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Abstract

The class of discrete event dynamic systems involving
only synchronization phenomena can be seen as linear
time-invariant systems in a particular algebraic structure
called (min, +) algebra. In the same framework, this
paper deals with linear time-varying systems, that is,
systems whose parameters may change as functions
of time. For example, in a manufacturing system the
number of working machines, or the number of trains
running in a closed network of railway connections, can
vary as functions of time. For such systems, the output
tracking problem is optimally solved under just-in-time
criterion.

Keywords: Discrete event dynamic system, time-varying
system, just-in-time control

1 Introduction

A linear system theory analogous to the conventional the-
ory has been developed for a particular class of Discrete
Event Dynamic Systems (DEDS) subject to synchroniza-
tion phenomena. Such systems - usually represented with
Timed Event Graphs (TEG) - can be modeled by (min,+)
linear equations. General concepts such as state space,
impulse response and transfer function have been intro-
duced [2], [10], [4]. These systems are seen as linear time-
invariant (or stationary) systems over the (min,+) alge-
braic structure. An optimal solution to the output track-
ing problem under just in time criterion has also been
given [2, §5.6], [7].

In this paper, we generalize the synthesis of this optimal
control to (min,+) linear time-varying systems. We pro-
pose a basic example which aims at illustrating the class
of systems as well as the ’optimal tracking problem’ con-
sidered. We study here the simple manufacturing system
of figure 1.a which operates as follows. Parts come into a
workshop and reach a FIFO storage after a travelling time
c1 on a first conveyor. This storage is located upstream
a pool of machines working in parallel. Each part is han-
dled as soon as possible by some machine, and spends d
units of time on a machine. The number of machines on
running (idle or busy) is a function of time, due for ex-
ample to planned maintenance or manufacturing resource
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scheduling. Once processed, parts leave the workshop on
a second conveyor (travelling time cz).
Let us consider the following variables for this system:

e u(t): cumulated number of raw parts released on the
first conveyor up to time ¢,

e z1(t): cumulated number of parts having left the stor-
age up to time ¢,

e 22(t): cumulated number of parts loaded on the sec-
ond conveyor up to time t,

e y(t): cumulated number of finished parts up to time ¢,
e a(t): number of working machine(s) at time t.

Notice that u, x1, 2, y are non-decreasing functions, usu-
ally called counter functions [2, §5], whereas a may be not
monotonic.
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Figure 1: A manufacturing system (a) and its Petri net
model (b)

The travelling time ¢; on the first conveyor implies that:
Vt, z1(t) <u(t—c1),

on the other hand, since the processing time of a part is
equal to d units of time, and assuming that a machine can
be shutdown only when it is idle, we have:
Vta 1 (t) S a(t) + xl(t - d) )
hence, considering that a part is handled as soon as pos-
sible, we obtain:
Vt, I (t)

=minfa(t) + z;(t —d) , u(t —e¢1)] -



Further, we have that V¢,
z2(t) = 21(t — d), and y(t) = z2(t — c2) .

Finally, the manufacturing system obeys the following re-
current equations where min and + are replaced respec-
tively by ® and ® (as in (min,+) algebra):

z1(t) = at)@z(t—d)Dult —ecp)
l‘g(t) = I (t — d)
y(t) = za(t—c)

The question we shall address in this paper can be formu-
lated as follows. Being given:

e the dates of activation and shutdown of the machines
(i.e., a(t) is known Vt),

e an output trajectory to be tracked, denoted {z(t)},.,
(the customer demand),

what are the latest dates of release of raw parts which
allow meeting the customer demand? In other words, we
will compute the least input trajectory {u(t)},., such that
the output response {y(t)},., is greater than the customer
demand {z(t)},c;-

In figure 1.b, the manufacturing system is modeled by
a Petri net (see among others [8] for an exhaustive pre-
sentation of Petri net theory). The workshop, which in-
volves exclusively synchronization phenomena, is classi-
cally modeled by a TEG model (black part of the graph).
The variation of the number of working machines is en-
abled thanks to the additional transitions ¢ and o (grey
part of the graph). In [6], we have shown using the gen-
eral algebraic model of Petri nets presented in [3] that a
subclass of Free Choice Petri Net, and in particular the
graph of fig. 1, can be modeled after various manipula-
tions by the following standard linear equations in (min,+)
algebra:

{ z(t) = A(t) @ z(t — 1) @ B(t) @ u(t)
y(t) = Ct) © x(t)

Ifd =1, ¢; = ¢3 =0 unit of time, we have:

z(t) = [21() ()], u(t) = L], y(t) = [y(*)]

and
an=(0 1) oso=( 0 ).

C(t)y= (400 0).

Ag an illustration, let us explain briefly how to obtain
these evolution equations (see [2],[3] for exhaustive presen-
tations of algebraic modelling of Petri nets). To describe
the behavior of the graph, firings of transitions are counted
during its evolution. For that, let us define the variable
z1(t) to denote the cumulated number of firings of transi-
tion labeled z1 at time ¢ (and identically for u, z{, =2, v,
i, 0). We have the obvious inequalities:

(1)

400
400

z1(t) < min (u(t), 7 (1)),

l‘g(t) S l‘l(t — ].),

y(t) < zo(t).

Considering that the Petri net operates as soon as possible,
i-e., a transition is fired as soon as it is enabled, we have
equalities:

x1(t) = min (u(t), =} (1)) = u(t) ® 24 (1),
ZL'Q(t) = iL’l(t — 1),

y(t) = z2(t).

The equation for z} requires more attention because the
upstream place has two output transitions, 2} and o. Such
a structure is referred to as a conflict and exhibits a non-
determinism. The classical approach for solving conflicts,
called race policy, comes down to considering that, among
the conflicting transitions, the first one to be ready to fire
”wins the race” and fires (the other transition ”loses the
race”, and its enabling is preempted by the conflict). Note
that in our Petri net, conflicting transitions have null fir-
ing times and are not synchronized (only one upstream
place), so that the race policy would always result in a tie
and could not decide which one is going to fire. With an-
other approach, called preselection policy (or routing pol-
icy), conflicts are solved thanks to a protocol, algorithm or
mapping which selects one of the conflicting transitions to
fire. We consider here that conflicts are solved according
to the preselection policy, assuming moreover that vari-
ables i(t) as well as o(t) are known or measured a priori
(as exogenous data). With this assumption, we can write:

2 (t) + o(t) = x2(t) + i(t),

21 (t) = a(t) + 22(t) = a(t) ® 22(1),

where a(t) = i(t) — o(t) is a known parameter.
Finally, we obtain:

z1(t) = 21 (H)Du(t) = a(t)@z2(t)Du(t) = a(t) @z (t—1)Du(t),

ZEQ(t) = ﬂfl(t — 1),

y(t) = z(t),

which yields to Egs. (1).

The Eqgs. (1) only differ from the standard ones of TEG
by the fact that elements of matrices A(+), B(-) and C()
are functions of time.

The outline of the paper is as follows. In §2, we recall
the elements of (min,+) algebra and residuation which
we shall use throughout the paper. In §3, we study lin-
ear systems over dioids. In particular, the impulse re-
sponse of time-varying systems is expressed from their
state model (1). The optimal control is presented and
illustrated through a short example in §4 and §5.



2 Preliminaries
Dioid

A dioid is a set D endowed with two inner operations (@,
®) such that:

2.1

e both @ and ® are associative and have neutral ele-
ments denoted respectively € and e,

e ® is distributive with respect to @,

e ¢ is absorbing for ® (Va € D, a ®e =e®a =¢),

e @ is idempotent (Va € D, a ® a = a).
If ® is commutative, D is called a commutative dioid.
In any dioid, a natural order is defined by:

a<b&sadb=">b.

(D, R) is a complete dioid if each subset A of D admits
a least upper bound denoted

@azzsupm,

A z€A

and if ® distributes with respect to infinite sums. In par-

ticular,
T = @ T =supz,
€D zeD

is the greatest element of D.
In a complete dioid, the greatest lower bound, noted A,

always exists;
alNb= @ T.
z=a,z=<b

Example 1 Let Z,,;, be the set Z U {400} endowed with
min as @ and usual addition as ®. It is a complete com-
mutative dioid with neutral elements € = 400 and e = 0
(T = —o0). Note that order (<) in Zpy, is just reversed
with respect to the usual order ().

Example 2 In this paper, we consider counter functions,
i.e., non-decreasing functions: Z — Z,,- This set, de-
noted X, can be endowed with

e pointwise min as @
(u®v)(t) = u(t) ®ov(t) = min(u(t), v(t)),

e the sup-convolution as multiplication, noted
(wx0)(0) = @lu(t =) 80(6)] = minfutt =) +0(),

(X, @, ) is a complete dioid with neutral elements defined
by

0 ;
+oco

t<0

e(t) = +oo, Vt € Z, and e(t) = { £50

The natural order over this dioid is defined by:

u=<v&u(t) Su(t), Vi€ Z.

Theorem 1 (see [2, §4.5.3]) In a complete dioid, the
particular implicit equation

r=a®xr®b
admits a*b as least solution, with

a® = @a’ and a® =e.
i>0

Example 3 Starting from a ”scalar” dioid D, let us con-
sider p x p matrices with entries in D. The sum and prod-
uct of matrices are defined conventionally from the sum
and product of scalars. This set of matrices endowed with
these two operations is also a dioid denoted DP*P. Note
that n-dimensional row or column vector problems can
be handled by embedding such vectors in square matrices
with n—1 additional arbitrary (identically equal to £) rows
or columns.

2.2 Residuation

Residuation is a general notion in lattice theory which
allows defining ’pseudo-inverses’ of some isotone maps (f
is isotone if a < b= f(a) <X f(b)).

Laws @ and ® of a dioid are not invertible in general.
Residuation is hence used to ’solve’ equations of the type
a®r=>b, r®a=>b. We will use residuation here to find
‘greatest subsolutions’ of such equations.

Definition 1 An isotone map f : C — D, where C and D
are ordered sets, is said to be residuated if it exists an
isotone map h : D — C such that

foh=<Idp, and ho f = Idec.

Ide and Idp are identity maps of C and D respectively. h
is unique and is denoted f*. It is called the residual of

f.

If f is residuated then Yy € D, the least upper bound of
subset {x € C|f(z) < y} exists and belongs to this subset.
This greatest subsolution is equal to f#(y).

Property 1 (see [2, §4.4]) Let C a complete dioid, the
isotone map L, : * — a ® x defined on C is residuated.
The greatest solution of inequation a ® x < b therefore
exists and is equal to Ly*(b), also denoted aXb or L.

The isotone map R, : © — x ® a is also residuated. The
greatest solution of inequation x ® a < b will be denoted

bfa or L.
These ’quotients’ satisfy the following formule
a® (afr) S x (zda) ®a Lz (f.1)



aX(z Ay) = (aXz) A (ady) (z Ay)fa = (zfa) A (yfa) (f.2)
(f:3)

zf(a®b) = £

adz

(a®b)yx = =

Let us note that formula f.1 is a simple deduction from
definition 1:

LooL, <Ide & (LioL)(z) =a® (a\z) <,
and,

Ry,oR.! < Id, & (Ra o Raﬁ)(a:) = (zda) ® a < .

Let us recall a necessary and sufficient condition for a
map defined on complete dioids to be residuated.

Theorem 2 (see [2, §4.4.2, th. 4.50]) Let f be an
isotone mapping from a complete dioid C into a complete
dioid D. The map f is residuated if, and only if, f(c) = ¢,
and for every subset X of C

(@)

3 Linear systems

=P @) .

zeX

3.1 Representation of linear systems

A gsystem S is a mapping from the set of admissible in-
put signals to the set of admissible output signals. In
this paper, the signals of interest are 'counters’, i.e., non-
decreasing functions: Z — Tomin. In example 2, we have
denoted X this set of signals. So that it constitutes a set of
admissible signals, this set must be endowed with a kind
of vector space structure by defining the two following op-
erations:

e pointwise minimum (i.e., addition in Z,,;,) of time
functions, which plays the role of inner addition of
signals:

Vi, (u® v)(t) £ u(t) ® v(t) = min (u(t), v()) ;

e addition of (i.e., product in Zp, by) a constant,
which plays the role of external product of a signal
with a scalar:

Vt, (a-u)(t) £ a@u(t) = a+u(t).

In [4], [9], a theory for systems defined on these structures
of signals has been developed by analogy with conventional
system theory. In the following, we recall some results
fitted to our framework.

Definition 2 A system S is called linear over Zmin, or
(min,+) linear, if

S(ur ®uz) = S(ur) ® S(uz) = min (S(u1), S(u2))
and, Ya € Z,
Sla-u(-)) =a®Su(-)) =a+ S(u()).

Definition 3 A system is said to be continuous if, for
any finite or infinite collection {u;} it satisfies

(@)

Definition 4 A system is said to be causal if Yuy, us,

ur(t) = ua(t) for t <1 = [S(u1)](t) = [S(u2)](t) fort < 7.

i€l

=P S(u).

iel

The notion of impulse response has also been intro-
duced in [4, chap. V], [9], [2]. In particular, for systems
defined on ¥, we have the following characterization [4,
chap. V, §3.2].

Theorem 3 Let S: ¥ — X a linear continuous system,
then there exists a unique mapping h : 7.2 — Zimin (called
impulse response) such that

1. Vs €Z,t— h(t,s) € X

2.Vte€Z,s— h(t,—s) €X

3. y = S(u) can be obtained by y(t) = P [h(t, s) @ u(s)],
Vi€ Z. <

For systems defined on ¥, the impulse is the signal
denoted e and defined by

wty={ 0

e(=+00)
When the system is modeled by a Petri net (as in intro-
duction), such an input comes down to firing the source
transition v an infinity of times after time 0 (so that an
infinity of tokens are released).

t<0
t>0

Corollary 1 A linear continuous system S over Y. is
causal if, and only if, its impulse response h satisfies

h(t,s) = h(t,t), for s > t.

Remark 1 As in conventional linear theory, the impulse
response h(t, j) of a time-invariant (or stationary) system
only depends upon the difference t — j.

From now on, we will only consider causal continuous
linear systems, and for sake of briefness, we will most of
times only write ’linear systems’.

3.2 Input/output relationship of (min, +)
linear time-varying systems

Starting from the standard state model (1), we will here

explicit the input/output relationship and identify the im-

pulse response of such (min,+) linear time-varying sys-

tems.

The first equation of (1) can also be written,

t

x(t) = ®(t,to)z(t) © @ (t,5)B(j)ulj) , t >t
j=to+1

where the state-transition matriz ®(t,i) is given by



not defined ,i >t
®(t,i) =< Id =t
A @At-1)®--2Al+1) i<t

Then we have, for ¢t > tg
y(t) = C(H)®(t,to)z(to) & P CH(tJ)BG)u(s).  (2)
j=to+1

Remark 2 The state-transition matrix satisfies the com-
position property
O(t,i) = ®(t, k) @ ®(k,i) , where t > k > i ,
and in particular for t > i+ 1
D(t, 1) = A@)®(t — 1,7), D(t,0) =@t i+ 1A+ 1).

Proposition 1 The least solution of Eqs. (1) is given by

VteZ, y(t)=EPntiul) (3)
J<t
with
h(t,j) = C(t)®(t,§)B(j), for j < t. (4)

Proof By tending ¢, towards —oo in Eq. (2), it is clear
that any solution is greater than 7.

Setting 7(1) = C(F(1) with 7(1) = @<, ®(1,/) B()u(j),
we show that T satisfies the first equation of (1):

@jgt ®(t,7)B(5)u(f)

= @D, ®(4,5)B()ull) @ B(t)u(t)

()

= AW [B<ii 2~ LHBGG)| & BHu(t)
(thanks to rem. 2)
= AWzt — 1)@ B(t)u(t)

O

The expression of impulse response h can be extended
in a causal manner (see corollary 1) by setting

h(t,j) = C(t)B(t) for j > t,
which yields to:

D h(t, )u(i) = D h(t, j)u(j)

j<t JEZ

y(t) = (3)

since for j > t, u(j) < u(t), and by isotony of ®:

h(t, j)u(j) = h(t, t)u(j) = h(t,t)u(t)

Remark 3 For conventional discrete-time linear time-
varying systems [5], [1], the input/output relationship is
given by:

k
y(k) = > bk, julj) -

j=—o0

The analogy with formula (3) should be clear.

Given an input trajectory {u(t)},c;, the least solution
of Egs. (1) is the output response for which the number
of events having occurred up to time ¢ € Z is the greatest
(remember that the order in Zomin is reversed with respect
to the usual). Selecting this solution corresponds there-
fore to consider the least constraining conditions for the
evolution of the system. This means not only that the
system operates ’as soon as possible’ (think of parts han-
dled as soon as a machine is available in example), but also
that we have selected the initial conditions which generate
the greatest possible output (also called canonical initial
conditions). When considering causal signals of X, i.e.,
for t < 0 w(t) = u(0), z(t) = z(0) and y(t) = y(0), as
well as A(t) = A(0), B(t) = B(0), C(t) = C(0), the first
equation of (1) is implicit, i.e.,

2(0) = A(0)z(0) & B(0)u(0) .

So the least solution (greatest with respect to usual
order), z(0) = [A(0)]"B(0)u(0) (thanks to th. 1), is the
canonical initial state.

In the next section, we compute a control input eyt (0p-
timal under just in time criterion) assuming that matrices
A(t), B(t), C(t) are known for all ¢ and define a system
on Y. If elements of these given matrices are constant
or non-decreasing, solutions z and y of Egs. (1) are obvi-
ously non-decreasing (in other words, these given matrices
actually define a system on ). But, as noticed in intro-
duction, we consider that the elements of these matrices
may not be monotonic functions (possibly decreasing on
an interval). One should then be aware that being given u,
a non-decreasing input, some given {A(t), B(t), C(t)},c;,
may generate non-monotonic state x and output y. So,
before computing the control input, it will be necessary to
check that the given matrices { A(t), B(t), C(t)},., define
a system on X.

Conditions 1. and 2. of theorem 3 characterize impulse
responses of systems defined on ¥. Using expression 4,
we just have to check that the given matrices satisfy the
following conditions:

Vt,j €L, t>];

Clt+1)(t+1,7)B(j) 2 C()®(t,5)B(),
and,
Ct)®(t,j —1)B(j —1) X C(t)®(t,5)B(j).

established from those of theorem 3. If the given matrices
{A(t), B(t), C(t)},c4 satisfy these conditions, for all non-
decreasing input u, solution y of Eq.(1) is non-decreasing
(in other words, these matrices define a system on X). To
ensure furthermore that the state z is also non-decreasing,
the given matrices must satisfy:

Vt,j €L, t > j;

®(t+1,7)B(j) = ®(t,5)B(j),



and,
o(t,j —1)B(j — 1) 2 @(t,5)B())-

4 Optimal control

Let S a linear system defined on ¥, the output y can be
written

y = H(u),
where H: (Z, @, *x) = (X, ®, x) is defined by:

[H(u)] (t) = @ hlt, s)u(s)

SEZ

(h(t, s) is the impulse response of S).

Denoting z € ¥ the output signal to be tracked, the
optimal control, denoted wu,pt, is defined by

Uopt = Sup{u € X |y <z} .

Uopt 1 the greatest solution of inequation H(u) < z. Re-
membering that the order < is just reversed with the usual
order, {uopi(t)},c, is the least input trajectory such that
for all ¢ the output response {y(t)},., is greater than the
output to be tracked {z(t)},.,. For a manufacturing sys-
tem, this control input, which gives the latest dates of
release of raw parts such that the customer demand is
satisfied, fulfills the so-called just-in-time criterion.

This greatest solution exists if map H is residuated.
(X, @, %) being a complete dioid (see example 2), we only
need to show that H satisfies the conditions of theorem 2:

e VteZ, [H(e)](t)= gazh(t,s)s(s) =¢(t)
o VteZ,
[H(@ up)](t) = EG% h(t, 5) @uz’(S)
= @ gh(td)w@)
= [@H(Ui)](t)

Control input u,,; therefore exists and is defined by:
Uopt = H*(2) .

Proposition 2 Controls uep(t), t € Z, are defined by,

wopt(t) = [H¥(2)] (8) = )\ (h(i,t)}2(0))

i>t

Proof We denote w the signal defined by:

vt € Z,w(t) = N (h(i,t)y2(i)).

i>t

1. Let x satisfying
H(z) <z

or equivalently,

VteZ, D h(t,s)xz(s) = P h(t,s)z(s) < z(¢)

SEZ s<t

Vt,s €Z, s <t; h(t,s)x(s) < 2(t)

Vit,s € Z, s <t; xz(s) < h(t,s)§z(t)

Vs € Z, z(s) < t/>\ (h(t,s)§z(t)) = w(s)
2. VteZ,

@ hit,s)w(s) = @ [nt9)[ A wi2r]] <

SEL SEZ i>s

D [A(t,5) (h(t, 5)Xz(1) ] X D =(t) = 2(t),

SEZ SEZ

which shows that w is solution of H(z) < z. O

In the following, we show that u,, is solution of a
system of recurrent equations which proceed backwards
in time. These equations offer a strong analogy with the
adjoint-state equations of optimal control theory. These
equations are an extension to the time-varying case of an
existing result for (min,+) linear time-invariant systems
[2, §5.6]. Firstly, let us remark that

Uopt (1) = ,/>\t hfi(,zt)) = ,/>\t C(i)d)?z(,lt))B(t)

_/>\t[(0(i)<l>(i,t)) 0]

: B(t) '
(thanks to f.2 and £.3)

setting £(t) = />\ %
i>t

Proposition 3 The greatest solution of equation

is given by £(t) = />\ %
i>t

Proof

e Let us first show that ¢ is solution of Eq. (5).



vVt € 7,
_ C()®(i,t+1) ) §2(4
E(t+1) A 2B _ iz/t\+1[( (el ))§ ()]./\ z(t)
A(t+1)" N Cb) A(t+1) C(t)
- . z(4) CA 2D
COP i+ AR /N TF)

i>t+1
(thanks to f.2 and f.3)

_ __z() z(t)
= >{\ | T AWeIRr e
(B(t,1) = Id)
= /\ C(z)zg()zt
= (1)
e Let {{(f)},cz a solution of Eq. (5), we have Vi € Z
1
_Elt+to) o= O
t) = A L o> 1.
€O= 30700 N\ GoeGy 02

With o — +00, it is clear that V¢, £(t) < £(t). O

Finally, wu,pt is the greatest solution of

D) ()
W AEFD New wez.  (6)
ult) = pay

The initial conditions of recurrence of these equations may
be: 3 T such that Vt > T},

1. z(t) = 2(Ty), &(t) = &(Ty),

2. A(t) = A(Ty), B(t) = B(T}) et C(t) = C(Ty).

For ¢t > T, the first equation is hence implicit, i.e.,

&(Ty)  2(Ty)

Ay oy

£(Ty) =

and we select the greatest solution:

, 2(Ty) .
C(Ty)A(Ty)"B(Ty)

£(Ty) =

For a manufacturing system, assumption 1. means that
production must be controlled over a finite temporal hori-
zon. Beyond a final instant T, the output to be tracked
and the ’'co-state’ ¢ are in fact supposed to remain con-
stant. Assumption 2. comes down to considering that the
parameters of the system are also constant after 1'.

5 Example

We consider the manufacturing system of figure 1,
described in section 1, with d = 1 (handling time of a
part) and ¢; = ¢» = 0 (travelling times). The upper part
of figure 2 represents the trajectories of the output to be
tracked z, of the optimal control u,,; computed with Egs.
(6), and of the output response y to oy computed with

Egs. (1).

The lower curve represents the evolution of a(t) which
gives the number of working machines at time ¢. It has
been supposed that two machines normally work in the
workshop. One of these has to be shutdown (e.g. due to
planned maintenance) between instants ten and fourteen.
We see that the response output y to the computed
optimal control u,y,: is greater than the trajectory z. In
term of manufacturing system, the customer demand is
always satisfied.

Between instants ten and fourteen, only one machine is

running, and the customer demand rate is two parts per
unit of time (sequence in the grey box labeled (b)). The
control input wu,p; (one raw part released per unit of time)
is then such that the machine works at its maximum rate,
but the resulting production remains slower than the cus-
tomer demand. This slowing down has been anticipated
between instants three and seven (sequence in the grey
box labeled (a)). In fact, the customer demand is then
equal to one part per unit of time whereas two machines
are running. The control input is then such that finished
parts are produced ahead of customer demand. The antic-
ipated production of finished parts is not possible between
instants seven and ten since the desired production rate
(two parts per unit of time) is then equal to the maximum
production rate of the workshop.
More generally note that the release of raw parts always
occurs ’at the latest’” so that the customer demand is
achieved. In other words, the control input u,,: satisfies
the just-in-time criterion.
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Figure 2: Application of the optimal control



6 Conclusion

We have considered the class of DEDS involving exclu-
sively synchronization phenomena for which parameters
may vary as functions of time. For a manufacturing sys-
tem, these varying parameters are typically the number
of working machines (often considered as ’re-usable re-
sources’), or the number of withdrawn parts for confor-
mance test (‘non-re-usable resources’). A linear state
model with time-varying coefficients or an input/output
relationship (the coefficients of the impulse response de-
pend both upon the instant of observation, and upon the
instant of application of the unit pulse) can be obtained
in (min,+) algebra. We propose an optimal output track-
ing solution under just in time criterion. The proposed
optimal control, based on residuation theory, is a simple
extension of an existing result for (min,+) linear time-
invariant systems.

The linear system theory over dioids offers an interest-
ing property in that: systems can be studied both in the
time domain with the (min,+) algebraic structure and in
the event domain with a dual algebraic structure - the
(max,+) algebra. We are besides trying to develop the
ideas of this paper in the (max,+) algebraic structure. In
a manufacturing system, the parameters we may then al-
low to vary would be for example the processing times or
the transportation times.

References

1] A.Halanay and V. Ionescu. Time-Varying Discrete Linear
y ying
Systems. Birkhaiiser Verlag, 1994.

[2] F.Baccelli, G. Cohen, G.J. Olsder, and J.P. Quadrat. Syn-
chronization and Linearity. Wiley, 1992.

[3] G. Cohen, S. Gaubert, and J.P. Quadrat. Algebraic sys-
tem analysis of timed Petri nets. In J. Gunawardena,
editor, Idempotency.

[4] S. Gaubert. Théorie des systémes linéaires dans les
dioides. These, Ecole des Mines de Paris, July 1992.

[65] E. W. Kamen. Fundamentals of linear time-varying sys-
tems. In W. S. Levine, editor, The Control Handbook.
CRC Press, 1996.

[6] Lahaye S., Boimond J.L., and Hardouin L. Graphes
d’événements temporisés avec ajout/retrait dynamique de
jetons : représentation dans l’algébre (min,+). In Proceed-
ings of MSR’99, 1999.

[7] E. Menguy. Contribution & la commande des systémes
linéaires dans les dioides. Ph. d. thesis, ISTIA - Université
d’Angers, Nov 1997.

[8] T. Murata. Petri Nets : Properties, Analysis and Ap-
plications. In Proceedings of the IEEE, volume 77, pages
541-580, 1989.

[9] M. Plus. A linear system theory for systems subject to
synchronization and saturation constraints. In Proceedings
of the first European Control Conference, Grenoble, July
1991.

[10] M. Plus. Second order theory of min-linear systems and
its application to discrete event systems. In Proceedings
of the 30th CDC, Brighton, Dec. 1991.



