,, iff

by (s O, 8)(w) = s(Pelw)) ® &' (w). Yoes = H% o (HM) (o).

It follows from Theorem 3.2 that Using the following modified definition of projected formal

UG [|G) =U(G.) ©a, U(G) =1 Oa, L. power series, : Rpax(A) — Rpax(A) with
This can be applied to control of (max,+) automata in a behav- Py(s)(w) = s(Pe(w)), if w € supp(y)
ioral framework. v €, if w ¢ supp(y)

Lety,.s be a specification series, the supervisory control probve have in facHlj‘u = H,oP,,i.eVs € Ronax(A): Hju (s) =

lem is to find the greatest controller series, denatedsuch H,(P,(s)). This is because is absorbing foe and hence for

thatyc ©®a, ¥y = yres. Letus introduce the notation w ¢ supp(y) we can putP,(s)(w) = ¢ without modifying the
HA s 504, y Hadamard produdtf;*« (s)(w).

for the right generalizéd Hadamard product. The following claim from (9) will be useful.



Proposition 4.2. P, defined on complete dioids of formal Now we return to the characterization of controllability of
power series is residuated with its residuated mappingngiveeries and we extract logical aspects of it to compare with

by controllability of languages. In this respect, as mentire
/\ s(u), if w e A? Remark' 2.4 it is sufficient to .cpnside_r the support of series
P (s)(w) = B ’ ¢ (i.e., series with Boolean coefficients) instead of series having

y ) ueke (w)nsupp(y) _ . coefficients inR,,,. (any coefficient different froma, including

T, ifw & A T becomes the unit elemea). The serieg,..; plays the role

. o of specification languagé’, i.e., y,.;(w) = e means that
Theorem 4.1 provides a useful characterization of coratiodd! w € K and similarlyy(w) — e means thats € L. One can

i DO u A,
§er|es gs thgse thaiare f|xp0|n.tsfﬁﬁf ° (Hy, )_ﬁ' Note that notably check that Proposition 4.5 implies characteratf
inequality H ' o (H,'*)¥(s) = s is always satisfied as follows controllability stated in Corollary 4.4. To do this, let usrsider
from the very definition ofareS|d_u'ateAd mapping, c.f. Deffmit 5 controllable prefix closed languagé andw € K (i.e.,
2.1. Since we have decompositidi;*« = H, o P, using Yrep(w) = €), from Proposition 4.5 we hav@1P.(K) N
standard Hadamard produg, (corresponding to the absenceL C K andi ficul p-1p I ¢ .
of uncontrollable events, i.ed. = A), we obtainy,.; is < /&, andin particu aru € P Pe(w) Ql Jie,y(w) =e
controllable with respect tg and A, if and only if andu € P; ' Pe(w) which impliesu € P,' Pe(w), we have

B - u€ K,ie,yrer(u) = e Thenvw € supp(y),i.e., y(w) = e,
Yrep = Hy o Pyo Pyo Hy(Yres). we have the condition of Corollary 4.4, that is

Theorem 4.3 A seriesy,.; E*Kmax(A) is controllable with Yres (W)FY(u) = Yres(w)fy(w) = efe = e.
respect tgy and A, iff vw € A*: The converse implication is not true. More precisely, in the
Yres (w)dy(w) = A yres (W)dy(w). converse reasoning, one can not argue that P, ' P,(w)

impliesu € P 1P.(w).

This makes a connection between the (max,+) and logical con-
Theorem 4.3 can be reformulated as follows: € A* : and trollability. More precisely, this means that our origimedtion

Vu € PP (w) N supp(y) - Yre (WY (1) = Yrep(w)dy(w) of controllability for formal power series (witt?. instead of

Otherwi d h lity f P,) is stronger in its logical aspect than classical R-W cdntro
therwise stated, we must have equality for any supp(y), |apility of languages. Since there is no notion of prefix etbs
because clearly any sueh € {u € P 'P.(w) N supp(y)}.

Indeed. if h biai he riaht (b behaviors for formal power series, the control problem Haest
ndeed, ifw ¢ supp(y) then we obtai” on the right (because oo formulated for formal power series that are countéspar

age for any a € Ruay, includeda = ¢) and sinceu €  of marked languages is more restrictivef(for languages in-
supp(y) we obtairll" on the left as well. Formally, the following cjusion of marked languages implies inclusion of prefix etbs
corollary holds true. languages if the systems are nonblocking). Hence, coahibll

Corollary 4.4. A seriesy,.; € Ruax(A) is controllable with ity needs to be stronger.

respect tay and A, iff Yw € supp(y) :

Vu € P Pe(w)Nsupp(y) © Yrer (Wdy(uw) = yrep(w)dy(w).

Note that in the characterization of controllability of @br If @ specification series is not controllable, a natural ¢oass
lary 4.4 both logical and timing aspects of controllabilitge  to find an approximation, in particular a smaller seriest tha
included at the same time. In the sequel both aspects of tifgntrollable. _ _
characterization will be discussed in details. First oftidhing ~ Let us first notice thaﬂf“ and(H,'+)* are isotone mappings.
aspect of controllability is easy to understand. Sipgg; as T he following result holds.

well asy are scalar series, i.e. all coefficients are numbeRroposition 4.6.H;‘u o (H;‘u)ﬁ(ymf) is the greatest control-

w€P; ' P.(w)NSUPP(y)

4.1 Supremal controllable behaviors

(includinge), one can reformulate controllability as lable (max,+) series with respectgoand A,, smaller or equal
Yw € supp(y) andvu € P P.(w) N supp(y) : 1O Yref-
Yref (W) Fyres (1) = y(w)fy(w). Remark 4.7.There is an analogy with the classical supervisory

_ . , control theory. If we denote in the classical supervisonytoa
Note thatu € P."F.(w) just means that andw differ only  yheory the operatoff; (K) = inf C(K, L, A,) the resulting
by uncontrollable events. Now, i) = w, then the formula cj55e4-100p system, which corresponds to the infimal contro
expresses the requirement that given a time delay between {gy o superlanguage of the specification languagith re-

occurrence of strings andw within the systemy((w)¢y(u)), gpect to plant language and A, then it can be shown that
the same delay between the stringandw must be prescribed his mapping is residuated in the dioid of formal languages

by the specification serieg,(.r(w)¢yrer(u)). This is a very . . o ) B
natural and intuitive requirement, because the interrmediaanOI its residuated mapping is nothing else bilﬁ(K) -

uncontrollable events (that make the difference betweeseth sup C(K, L, Au)-

strings :P.(u) = P.(w)) can not be delayed by any controllerThe residuated mappir(@Z;') o (H;*)*(s) plays the role (i.e.
automaton. is a generalization of) the supremal controllable sublaggu

of specification (reference) serieswith respect to the plang
andA,,. Firstly, H;‘u (s) plays the role of closed-loop behavior

- : ) of the controlled system. In classical supervisory conitol
Pe(w) = vif w = vu, u € Ay andlast(v) € A., where  oqrasnonds to the infimal controllable superlanguage. -How
last(v) denotes the last letter of the wosdThen we have ever, in our case, where timing aspect of control is defined by
Proposition 4.5.A prefix closed languagés is controllable adding delay, i.e. (max,+) multiplication, we can not exyikat
with respect tal and A, iff P 1P.(K)NL C K. the supremal controllable subseries of a controllableeses

Let us now define a projectiof. : A* — A* that re-
moves uncontrollable strings (if any) at the end of wordsusTh



this series itself. Therefore it is n¢f;")*(s), but (H;'») o by 1 time unit, which is not allowed. This can be again checked

(H+)%(s) that is the formal power series counterpart of th@Y the formula of Theorem 4.3. Indeed,
supremal controllable sublanguage 0fThe last proposition H' o (H[')!(4a & 9ab) = 4a & 8ab
can then be viewed as a generalization of the formulafprC

operator from Ramadge-Wonham theory. On the other handy,. = 4a @ 8ab is already controllable with

respecttg; andA,,. One might verify that it is indeed a fixpoint
of H A+ o (H;')?, i.e. a controllable series. It corresponds to
the supremal controllable series and is givenypy= (H;j‘u) o
(H ) (yres)- A (Max,+) automatiods, which realizeg,, the
resulting system, is displayed in figure 1.(c).

Another consequence of our investigations of controlighit
plausible.

Corollary 4.8. If y,..r is controllable with respect tg and A,
then the controller series is simply given by

Yo(w) = Yres(w)fy(w).
Otherwise stated(H;'*)!(yrcf) = Hf(yres), i.€. the resid-

uation onyAu (for a controllable argumeny,..s) is simply
reduced to the Hadamard quotient.

5. CONCLUSION

A recently obtained solution to a control problem for (mgx,+
automata is used in the study of controllability. Contrioiliy
of (max,+) formal power series is investigated using reaiidun

This is similar to classical supervisory control, wheretcolher th lied t lized Had d duct of f |
is given by the intersection of the plant and the specificatio eory appiied 1o a generaiized riadamard product of forma

languages if the specification is controllable. power series. .BOth qui_cal an_d timing aspects of contrdlitgb
are characterized within a single formula. Supremal cdntro

The notion of controllability is illustrated in the examfilelow. lable behaviors have been studied. In a future investigatio
Example 1.A manufacturing system modeled by a (max’+)/vould be_nice to handle unobservable events and to develop
automatorG displayed on figure 1.(a) is considered. The thref€centralized and modular control of concurrent (max,+) au
distinct tasks, labeled, b and ¢, last respectively 3, 4 and 5 tomata.

units of time. The system can perform the following sequence
of tasks wa, ab, abe, abeb, abebe, . . .. The behavior of7 is given

by the following series iR ., (A): [1]

y = 3a(9bc)*(4b + e).

For instancey(ab) = 7 means that the sequencé will be

completed at the date 7 (considering that the system startsl] oo : . .
operate at time 0). (1992).Synchronization and linearity-an algebra for dis-

It is assumed that the start of taskandc can be delayed (we crete event systemiew York, Wiley. . .
may decide to postpone the execution of these tasks when g}, J- Bérstel and C. Reutenauétational series and their
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