
Optimal Control of (min,+) Linear Time-Varying SystemsLahaye S�ebastien � Boimond Jean-Louis � Hardouin Laurent �AbstractThe class of discrete event dynamic systems involvingonly synchronization phenomena can be seen as lineartime-invariant systems in a particular algebraic structurecalled (min, +) algebra. In the same framework, thispaper deals with linear time-varying systems, that is,systems whose parameters may change as functionsof time. For example, in a manufacturing system thenumber of working machines, or the number of trainsrunning in a closed network of railway connections, canvary as functions of time. For such systems, the outputtracking problem is optimally solved under just-in-timecriterion.Keywords: Discrete event dynamic system, time-varyingsystem, just-in-time control1 IntroductionA linear system theory analogous to the conventional the-ory has been developed for a particular class of DiscreteEvent Dynamic Systems (DEDS) subject to synchroniza-tion phenomena. Such systems - usually represented withTimed Event Graphs (TEG) - can be modeled by (min,+)linear equations. General concepts such as state space,impulse response and transfer function have been intro-duced [2], [10], [4]. These systems are seen as linear time-invariant (or stationary) systems over the (min,+) alge-braic structure. An optimal solution to the output track-ing problem under just in time criterion has also beengiven [2, x5.6], [7].In this paper, we generalize the synthesis of this optimalcontrol to (min,+) linear time-varying systems. We pro-pose a basic example which aims at illustrating the classof systems as well as the 'optimal tracking problem' con-sidered. We study here the simple manufacturing systemof �gure 1.a which operates as follows. Parts come into aworkshop and reach a FIFO storage after a travelling timec1 on a �rst conveyor. This storage is located upstreama pool of machines working in parallel. Each part is han-dled as soon as possible by some machine, and spends dunits of time on a machine. The number of machines onrunning (idle or busy) is a function of time, due for ex-ample to planned maintenance or manufacturing resource�LISA, 62 avenue Notre Dame du Lac, 49000 Angers.E-mail : flahaye, boimond, hardouing@istia.univ-angers.fr

scheduling. Once processed, parts leave the workshop ona second conveyor (travelling time c2).Let us consider the following variables for this system:� u(t): cumulated number of raw parts released on the�rst conveyor up to time t,� x1(t): cumulated number of parts having left the stor-age up to time t,� x2(t): cumulated number of parts loaded on the sec-ond conveyor up to time t,� y(t): cumulated number of �nished parts up to time t,� a(t): number of working machine(s) at time t.Notice that u, x1, x2, y are non-decreasing functions, usu-ally called counter functions [2, x5], whereas a may be notmonotonic.
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Figure 1: A manufacturing system (a) and its Petri netmodel (b)The travelling time c1 on the �rst conveyor implies that:8t; x1(t) � u(t� c1) ,on the other hand, since the processing time of a part isequal to d units of time, and assuming that a machine canbe shutdown only when it is idle, we have:8t; x1(t) � a(t) + x1(t� d) ,hence, considering that a part is handled as soon as pos-sible, we obtain:8t; x1(t) = min [a(t) + x1(t� d) ; u(t� c1)] .1



Further, we have that 8t,x2(t) = x1(t� d), and y(t) = x2(t� c2) .Finally, the manufacturing system obeys the following re-current equations where min and + are replaced respec-tively by � and 
 (as in (min,+) algebra):8<: x1(t) = a(t)
 x1(t� d)� u(t� c1)x2(t) = x1(t� d)y(t) = x2(t� c2) .The question we shall address in this paper can be formu-lated as follows. Being given:� the dates of activation and shutdown of the machines(i.e., a(t) is known 8t),� an output trajectory to be tracked, denoted fz(t)gt2Z(the customer demand),what are the latest dates of release of raw parts whichallow meeting the customer demand? In other words, wewill compute the least input trajectory fu(t)gt2Z such thatthe output response fy(t)gt2Z is greater than the customerdemand fz(t)gt2Z.In �gure 1.b, the manufacturing system is modeled bya Petri net (see among others [8] for an exhaustive pre-sentation of Petri net theory). The workshop, which in-volves exclusively synchronization phenomena, is classi-cally modeled by a TEG model (black part of the graph).The variation of the number of working machines is en-abled thanks to the additional transitions i and o (greypart of the graph). In [6], we have shown using the gen-eral algebraic model of Petri nets presented in [3] that asubclass of Free Choice Petri Net, and in particular thegraph of �g. 1, can be modeled after various manipula-tions by the following standard linear equations in (min,+)algebra:� x(t) = A(t)
 x(t� 1)�B(t) 
 u(t)y(t) = C(t)
 x(t) : (1)If d = 1, c1 = c2 = 0 unit of time, we have:x(t) = [x1(t) x2(t)]T , u(t) = [u(t)], y(t) = [y(t)]and A(t) = � a(t) +10 +1 � , B(t) = � 0+1 � ,C(t) = � +1 0 � .As an illustration, let us explain brie
y how to obtainthese evolution equations (see [2],[3] for exhaustive presen-tations of algebraic modelling of Petri nets). To describethe behavior of the graph, �rings of transitions are countedduring its evolution. For that, let us de�ne the variablex1(t) to denote the cumulated number of �rings of transi-tion labeled x1 at time t (and identically for u, x01, x2, y,i, o). We have the obvious inequalities:x1(t) � min �u(t); x01(t)�;

x2(t) � x1(t� 1);y(t) � x2(t):Considering that the Petri net operates as soon as possible,i.e., a transition is �red as soon as it is enabled, we haveequalities:x1(t) = min �u(t); x01(t)� = u(t)� x01(t);x2(t) = x1(t� 1);y(t) = x2(t):The equation for x01 requires more attention because theupstream place has two output transitions, x01 and o. Sucha structure is referred to as a con
ict and exhibits a non-determinism. The classical approach for solving con
icts,called race policy, comes down to considering that, amongthe con
icting transitions, the �rst one to be ready to �re"wins the race" and �res (the other transition "loses therace", and its enabling is preempted by the con
ict). Notethat in our Petri net, con
icting transitions have null �r-ing times and are not synchronized (only one upstreamplace), so that the race policy would always result in a tieand could not decide which one is going to �re. With an-other approach, called preselection policy (or routing pol-icy), con
icts are solved thanks to a protocol, algorithm ormapping which selects one of the con
icting transitions to�re. We consider here that con
icts are solved accordingto the preselection policy, assuming moreover that vari-ables i(t) as well as o(t) are known or measured a priori(as exogenous data). With this assumption, we can write:x01(t) + o(t) = x2(t) + i(t);or, x01(t) = a(t) + x2(t) = a(t)
 x2(t);where a(t) = i(t)� o(t) is a known parameter.Finally, we obtain:x1(t) = x01(t)�u(t) = a(t)
x2(t)�u(t) = a(t)
x1(t�1)�u(t);x2(t) = x1(t� 1);y(t) = x2(t);which yields to Eqs. (1).The Eqs. (1) only di�er from the standard ones of TEGby the fact that elements of matrices A(�), B(�) and C(�)are functions of time.The outline of the paper is as follows. In x2, we recallthe elements of (min,+) algebra and residuation whichwe shall use throughout the paper. In x3, we study lin-ear systems over dioids. In particular, the impulse re-sponse of time-varying systems is expressed from theirstate model (1). The optimal control is presented andillustrated through a short example in x4 and x5.2



2 Preliminaries2.1 DioidA dioid is a set D endowed with two inner operations (�,
) such that:� both � and 
 are associative and have neutral ele-ments denoted respectively " and e,� 
 is distributive with respect to �,� " is absorbing for 
 (8a 2 D, a
 " = "
 a = "),� � is idempotent (8a 2 D, a� a = a).If 
 is commutative, D is called a commutative dioid.In any dioid, a natural order is de�ned by:a � b, a� b = b .(D;�) is a complete dioid if each subset A of D admitsa least upper bound denotedMx2Ax = supx2Ax;and if 
 distributes with respect to in�nite sums. In par-ticular, T = Mx2D x = supx2Dx;is the greatest element of D.In a complete dioid, the greatest lower bound, noted ^,always exists; a ^ b = Mx�a;x�bx:Example 1 Let Zmin be the set Z[f�1g endowed withmin as � and usual addition as 
. It is a complete com-mutative dioid with neutral elements " = +1 and e = 0(T = �1). Note that order (�) in Zmin is just reversedwith respect to the usual order (�).Example 2 In this paper, we consider counter functions,i.e., non-decreasing functions: Z ! Zmin. This set, de-noted �, can be endowed with� pointwise min as �(u� v)(t) = u(t)� v(t) = min(u(t); v(t));� the sup-convolution as multiplication, noted �(u�v)(t) =Ms2Z[u(t�s)
v(s)] = mins2Z[u(t�s)+v(s)]:(�, �, �) is a complete dioid with neutral elements de�nedby "(t) = +1, 8t 2 Z, and e(t) = � 0 ; t � 0+1 ; t > 0 .The natural order over this dioid is de�ned by:

u � v , u(t) � v(t); 8t 2 Z:Theorem 1 (see [2, x4.5.3]) In a complete dioid, theparticular implicit equationx = a
 x� badmits a�b as least solution, witha� =Mi�0 ai and a0 = e:Example 3 Starting from a "scalar" dioid D, let us con-sider p�p matrices with entries in D. The sum and prod-uct of matrices are de�ned conventionally from the sumand product of scalars. This set of matrices endowed withthese two operations is also a dioid denoted Dp�p. Notethat n-dimensional row or column vector problems canbe handled by embedding such vectors in square matriceswith n�1 additional arbitrary (identically equal to ") rowsor columns.2.2 ResiduationResiduation is a general notion in lattice theory whichallows de�ning 'pseudo-inverses' of some isotone maps (fis isotone if a � b) f(a) � f(b)).Laws � and 
 of a dioid are not invertible in general.Residuation is hence used to 'solve' equations of the typea
 x = b, x
 a = b. We will use residuation here to �nd'greatest subsolutions' of such equations.De�nition 1 An isotone map f : C ! D, where C and Dare ordered sets, is said to be residuated if it exists anisotone map h : D ! C such thatf � h � IdD , and h � f � IdC :IdC and IdD are identity maps of C and D respectively. his unique and is denoted f ]. It is called the residual off .If f is residuated then 8y 2 D, the least upper bound ofsubset fx 2 Cjf(x) � yg exists and belongs to this subset.This greatest subsolution is equal to f ](y).Property 1 (see [2, x4.4]) Let C a complete dioid, theisotone map La : x ! a 
 x de�ned on C is residuated.The greatest solution of inequation a 
 x � b thereforeexists and is equal to La](b), also denoted a �nb or ba .The isotone map Ra : x ! x 
 a is also residuated. Thegreatest solution of inequation x 
 a � b will be denotedb�=a or ba .These 'quotients' satisfy the following formul�a
 (a �nx) � x (x�=a)
 a � x (f:1)3



a �n(x ^ y) = (a �nx) ^ (a �ny) (x ^ y)�=a = (x�=a) ^ (y�=a) (f:2)(a
 b) �nx = a �nxb x�=(a
 b) = x�=ba (f:3)Let us note that formula f:1 is a simple deduction fromde�nition 1:La � La] � IdC , �La � La]�(x) = a
 (a �nx) � x,and,Ra �Ra] � IdC , �Ra �Ra]�(x) = (x�=a)
 a � x.Let us recall a necessary and su�cient condition for amap de�ned on complete dioids to be residuated.Theorem 2 (see [2, x4.4.2, th. 4.50]) Let f be anisotone mapping from a complete dioid C into a completedioid D. The map f is residuated if, and only if, f(") = ",and for every subset X of Cf  Mx2X x! = Mx2X f(x) .3 Linear systems3.1 Representation of linear systemsA system S is a mapping from the set of admissible in-put signals to the set of admissible output signals. Inthis paper, the signals of interest are 'counters', i.e., non-decreasing functions: Z! Zmin. In example 2, we havedenoted � this set of signals. So that it constitutes a set ofadmissible signals, this set must be endowed with a kindof vector space structure by de�ning the two following op-erations:� pointwise minimum (i.e., addition in Zmin) of timefunctions, which plays the role of inner addition ofsignals:8t; (u� v)(t) , u(t)� v(t) = min (u(t); v(t)) ;� addition of (i.e., product in Zmin by) a constant,which plays the role of external product of a signalwith a scalar:8t; (a � u)(t) , a
 u(t) = a+ u(t):In [4], [9], a theory for systems de�ned on these structuresof signals has been developed by analogy with conventionalsystem theory. In the following, we recall some results�tted to our framework.De�nition 2 A system S is called linear over Zmin, or(min,+) linear, ifS(u1 � u2) = S(u1)� S(u2) = min (S(u1);S(u2))and, 8a 2 Z,S(a � u(�)) = a
 S(u(�)) = a+ S(u(�)):

De�nition 3 A system is said to be continuous if, forany �nite or in�nite collection fuigi2I , it satis�esS  Mi2I ui! =Mi2I S(ui):De�nition 4 A system is said to be causal if 8u1, u2,u1(t) = u2(t) for t < � ) [S(u1)](t) = [S(u2)](t) for t < � .The notion of impulse response has also been intro-duced in [4, chap. V], [9], [2]. In particular, for systemsde�ned on �, we have the following characterization [4,chap. V, x3.2].Theorem 3 Let S: � ! � a linear continuous system,then there exists a unique mapping h : Z2! Zmin (calledimpulse response) such that1. 8s 2 Z; t! h(t; s) 2 �2. 8t 2 Z; s! h(t;�s) 2 �3. y = S(u) can be obtained by y(t) = Ls2Z[h(t; s)
u(s)],8t 2 Z.For systems de�ned on �, the impulse is the signaldenoted e0 and de�ned bye0(t) = � e (= 0) ; t � 0" (= +1) ; t > 0 .When the system is modeled by a Petri net (as in intro-duction), such an input comes down to �ring the sourcetransition u an in�nity of times after time 0 (so that anin�nity of tokens are released).Corollary 1 A linear continuous system S over � iscausal if, and only if, its impulse response h satis�esh(t; s) = h(t; t), for s > t.Remark 1 As in conventional linear theory, the impulseresponse h(t; j) of a time-invariant (or stationary) systemonly depends upon the di�erence t� j.From now on, we will only consider causal continuouslinear systems, and for sake of briefness, we will most oftimes only write 'linear systems'.3.2 Input/output relationship of (min, +)linear time-varying systemsStarting from the standard state model (1), we will hereexplicit the input/output relationship and identify the im-pulse response of such (min,+) linear time-varying sys-tems.The �rst equation of (1) can also be written,x(t) = �(t; t0)x(t0)� tMj=t0+1�(t; j)B(j)u(j) , t � t0where the state-transition matrix �(t; i) is given by4



�(t; i) = 8<: not de�ned ; i > tId ; i = tA(t) 
A(t� 1)
 � � � 
A(i+ 1) ; i < t .Then we have, for t � t0y(t) = C(t)�(t; t0)x(t0)� tMj=t0+1C(t)�(t; j)B(j)u(j). (2)Remark 2 The state-transition matrix satis�es the com-position property�(t; i) = �(t; k)
 �(k; i) , where t � k � i ,and in particular for t � i+ 1�(t; i) = A(t)�(t � 1; i), �(t; i) = �(t; i+ 1)A(i+ 1).Proposition 1 The least solution of Eqs. (1) is given by8t 2 Z; y(t) =Mj�t h(t; j)u(j) (3)with h(t; j) = C(t)�(t; j)B(j), for j � t: (4)Proof By tending t0 towards �1 in Eq. (2), it is clearthat any solution is greater than y.Setting y(t) = C(t)x(t) with x(t) =Lj�t �(t; j)B(j)u(j),we show that x satis�es the �rst equation of (1):x(t) = Lj�t �(t; j)B(j)u(j)= Lj�t�1 �(t; j)B(j)u(j) �B(t)u(t)= A(t) hLj�t�1 �(t� 1; j)B(j)u(j)i�B(t)u(t)(thanks to rem. 2)= A(t)x(t� 1)�B(t)u(t) �The expression of impulse response h can be extendedin a causal manner (see corollary 1) by settingh(t; j) = C(t)B(t) for j > t,which yields to:y(t) = Lj�th(t; j)u(j) = Lj2Zh(t; j)u(j) (3')since for j > t, u(j) � u(t), and by isotony of 
:h(t; j)u(j) = h(t; t)u(j) � h(t; t)u(t)Remark 3 For conventional discrete-time linear time-varying systems [5], [1], the input/output relationship isgiven by: y(k) = kXj=�1 h(k; j)u(j) .

The analogy with formula (3) should be clear.Given an input trajectory fu(t)gt2Z, the least solutionof Eqs. (1) is the output response for which the numberof events having occurred up to time t 2 Z is the greatest(remember that the order in Zmin is reversed with respectto the usual). Selecting this solution corresponds there-fore to consider the least constraining conditions for theevolution of the system. This means not only that thesystem operates 'as soon as possible' (think of parts han-dled as soon as a machine is available in example), but alsothat we have selected the initial conditions which generatethe greatest possible output (also called canonical initialconditions). When considering causal signals of �, i.e.,for t < 0 u(t) = u(0), x(t) = x(0) and y(t) = y(0), aswell as A(t) = A(0), B(t) = B(0), C(t) = C(0), the �rstequation of (1) is implicit, i.e.,x(0) = A(0)x(0)�B(0)u(0) .So the least solution (greatest with respect to usualorder), x(0) = [A(0)]�B(0)u(0) (thanks to th. 1), is thecanonical initial state.In the next section, we compute a control input uopt (op-timal under just in time criterion) assuming that matricesA(t), B(t), C(t) are known for all t and de�ne a systemon �. If elements of these given matrices are constantor non-decreasing, solutions x and y of Eqs. (1) are obvi-ously non-decreasing (in other words, these given matricesactually de�ne a system on �). But, as noticed in intro-duction, we consider that the elements of these matricesmay not be monotonic functions (possibly decreasing onan interval). One should then be aware that being given u,a non-decreasing input, some given fA(t), B(t), C(t)gt2Zmay generate non-monotonic state x and output y. So,before computing the control input, it will be necessary tocheck that the given matrices fA(t), B(t), C(t)gt2Zde�nea system on �.Conditions 1 : and 2 : of theorem 3 characterize impulseresponses of systems de�ned on �. Using expression 4,we just have to check that the given matrices satisfy thefollowing conditions:8t; j 2 Z; t � j;C(t+ 1)�(t+ 1; j)B(j) � C(t)�(t; j)B(j);and, C(t)�(t; j � 1)B(j � 1) � C(t)�(t; j)B(j):established from those of theorem 3. If the given matricesfA(t), B(t), C(t)gt2Z satisfy these conditions, for all non-decreasing input u, solution y of Eq.(1) is non-decreasing(in other words, these matrices de�ne a system on �). Toensure furthermore that the state x is also non-decreasing,the given matrices must satisfy:8t; j 2 Z; t � j;�(t+ 1; j)B(j) � �(t; j)B(j);5



and, �(t; j � 1)B(j � 1) � �(t; j)B(j):4 Optimal controlLet S a linear system de�ned on �, the output y can bewritten y = H(u);where H: (�; �; �)! (�; �; �) is de�ned by:[H(u)] (t) =Ms2Zh(t; s)u(s)(h(t; s) is the impulse response of S).Denoting z 2 � the output signal to be tracked, theoptimal control, denoted uopt, is de�ned byuopt = Supfu 2 � j y � zg .uopt is the greatest solution of inequation H(u) � z. Re-membering that the order � is just reversed with the usualorder, fuopt(t)gt2Z is the least input trajectory such thatfor all t the output response fy(t)gt2Z is greater than theoutput to be tracked fz(t)gt2Z. For a manufacturing sys-tem, this control input, which gives the latest dates ofrelease of raw parts such that the customer demand issatis�ed, ful�lls the so-called just-in-time criterion.This greatest solution exists if map H is residuated.(�; �; �) being a complete dioid (see example 2), we onlyneed to show that H satis�es the conditions of theorem 2:� 8t 2 Z; �H(")�(t) = Ls2Zh(t; s)"(s) = "(t)� 8t 2 Z; �H(Li ui)�(t) = Ls2Zh(t; s)Li ui(s)= Li Ls2Zh(t; s)ui(s)= �Li H(ui)�(t)Control input uopt therefore exists and is de�ned by:uopt = H](z) .Proposition 2 Controls uopt(t), t 2 Z, are de�ned by,uopt(t) = �H](z)�(t) = î�t (h(i; t) �nz(i))Proof We denote w the signal de�ned by:8t 2 Z, w(t) = î�t (h(i; t) �nz(i)) :

1. Let x satisfying H(x) � zor equivalently,8t 2 Z; Ls2Zh(t; s)x(s) = Ls�th(t; s)x(s) � z(t)8t; s 2 Z; s � t; h(t; s)x(s) � z(t)8t; s 2 Z; s � t; x(s) � h(t; s) �nz(t)8s 2 Z; x(s) � Vt�s (h(t; s) �nz(t)) = w(s)2. 8t 2 Z,Ls2Zh(t; s)w(s) = Ls2Zhh(t; s)� Vi�s z(i)h(i;s) �i �Ls2Z�h(t; s) (h(t; s) �nz(t)) � � Ls2Zz(t) = z(t),which shows that w is solution of H(x) � z. �In the following, we show that uopt is solution of asystem of recurrent equations which proceed backwardsin time. These equations o�er a strong analogy with theadjoint-state equations of optimal control theory. Theseequations are an extension to the time-varying case of anexisting result for (min,+) linear time-invariant systems[2, x5.6]. Firstly, let us remark thatuopt(t) = Vi�t z(i)h(i;t) = Vi�t z(i)C(i)�(i;t)B(t)= Vi�th�C(i)�(i;t)� �nz(i)iB(t)(thanks to f.2 and f.3)= �(t)B(t)setting �(t) = Vi�t z(i)C(i)�(i;t) .Proposition 3 The greatest solution of equation�(t) = �(t+ 1)A(t+ 1) ^ z(t)C(t) (5)is given by �(t) = Vi�t z(i)C(i)�(i;t)Proof� Let us �rst show that � is solution of Eq. (5).6



8t 2 Z;�(t+1)A(t+1) ^ z(t)C(t) = Vi�t+1h�C(i)�(i;t+1)� �nz(i)iA(t+1) ^ z(t)C(t)= Vi�t+1 z(i)C(i)�(i;t+1)A(t+1) ^ z(t)C(t)(thanks to f.2 and f.3)= Vi�t+1 z(i)C(i)�(i;t) ^ z(t)C(t)�(t;t)(�(t; t) = Id)= Vi�t z(i)C(i)�(i;t)= �(t)� Let f�(t)gt2Z a solution of Eq. (5), we have 8t 2 Z�(t) = �(t+ t0)�(t+ t0; t) ^ t+t0�1ĵ=t z(j)C(j)�(j; t) , t0 � 1 .With t0 ! +1, it is clear that 8t, �(t) � �(t). �Finally, uopt is the greatest solution of( �(t) = �(t+1)A(t+1) ^ z(t)C(t)u(t) = �(t)B(t) ;8t 2 Z . (6)The initial conditions of recurrence of these equations maybe: 9 Tf such that 8t > Tf ,1. z(t) = z(Tf ), �(t) = �(Tf ),2. A(t) = A(Tf ), B(t) = B(Tf ) et C(t) = C(Tf ).For t > Tf , the �rst equation is hence implicit, i.e.,�(Tf ) = �(Tf )A(Tf ) ^ z(Tf )C(Tf ) ,and we select the greatest solution:�(Tf ) = z(Tf )C(Tf )A(Tf )�B(Tf ) .For a manufacturing system, assumption 1: means thatproduction must be controlled over a �nite temporal hori-zon. Beyond a �nal instant Tf , the output to be trackedand the 'co-state' � are in fact supposed to remain con-stant. Assumption 2: comes down to considering that theparameters of the system are also constant after Tf .5 ExampleWe consider the manufacturing system of �gure 1,described in section 1, with d = 1 (handling time of apart) and c1 = c2 = 0 (travelling times). The upper partof �gure 2 represents the trajectories of the output to betracked z, of the optimal control uopt computed with Eqs.(6), and of the output response y to uopt computed with

Eqs. (1).The lower curve represents the evolution of a(t) whichgives the number of working machines at time t. It hasbeen supposed that two machines normally work in theworkshop. One of these has to be shutdown (e.g. due toplanned maintenance) between instants ten and fourteen.We see that the response output y to the computedoptimal control uopt is greater than the trajectory z. Interm of manufacturing system, the customer demand isalways satis�ed.Between instants ten and fourteen, only one machine isrunning, and the customer demand rate is two parts perunit of time (sequence in the grey box labeled (b)). Thecontrol input uopt (one raw part released per unit of time)is then such that the machine works at its maximum rate,but the resulting production remains slower than the cus-tomer demand. This slowing down has been anticipatedbetween instants three and seven (sequence in the greybox labeled (a)). In fact, the customer demand is thenequal to one part per unit of time whereas two machinesare running. The control input is then such that �nishedparts are produced ahead of customer demand. The antic-ipated production of �nished parts is not possible betweeninstants seven and ten since the desired production rate(two parts per unit of time) is then equal to the maximumproduction rate of the workshop.More generally note that the release of raw parts alwaysoccurs 'at the latest' so that the customer demand isachieved. In other words, the control input uopt satis�esthe just-in-time criterion.
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Figure 2: Application of the optimal control
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6 ConclusionWe have considered the class of DEDS involving exclu-sively synchronization phenomena for which parametersmay vary as functions of time. For a manufacturing sys-tem, these varying parameters are typically the numberof working machines (often considered as 're-usable re-sources'), or the number of withdrawn parts for confor-mance test ('non-re-usable resources'). A linear statemodel with time-varying coe�cients or an input/outputrelationship (the coe�cients of the impulse response de-pend both upon the instant of observation, and upon theinstant of application of the unit pulse) can be obtainedin (min,+) algebra. We propose an optimal output track-ing solution under just in time criterion. The proposedoptimal control, based on residuation theory, is a simpleextension of an existing result for (min,+) linear time-invariant systems.The linear system theory over dioids o�ers an interest-ing property in that: systems can be studied both in thetime domain with the (min,+) algebraic structure and inthe event domain with a dual algebraic structure - the(max,+) algebra. We are besides trying to develop theideas of this paper in the (max,+) algebraic structure. Ina manufacturing system, the parameters we may then al-low to vary would be for example the processing times orthe transportation times.References[1] A.Halanay and V. Ionescu. Time-Varying Discrete LinearSystems. Birkha�user Verlag, 1994.[2] F. Baccelli, G. Cohen, G.J. Olsder, and J.P. Quadrat. Syn-chronization and Linearity. Wiley, 1992.[3] G. Cohen, S. Gaubert, and J.P. Quadrat. Algebraic sys-tem analysis of timed Petri nets. In J. Gunawardena,editor, Idempotency.[4] S. Gaubert. Th�eorie des syst�emes lin�eaires dans lesdio��des. Th�ese, Ecole des Mines de Paris, July 1992.[5] E. W. Kamen. Fundamentals of linear time-varying sys-tems. In W. S. Levine, editor, The Control Handbook.CRC Press, 1996.[6] Lahaye S., Boimond J.L., and Hardouin L. Graphesd'�ev�enements temporis�es avec ajout/retrait dynamique dejetons : repr�esentation dans l'alg�ebre (min,+). In Proceed-ings of MSR'99, 1999.[7] E. Menguy. Contribution �a la commande des syst�emeslin�eaires dans les dio��des. Ph. d. thesis, ISTIA - Universit�ed'Angers, Nov 1997.[8] T. Murata. Petri Nets : Properties, Analysis and Ap-plications. In Proceedings of the IEEE, volume 77, pages541{580, 1989.[9] M. Plus. A linear system theory for systems subject tosynchronization and saturation constraints. In Proceedingsof the �rst European Control Conference, Grenoble, July1991.[10] M. Plus. Second order theory of min-linear systems andits application to discrete event systems. In Proceedingsof the 30th CDC, Brighton, Dec. 1991. 8


