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Abstract. We consider the modelling of urban bus networks in dioid algebras. In
particular, we show that their dynamic behavior can be modeled by a Min-Max
recursive equation.

1 Introduction

The evolution of a class of Discrete Event Dynamic System (DEDS), viz those
which involve synchronization phenomena, can be described by linear mod-
els provided that a particular algebraic structure, called dioid or tdempotent
semi-ring, is used. A linear system theory has been developed by analogy with
conventional theory [1, 3]. Applications of this theory have essentially con-
cerned manufacturing systems [8, 6], communication networks [7] and trans-
portation networks [2, 4]. In the latter, the focus has been on systems such
as railway networks, which evolve according to timetables. In these systems,
synchronization phenomena follow from planned connections and from respect
of timetables.

In this paper, we are interested in modelling of urban bus networks whose
behaviors differ significantly. In fact, in such systems, synchronizations with
timetables occur only at some particular stops (terminus or departure of lines,
main stations). In addition, connections between buses are not necessarily
planned, but may rather be decided according to various objectives: to absorb
peaks of charge in the network, minimize the connection time at intermodal
stations, and/or improve the offer of service on strategic itineraries. For those
reasons previous models are not appropriate, and we attempt at establish-
ing specific representations for these systems. More precisely, we show that
their dynamic behavior can be described by a Min-Max recursive equation.
Extending well-known results on fixed-point problems, an ’input/ouput rep-
resentation’ is also deduced.

The outline of the paper is as follows. In §2, we recall elements of dioid theory
and principles of DEDS description over dioids. In §3, we study particular



2 Sébastien Lahaye, Laurent Houssin, and Jean-Louis Boimond

fixed-point equations over complete dioids. Their solutions are useful for the
modelling of urban bus networks. More precisely, in §4, we first describe how
such networks operate in practice, and we next propose their modelling in
dioid algebras.

2 Preliminaries

In this section, we give basic notions from the dioid theory and recall succinctly
how some DEDS can be modeled in dioid algebras [1, 3].

2.1 Elements of dioid theory

Definition 1. A dioid is a set D endowed with two inner operations denoted
@ and ®. The sum is associative, commutative, idempotent (Va € D, a ®
a = a) and admits a neutral element denoted . The product is associative,
distributes over the sum and admits a neutral element denoted e. The element
e is absorbing for the product. A dioid (D, ®,®) is complete if it is closed for
infinite sums and if multiplication distributes over infinite sums too.

Definition 2. A dioid (D, ®,®) is endowed with a partial order relation de-
noted > defined by the following equivalence: a = b < a=a ®b.

A complete dioid has a structure of complete lattice [1, §4.3]. On this account,
the greatest lower bound of two elements exists: a A b = ®{wja7wjb} x. Note
that A generally distributes over @', but not over ®. We only have a subdis-
tributivity property of ® with respect to A: Va,b,c € D, (aAb)c = acA be.
Finally, the following property, called absorption law, holds true

Va,beD, aA(a®db)=ad(aNdb)=a. (1)

Ezample 1 (Dioid Zpay ). The set Z = Z|J{+00, —00} endowed with the max
operator as sum and the classical sum as product is a complete dioid, usually
denoted Zax, with e = —oc0 and e = 0.

Ezample 2 (Dioid Zmax[7]). Let d be a mapping from Z to Zyax. The for-
mal power serie D(7) in one variable v and coefficients in Z,ax is defined by:
D(v) = @z d(k)7* . Let us denote (D(v),7*) the coefficient d(k) of D(v)
for v*. The set of formal power series in variable v and coefficients in Zp,ax
endowed with operations C(y) @ D(v) : (C(y) @ D(),7*) = (C(y),7*) @
(D(7),7*) and C(y) @ D(y) : (C(7v) ©@ D(7),7") = @,y ;=x(C(1),7") @
(D(7),7) is a dioid denoted Zyax[7]-

! In all complete dioids considered hereafter, A distributes over @. Nevertheless,
complete dioids are not necessarily distributive [1, ex. 4.37]
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2.2 DEDS description over dioids

It is now well known that the class of discrete event dynamic systems involv-
ing only synchronization phenomena can be seen as linear systems over the
particular algebraic structure called dioid. For instance, by dating each event,
i.e. by associating with each event indexed x a dater? function {z(k)}rez,
it is possible to get a linear state representation in Znyay. As in conventional
system theory, output {y(k)}xez of a SISO DEDS is then expressed as a con-
volution of its input {u(k)}rez by its impulse response {h(k)}kez.

An analogous transform to Z-transform (used to represent discrete-time tra-
jectories in classical theory) can be introduced for daters. Indeed, one can rep-
resent a dater {z(k)}rez by its y-transform which is defined as the following
formal power series: X (v) = @y, #(k)7y*. Since v X () = Pjep x(k)y ™ =
Drcz 2k — 1)y*, variable 7 can be interpreted as the backward shift opera-
tor in event domain. Thus, one can express DEDS behavior over the dioid of
formal power series in one variable and coefficients in Zomax, denoted Zax [['y]]?’
(see example 2). In particular, the y-transform of its impulse response plays
the role of transfer matrix.

3 fixed-point equations over complete dioids

In this section, we are interested in solving ”fixed-point” equations f(z) = z,
in which f is an isotone (f s.t. a < b= f(a) < f(b)) mapping from a complete
dioid D into D. Well known Tarski’s theorem* states that f admits a least fixed
point which coincides with the least solution of inequation f(z) < x. Formally,
we denote py the least fixed-point of f, then puy = Inf{z | f(z) = z}.

Notation 1 Let f : D — D, we denote fO =1d, f* = fofo...of(n times)
and f* = @, cn f*. This 'star notation’ applies also for elements a € D: a® =
e, a> =a®a and a* = @, oy a". Furthermore, we have a* = a*a* = (a*)*.
Let us note that the set of fixed point of f* coincides with the set of prefix
point of f (x s.t. f(x) < z) [1, th. 4.70, p. 186]

fl@) 2r e ff(x) =2 2)

Proposition 1. Let D be a complete dioid and h : D — D an isotone map-
ping. Let w € D, mapping g : D — D is defined by g(x) = h(z) & w. If
condition h(h*(w)) = h*(w) is satisfied, then py, = h*(w).

2 x(k) denotes the k + 1-th occurence of event .

3 Actually, since daters are monotone functions, only a sub-dioid of Zax [v] would
be more appropriate to represent y-transforms of daters (see [1] or [3] for further
explanations).

4 Originally stated for mappings defined over complete lattices, this theorem applies
over complete dioids due to their ordered structure (see def. 2).
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Proof. According to equivalence (2) we have
gx)=h(z)dwzr<h(z) 2z and wzr < h*(z)=2 and w2z

which implies h*(w) < w. This means that any any prefix point of g, and a

fortiori pig, is greater than h*(w). Conversely, if h(h*(w)) < h*(w) we have
g(h*(w)) = h(h*(w)) & w 2 h*(w) & w = h*(w)

which means that h*(w) is a prefix point of g and as a by-product A*(w) > 4.

Definition 3. A mapping f : D — D is said to be lower semi-continuous

(l.s.c.) if for every subset C of D, f(P,cc®) = Pyec f(2).
The following corollary is a well known result (see e.g. [1, th. 4.75]).

Corollary 1 Let h: D — D be a l.s.c. mapping and g(z) = h(xz)Dw, we have
pg = h*(w). In particular, the least fixed point of g(x) = ax G w is pg = a*w.

Definition 4. An isotone mapping f : D — D is said to be a closure mapping
if f=Id and fof=Ff.

If f is a closure mapping, then f* = f which implies Vx, f(f*(z)) = f(f(z)) =
f(x). With regard to proposition 1, this leads to the following corollary.
Corollary 2 Let h : D — D be a closure mapping and g(x) = h(z) & w, we
have pg = h*(w). For instance, let g1(z) = z* & w, we have® pg = w*.

In the next proposition, we present two ’classes of mappings’ which are neither
l.s.c. nor closure mappings, but for which proposition 1 will even so apply.

Proposition 2. Let f : D — D be a closure mapping. Mapping h : D — D,
h(z) = f(x) A v satisfies h*(x) =z & (f(z) Av) and h(h*(z)) <X h*(z).

Proof. If f is a closure mapping h2(¢) = f(f(x) Av)Av X f(f(x) Ao =
f(x) Av, we then have h*(z) = @, h'(z) = Id ® h(z) = = ® (f(x) A v). Since
Id < f and using absorption law (1), we have h(h*(x)) = f(z@(f(z)Av))Av =
(@)@ (f(x) Av)) Ao = f(f(x) Ao = fz) Ao = h*(x).

The following corollary directly follows from propositions 1 and 2.

Corollary 3 Let f : D — D be a closure mapping. Let v,w € D and g(z) =
(f(z) ANv) & w, we have pug = (f(w) A v) & w. For instance, let go(x) =
(a*z Av) @ w and g3(x) = (z* ANv) ® w, we have pg, = (a*w Av) ®w and
g = (w07 Av) @ w.

4 Modelling of public transportation networks

In the following, we are interested in the modelling of urban bus networks. In
a first part, we will describe how such networks operate. A model in dioids
algebra is proposed in a second part.

® Note that generally (z @ y)* # «* ® y*, thus corollary 1 cannot apply.
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4.1 Exploitation of urban bus networks

As presented in [5, 9], traffic exploitation in urban bus networks can be de-
composed in the two following stages.

Definition of an operating schedule  The ”operating schedule” is estab-
lished with the aim of optimizing the offer of service according to objectives
and exploitation constraints (bus fleet, line layouts, staff hours of work, etc).
It is calculated for mean conditions of exploitation. In practical terms, this
optimization results in:

e the distribution of resources throughout the network: number of buses
allocated to each line, drivers distribution, etc.

o the synthesis of timetables defining times at which buses should theoreti-
cally run at each stop.

This operating schedule partially conditions the dynamics of the network. In
fact, buses are effectively synchronized with timetables at only some stops
such as terminus or departures of lines and/or main stations.

Regulation This stage corresponds to adjustments or adaptations from
the operating schedule in reaction to current exploitation conditions. Com-
mon conditions leading to such adjustment operations are disturbances: break-
downs of buses, modifications of traffic flows (for instance due to accidents),
ete. A Supervisor6 may then decide to transfer passengers, stop or reroute
buses... Differently, we are here interested in modelling adjustment operations
which rather aim at improving the offer of service by attempting:

1. to quickly absorb a planned peak of charge in the network. This operation
comes down to postponing buses departures if a sizeable arrival of users
is imminent : for instance, near a factory just before closing time, or near
a school before home-time...

2. to provide connections at intermodal stations of the networks. Such bus
stops are located in or near a station where different modes of transport
converge (train, subway, tram etc.). If an arrival of passengers is imminent,
then the operation also consists in waiting for and departing as soon as
this quota of users has arrived.

3. to improve the travelling time on itineraries having priority. Here, the
focus is on itineraries spreading on several bus lines which should be pro-
moted for strategic and/or commercial reasons. With the aim of improving
the offer of service on such itineraries, operations then tend to minimize
connection times at line changes/switchings.

Let us note that, at a given stop, only one of the above objectives is at most
satisfied. In fact, the regulation is at the earliest, as specified by the rule below.

Rule 1 At a given stop, a bus departs as soon as a quota of users has arrived
from one of the origins presented at items 1), 2) and 3).

8 Visualizing evolutions inside the network and communicating with bus drivers.
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4.2 A model for urban bus networks

In this section, we propose a model for urban bus networks operating as de-
scribed in section 4.1. We assume that such a network includes n bus stops
denoted S1,S,,...S,,. We are interested in the departure times of buses from
stops. As the description of traffic exploitation, the modelling issues will be de-
composed in two stages: nominal dynamics according to the operating sched-
ule, and behaviors induced by operations of regulation.

Nominal dynamics imposed by the operating schedule In the
following, let z;(k) denote the departure time for the k + 1-st bus from stop
S;. This departure time will be deduced from conditions according to which
buses evolve in the network.

We assume, without loss of generality, that at the beginning of operation a
bus departs from each stop”. A first and obvious condition is that, before de-
parting, buses arrive at stops. Suppose that stop S; immediately precedes S;,
then this gives rise to z;(k) = a;; +x;(k—1), k > 1, in which a;; denotes the
travelling time from S; to S;. Let a(k) = (z1(k), z2(k),...2,(k)) ", for the
whole network this condition can be written in max-algebraic matrix notation

2(k) = A@ x(k — 1) (3)

in which A;; = € if S; does not precede S;, otherwise A;; equals to the
travelling time from S; to S;.

Another condition is given by the timetable generated for each line. More
precisely, at specific stops (see §4.1), buses are synchronized with timetables,
that is, they do not depart before the scheduled time. At such a stop S;, we
have x;(k) = u;(k), where u;(k) denotes the scheduled departure time for the
(k + 1)-st bus from S;. For the whole network, we obtain z(k) = B ® u(k) in
which B;; = e if i = j and S; is a specific stop, B;; = € otherwise. Finally, in
addition with (3), we get

(k) = Az(k — 1) @ Bu(k) (4)

Behaviors induced by the regulation operations We assume that
peaks of charge described at item 1. are known a priori and can consequently
be traduced by a vector of daters (k). Precisely, a coefficient (;(k) denotes
the planned date of arrival at stop S; of the k-st quota of users from these
flows. In the same manner, we consider that flows of users from others modes
of transports are exogenous to our system (see item 2 of §4.1), and we then
assume that their dates of occurrence are known a priori. In practice, we
denote p(k) the vector of daters representing dates of arrival at bus stops of
quotas of users from other modes of transport.

We consider that several itineraries having priority (defined at item 3 of §4.1)

7 If no or several bus(es) initially depart from stops, then this results only in in-
dexes modifications. These cases can be dealt exactly as cases of places initially
containing no or several token(s) for the modelling of timed event graph [1, §2.5.2]
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have been selected for the considered urban bus network. Each itinerary is
indexed by an element « of the alphabet Y. Let S; be a stop belonging to
a, we denote £ (k) the date of arrival at S; of the k-st quota of passengers
following this itinerary. If S; precedes &; on itinerary a, but does not belong
to the same bus line, users have to walk between these stops. We then have
§X(k) = f @& (k) , k > 1, in which ff is equal to the connection time
between S; and S; (e.g. walking time between these stops), iy = € otherwise.
For the whole network, this inequality writes

k)= Fr @8 (k), k=1 ()

with £ = (£2(k), &5 (k), ..., £2(k))) " Differently, if stops S; and S; follow one
another on itinerary « and belong to the same bus line, then we consider that
passengers use bus on this portion. We have £ (k) = g¢% @ x;(k) , k > 1, and
globally, £¥(k) = G*®@x(k—1), k > 1, in which Gf; = A;; if S; and S; follow
one another on itinerary o and belong to the same bus line, Gf; = € otherwise.
In association with (5), we deduce for itinerary indexed « the following implicit
inequation
k)= P (k) GY(k—-1), k>1.

Since we are interested by the earliest functioning of the network, we select
the least solution which is given by (corollary 1)

(k) = F**Goz(k — 1) . (6)

Finally, following rule 1, Eq. (6) as well as vectors ¢ and p can be gathered in
an unique inequality representing the influence of regulation operations:

w(k) = J\ FGx(k —1) A (k) A p(k) . (7)

acX

Aggregate model Inequalities (4) and (7) model behaviors induced re-
spectively by the operating schedule and by the regulation operations. Taking
into account both aspects leads to

(k) = ( A F**Ga(k — 1) AC(k) A p(k)) & Az(k — 1) @ Bu(k) .

ack

This recurrent equation can be used for the simulation of bus networks. From
this ’state equation’, we next deduce an input/output representation which
should be more suitable to tackle in future works performance evaluation and
control of such systems. With that intention, we establish the y-transform of
previous equation using properties® Yo € X G < A and FO*G® = F*A:

() = ((\ F"492(7) AC() A€()) & Aya(y) @ Bu(y) -

8 Deduced from definition of F¢ and G°.
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etting h(z) = (Ayex F"Aya(y) AC(y) AE(7)) ® Ayaz(y) corollary 1 applies

(since h is L.s.c.) to state the least solution z(y) = h*(Bu(7)). To make explicit
this solution, we furthermore assume that each itinerary a € X includes an
unique change of bus-line?. We then have F*? = ¢ and FOA'F* = ¢, i > 1.
Calculations using notably proposition 1 and corollary 2 lead finally to:

2(7) = (A7) \ F*"(4%)"Bu(3) A C(3) A €M) @ (A7) Bu(a).

ack

5 Conclusion

This work is a first attempt at modelling dynamic behaviors of urban bus
networks in dioids algebra. First of all, we have tried to describe their ex-
ploitation, i.e., how they operate in practice. Specificities of such systems
have then appeared compared to transportation systems which are governed
by timetables (e.g. railway networks). We have shown that their dynamic be-
havior can be described by a Min-Max recurrent equation which can be used
for their simulation. An input/ouput representation is also deduced to tackle,
in future works, performance evaluation and control of such systems.
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