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ABSTRACTOUr aim is to demonstrate that the approach developed for Timed Event Graphs over
(min,+) algebra may be extended to a broader subclass of Petri Nets. The considered graphs
can be seen as Timed Event Graphs on which some source and/or sink transitions are added to
some places.

Elements of performance evaluation and the linear representation of these systems over the
(min,+) algebra (state model with variable parameters and input-output relationship) are pro-
posed.

RESUMENotre but est de montrer que I'approche développée dans l'algebre (min,+) pour les
graphes d’événements temporisés peut s’étendre a une sous-classe plus large de réseaux de Pe-
tri. Les graphes considérés peuvent étre vus comme des graphes d’événements temporisés sur
lesquels des transitions source et/ou puits sont adjointes a certaines places.

Des éléments d’'évaluation de performance, et la représentation linéaire de ces graphes dans
I'algébre (min,+) (modele d’état a parametres variables et relation entrée-sortie) sont donnés.
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1. Introduction

Timed Event Graphs (TEG's), which constitute a subclass of timed Petri nets,
are well adapted to model Discrete Events Dynamic Systems involving synchroniza-
tion and saturation phenomena. Their dynamic behaviors can be described by lin-
ear equations in a particular algebraic structure cadlieid, and a system theory
has been developed by analogy with conventional linear system theory [BCOQ92],
[CMQV89], [MP91]. One can quote results concerning performance evaluation
[CMQV89] [Gau95], stabilization [BCOQ92, §6.6] [CHBF99] and control [BCOQ92,
85.6] [BF96]. Our goal is to show that a similar algebraic approach can be extended
to a subclass of Timed Free Choice Nets (timed Petri nets for which synchronization
phenomena and conflicts are distinct [Mur89], [Gau94]). More precisely, we define a
class of timed Petri nets, call@dEG’s with variable resourcesvhich can be likened to
linear time-varying systems ovénin, +) algebra- a particular dioid. These graphs
(TEG’s on which source and/or sink transitions are added to certain places) can be
modeled by linear equations with variable parametefsiin, +) algebra and admit
an input-output relationship in which tlmpulse responsis a bivariate function ma-
trix h(t, j). Anentry[h(t, j)],,, is the response at timeof outputy resulting from an
impulse applied at timg on inputu (with no initial energy in the system).

In order to illustrate the considered class of graphs and its modeling power, let us
consider the TEG represented in figure 1(a). It models a simple manufacturing system
composed of two machines working in parallel and a conveyor. Each part is handled
as soon as possible by one of the two machines (processing time eguyalnits of
time), and then leaves the workshop on a conveyor (travelling time equal tioits
of time).

In this article, we will be capable of studying for example the system modeled by
the graph represented in figure 1(b) which has been built starting from the TEG of the
figure 1(a):

. The firing of the additional transitions labelédando, causes respectively the
addition and the withdrawal of one token in the circuit - z2 — x4 — x4,
and thus enables to model a variation of the number of machines working in
parallel. This variation can, for example, be due to planned maintenance or
manufacturing resource scheduling.

. The firing of the additional transitions ando, models respectively the addi-
tion and the withdrawal of one part downstream the pool of machines due for
example to a conformance test.

The outline of the paper is as follows. In section 2, we recall definitions and nota-
tions of the Petri net theory we shall use. The class of graphs, named thefé&a®sr
with variable resourcess defined in section 3. Elements of performance evaluation
of the systems modeled by these graphs are given in section 4. In particular, we study
their asymptotic throughputs. Section 5 is devoted to their modelifgin, +) alge-
bra. We show thafEG'’s with variable resourcesan be modeled bgmin, +) linear
equations with variable parameters, and specify the input-output relationship.
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Figure 1. ATEG (a), a TEG with variable resources (b)
2. Timed Petri nets

In this section, we introduce definitions and notations of the Petri net theory we
shall use throughout the paper (the reader is advised to consult [Mur89] for an exhaus-
tive presentation).

An ordinaryTimed Petri Ne{TPN) is a five-tuplgP, Q,C, M, ), in whichP is
a finite set ofplaces Q is a finite set oftransitions C C (P x Q) U (Q x P) is a
relation between places and transitions,c N” andr € N” are two vectors. The
integers)M,, andr, are called respectively tharitial marking and theholding timeof
placep € P. A Petri net is a bipartite graph with two different kinds of nodes, places
p € P (represented by circles), and transitigns Q (represented by rectangles). An
element ofC is an arc from a transition to a place or from a place to a transition. The
initial marking A/, is displayed by drawind/, tokens in place. A Petri netis a
dynamic object, its marking evolves according to the following (earlfesty rule:

1. A transitiong € Q firesas soon as each upstream place contains at least one
availabletoken.

2. When transitiory fires, it consumes one token in each upstream place, and
produces one token in each downstream place. A token added inpdatene
t becomesvailableat instantt + 7,,.

Letq € Q, we denote by’q = {p € P|(p,q) € C} (respectivelyg® = {p €
P|(g,p) € C}) the set of upstream (respectively, downstream) places \0fe define
similarly the set$'p, p* as the set of upstream transitions and the set of downstream
transitions of place.

A timed event grapfiTEG) is a TPN such that each place has exactly one upstream
transition and one downstream transitioa, Vp € P, |*p| = |p*| = 1.

A timed free-choice ndfTFCN) is a TPN verifying the following condition

Vp € P,q,q2 €p°% if 1 # g2 then®qs = *q2 = {p}.

In other words, if two transitions share an upstream place, they have no other upstream
place. TFCN'’s enable to model systems for which synchronization phenomena (mod-
eled by transitions with several upstream places) and conflicts (modeled by places
with several downstream transitions) are distinct. Let us note that a TEG is a TFCN.
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3. TEG with variable resources

Definition 1 (TEG with variable resources) A TEG with variable resources is a
TFCNG = (P,QUZ U O,C, M, 1) satisfying the following conditions:

1. Go=(P,Q,Co,M,T)wWithCo C (P x Q)U(Q x P)isaTEG,i.e.,
VpeP,|QNp*l =QN°*p| =1
2. T is a set of source transitions, i.&4 € Z, *i = &,

3. Ois a set of sink transitions, i.evp € O, 0°* = &.

From a structural point of view, such a graph can be seen as a TEG (déngted
which source transition&(Z) and sink transitionsq ©O) are connected to some places
(see figure 1 for an example). The firings of these source and sink transitions cause
respectively addition and withdrawal of resources (tokens) in the underlying TEG
(Go). These considerations lead to the denominatiohEs®s with variable resources

TFECN

TEG with variable resources

Figure 2. Venn diagram of timed Petri nets subclasses

Definition 2 (Counter function) We associate to each transitigne Q UZ U O, a
counter functiory(t), which denotes the cumulated number of firings of transigion
up to timet. We assume that a counter function is defined ffbmto Z U {£o0}.

In the following, counter functions attached to transitiongia O are supposed
to be knowra priori (or measured) as exogenous data.

We furthermore assume that any place has at most one upstream (respectively,
downstream) transition il (respectively(), i.e.,

VpeP,|®pNZ| <1,andjp* N O] < 1.

This assumption is not restrictive: a set of transitioeg§ sharing an upstream place
p whose collection of counter§(t)|i € *p N7} is given, is equivalent to a unique
transition with the given countéx_, . 7 i(t).

4. Asymptotic behavior of TEG with variable resources

This section is devoted to performance evaluation of systems modeled by TEG’s
with variable resources. In a manufacturing systems context, an interesting question is
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to evaluate the average number of parts the systems can provide by unit of time. Thus,
we study here the asymptotic behavior of TEG's with variable resources in order to
evaluate the@symptotic throughpudf their transitions, defined as the average number

of firings per unit of time.

Definition 3 (Asymptotic throughput, [Gau95]) Letq(t) be the counter function of
transitiong, we denote\, its asymptotic throughput defined by:
Aq = tlggo q(t_t) )

For sake of briefness, we only address the case where the underlyinggT&G (
is strongly connected.e., Vq1,q2 € Q, there exists a path fromy to ¢> and a path
from ¢- to ¢; (cf. remark 3 and reference therein for the non-strongly connected case).
It is then possible to evaluate the single asymptotic throughput of transitiapsfin
for each place,, the asymptotic throughputs of transitionsando, are equali.e. ,
Xir, = Ao -

Let us firstly consider the elementary circuit of a TEG with variable resources
represented in figure 3. We denetihis circuit composed of places and transitions

in @, which are labeled respectivey, ... ,p, andzy,... ,z,.
ij
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Figure 3. Elementary circuit

The following proposition gives the condition that the asymptotic throughputs of
transitionsi;, ando; must satisfy so that all the transitions, ¢ = 1,... ,n have the
same asymptotic throughput.

Proposition 1 The transitions, k = 1,... ,n, of a circuitc have the same asympto-
tic throughputif, and only ifA;, = X\,,, V&.

Proof We suppose that the places,,...,pr, have an upstream transition
ik,,--- ik, € Z respectively and a downstream transitin, . .. , o, € O respec-
tively.

e Letusprovethad; =X, ,Vm=1,...,r= X =X, Vj,l€][l,n]
Letz;, z; (j # !) be two transitions of circuit, one notes\/; (resp.M») the finite
sum of initial markings of the places belonging to the path frojrto z; (resp. from
x; to z;). Itis supposed thaty,, ... ,pk,, belongs to the path going fromy; to z;,



andpg,,,,,--- , Pk, belongs to the path going fromy to z;. We have for alk,

{ m(t) < wi(t)+ M+ Yo (i, (t) — o, (t))
gi(t) < wi(t) + Mo+ Y01 (ik, () = ok, (t))

hence,

2 ()= Ma—=30 1y (ko () =0k, (1) < () < 2y () +Mi43000 ) (ik (£) =0k, (1)),
lim 25 ()Mo= 300 —pigr (e () =0k (8) lim 28 <
t—o0 t ~ t—oo -

lim 25 () +M1+30 1 (kg () =0k (1))
t—o00 t ’
Since M, and M, are finite, andtlim @ = tlim O’“WT(”, Vm=1,...,r, we
—00 —00
have: Az; < Az < Ay, Orequivalentlyh,, = A, .

e Letusprovethah,, = \;;, Vj,l € [I,n] = X;, =X, , VYm=1,...,r
Since*zy,, +1 = *ok,, = {pk,.}, Ym = 1,...,r (the graph is a TFCN), we have
with the earliest firing rule (cf. section 2):

Tk +1(8) + 0k, (1) = Tk, (8= Tpy, ) ik (B = T, ) + My,

A - i1 — M.
lim w+ lim oka(t) — lim mm(ttrpkm) + lim ik, (E trpkm) + lim ptkm .

t—o0 t—o0 t—o0 t—o0 t—o0
Since My, ,...,Mp, are finite and by assumptioh;, ., = Az, , Vm =
1,...,r, the preceding equation leads to the result. |

Remark 1 If at the place labeled, only a transition;, (resp.o;.) exists, the neces-
sary and sufficient condition becomgg = 0 (resp.A,, = 0). o

The following proposition gives the maximum value of the asymptotic throughput
of transitionsz;, j = 1,...,n. To this end, we consider that no transition is
synchronizedi.e, |*z;| = 1, so that the evolution of tokens in the circaitannot be
delayed by the other circuits of the graph.

Let us noteT'(¢), M (¢) the sum of holding times and the total number of tokens
initially contained in the circuit. We denotej(t) the average value of the counter
q(t) up to timet, andg its limit whent tends towards the infinity,e.,

i) = (i a))/t, 7= limgt), teN.
Proposition 2 If for j = 1,...,n, A\;; = X,; and|*z;| = 1, then the asymptotic

throughput),, identical for all transitionsz ; of circuit ¢, is given by

_ M9+ (6 - 05 — 1, - Ny)
Ae = / T . 1)

Proof Letus consider that only the plapg,, has an inputig,_ ) and an outputd,, ).
We use here the conceptREsource-Time Produ@RTP) described in [Mur89]. The
RTP of a place is the product of the number of tokens (resources) by the length of time
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that these tokens reside in the place. If one nﬁf—g§(t) the average marking of place
pj up to timet, its RTP up tat is equal toM,, (t) - .

The quantityr,,; - z;(t — 7,,) is also a product between one duration of residence
and a number of tokens. Variahig (¢ — 7,,) is equal to the number of tokens entered
in p; viaz; untilinstantt — 7, ; the tokens of initial marking as well as those arrived
between instants — 7, andt¢ are not counted. The residence time of the tokens
arriving atp; is exactlyr,; units of time since by assumption transitiog, ; is not
synchronized. In produet,; - z;(t — 7,,), the number of tokens presentyin up to
timet is underestimated, which leads to

Tp;

J'xj(t_ij)SM—pj(t)'ta fij;ﬁk‘m

! — 2
and 7 - (an, (F— T ) +ipn (b= ) < My () -1, P

Onthe contrary, in produet,; - (M), +z;(t)), whereM,, is the initial marking of;,

all the tokens present im; up tot are counted, but the residence time of some tokens
is overestimated. Indeed, thid, initial tokens and those arrived between instants
t — 7, andt have resided less thap, units of time inp;, what brings to

My, (t) -t <1y, - (My, +x(t)), forj+#kmn
and My, (t)-t< 1, -(Mp, =+, (t)+ir, (t)).

Summing the inequalities (2) and (3) for each place of the circleiads to
2 To; @i (t = Tp;) + To,, G (8= Ty, ) St (M(c) + ik, (8) — Ok (2) <
j=1

n

Z Tp; (ij + (t)) + o, Uk, (t):

Jj=1

while having noted thaﬁ:}’:1 M, (t), namely the average number of tokens con-
tained in circuitc up tot, is equal taM (c) + iy, (t) — 0%, (t)-

Subtractingry, oy, (t) from both sides and dividing by we have

®3)

Z?ﬂ p; Ej(t—"'pj) ey, (t—Tpkm)—Okm

(t) — _ 05, (1)
7 + o, ; < M(¢)+iky, (8) =0k, (8) =T, ~25—

< 2io1 e “fj“HMpﬂ 1y, e (=0 )

With the assumption\;, = X, , proposition 1 give¥j,1,A,; = A, and as

t — oo: " "
(> ij))‘zj < M(e) +m — Ok,, — Tps,, )‘Okm <(X ij))‘zj
j=1 j=1

_ M(¢)+E-W—Tmﬂm Aﬂkm

finally, Ae = Ag; = o) [ |

Let us denote by the set of elementary circuits of the strongly connected graph
Go. The asymptotic throughput(identical for all the transitions) is

A= I%iél A, inwhich . is given by equation (1)
C

Remark 2 By comparison, the asymptotic throughput for strongly connected TEG’s
is given by the simplified formula [BCOQ92], [Gau95]:



<

Example 1 Let us consider the elementary circuit represented on figure 4 in which
only the place on the right side has a non-zero holding time (1 unit of time). Trajecto-
ries of counters(t) ando(t) are formally defined by:

viezit)=1"  "“Yandoty={" | B<d
t+1 t>0 2.[L]—2 t>4
with |z] = sup{n € Njn < z}.

events

xi()
®o()

@if/)ﬂo

1

S N A o » Z

Figure 4. Example of asymptotic throughput evaluation

Since); = A, = 1, the asymptotic throughput is identical for both transitions
and can be evaluated thanks to proposition 2. We leave to the reader the care to
check thatvt > 4,i(t) — o(t) = 3 (resp.4) if ¢ is even (resp. odd). Consequently
>i_1i(4) —o(j) tends towardg7/2) - t whent tends towards infinity, and as a by-
pl’OdUCttango (X5—1i(j) —o(j))/t =i -5 = 7/2 . We deduce the asymptotic through-
put A=(1+7/2-1)/1="7/2.

If the transitions ando did not exist, the graph would be a TEG and the asymptotic
throughput\ = M (¢) /T (c) would be equal td. O

Remark 3 If the graphG is not strongly connected, the unicity of the asymptotic
throughputis not ensured. The calculations of the various asymptotic throughputs re-
quire to introduce a partial order relation between the strongly connected components
connected by an acyclic directed graph (see [Gau92] for a detailed presentation).

5. Modeling in (min,+) algebra

A TEG can be seen as a linear time-invariant system @uét, +) algebra (or du-
ally over(max, +) algebra). This property justified many works relative -in particular-
to the performance evaluation, the stabilization and the control of TEG’s by anal-
ogy with conventional linear system theory [BCOQ92], [CMQV89], [MP91],[BF96],
[CHBF99]. We show in this section that the behavior of TEG’s with variable re-
sources can also be described (lyin, +) linear equations. Actually, a TEG with
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variable resources can be likened tmén, +) linear time-varying system: we obtain
a state model with variable parameters, and an input-output relationship in which the
impulse response is a bivariate function matrix.

5.1. Algebraic preliminaries

Definition 4 (Dioid) A dioid (D, ®, ®) is a semiring in which the operatios is
idempotent (i.e.Ya,a ® a = a); neutral elements of5, ® are respectively noted
ande.

In any dioid anatural orderis defined by:

a =Xb< a®b="b(the least upper bound ¢f, b} is then equal ta @ b).
A dioid is completeif every subsetd of D admits a least upper bound equal to
@.cax, and if® distributes over finite and infinite sums. The greatest element, noted
T, of a complete dioid is equal tod ,cp.

Example 2 ((min,+) algebra) The setZ U {+o0} endowed withmin as® and+
as® is a complete dioide = 400, e = 0), and is usually referred to dsin, +)
algebra. Note that the ordetin (min, +) algebra is just reversed with respect to the
usual<. O

Theorem 1 (see [BCOQ92, 84.5.3])n a complete dioid, the particular implicit
equation

r=a®xdb
admitsa* ® b as least solution, wita* = @ a’ (a® = e, a't! = a’ ® a).
i>0

Example 3 (Matrix dioids) Starting from a "scalar” dioi@®, let us considep x p
matrices with entries if. The sum and product of matrices are defined convention-
ally from the sum and product of scalars. This set of matrices endowed with these two
operations is also a dioid denot®d*?. Furthermore, ifD is completeD?*? is com-

plete too. Note that-dimensional row or column vector problems can be handled by
embedding such vectors in square matrices withl additional arbitrary (identically
equal toe) rows or columns. O

5.2. Basic evolution equations

In a TEG with variable resources, a placmay have two downstream transitions.
Such a structure is referred to asanflict[Mur89] and exhibits a nondeterminism.
Inthis paper, we use the approach introduced in [Gau94] and gabsdlection policy
(orrouting policy). Briefly, conflicts are then solved thanks to a protocol, an algorithm
or a mapping which selects one of the conflicting transitions to fire. The reader can
find a general definition in [CGQ95]. In what follows, we consider a particular routing
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policy referred to asrigin independenand defined as follows.
Definition 5 An origin independent routing policy at plageis an integer partition
{Hg}qep, of its marking. IT? (n) expresses the number of tokens reserved for tran-
sition ¢ among then tokens having been present in plageeMore formally,IT? is a
non-decreasing map defined fraxninto N such thatvn, 3 . II7(n) = n.
A routing policy for the net is a collection of routing policies for places.

It is shown in [CGQ95] that counter variables of a TPN with origin independent
routing satisfy the followindransition-to-transitiorequation:

¢(t) = min [Hg (Mop + Y qt- Tp))] . (4)

PE®q
q'E®p

For TEG's with variable resources, let us define the Sets {p € P, |p*| = 1}, and
R = {p € P,|p®| = 2} which form a partition of P. According to definition 1, a
transitiong € Q has either several possible upstream places belongitg tr a
single upstream place belongingR We show in paragraphs i) and ii) above that in
both cases, equation (4) can be written &, +) linear equation with (a) variable
parameter(s).

Figure 5. ¢ downstream to places ifi (a), ¢ ando downstream to a place iR (b)

i) ¢ €{q € Q|*q C S} (see for example figure 5(a) )
SinceVp € *q,|p®*| = 1, we havell} = Id. In addition,(P, Q,Cq, M, ) is @
TEG; for a giverp € *q, the sefpn Q has a single element noted and the set
*pNZ may contain a transition notédEquation (4) for countey(t) can then be
written:

t) = min My, +i(t—m1y) +¢(t—1,)],
q(t) {q,eglq,e,(,q)}[ it =) +q'(t =)

in whichp = ¢’* N *q and with the conventionit) = 0Vt € Z,if *pN7T = 2.
Variablei(t) is supposed to be known at timéas if it was "gauged”), and we set

LAccording to definition 1jp®* N Q| = 1, and by assumption at §3° N O| < 1; we then have
p*l € {1,2}.
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agq (t,t—T1p) = M, +i(t — 1), which can be seen as a time-varying coefficient
in the following equation:

) = min gy (t,t— 1) + ¢ (t— T
q(t) {q colree(*0)} [ qq ( p) q'( p)] )
= ) Qg (8t —7p) ® ¢'(t — 1),

{reQlee*(*a)}
inwhichp = ¢’* N *q.

i) g,0€ {g € QUO|*q € R} (see for example figure 5(b))
By definition, transitions; ando are not synchronizedYg| = |®0o| = 1), so
the sets’*qN Q = **oN Q, **¢NZ = **oN 7 are singletons composed of
transitions respectively noted andi. According to equation (4), countegét)
ando(t) satisfy the following system of equations :

{ q(t) = Hé’ (Mp +i(t - Tp) +q'(t— Tp))
o(t) = Wb (My+i(t—m1)+dt—1))

inwhichp =¢'*N°®q="°*q="o.

By definition, a routing policy does not "consume" tokem,, at a placep we
haveVn,_qup. H{;(@) = n. In our context, it enables us to write the preceding
system in the following form:

q(t) = Mp+i(t—1p) —o(t) +q'(t—1p)

o(t) = WH(My+i(t—m)+d(t—1)).
VarlabIeSO(t) andi(t) are supposed to be knowan priori at¢t. Let us set
aqq (t,t —1p) = M, +i(t — 7,) — o(t). Counterg(t) then satisfies the follow-
ing (min, +) linear equation with a variable parameter:

q(t) = aqq’ (t7 t— Tp) ® q,(t - Tp): (6)
inwhichp = ¢’* N *qg = *q = *o.

In the following, we assume that fer< 0, i(t) = o(t) = 0 which leads to have
aqq (t,t — 1p) = M, for ¢t < 0in equations (5) and (6).

Canonical initial conditions

In equations (5) and (6 4 (¢, t — 7,) denotes the sum of initial tokedd,, and of
the cumulated number of tokens added in pla¢equal toi(t —7,,) ori(t—,) — o(t))
up to timet. All these tokens have been available before tinfer transitiong.
Sinceayy (t,t — 7,) = M, fort < 0, it should be clear that initial tokens have
been considered as available since tim® to establish equations (5) and (6). This
assumption about availability of initial tokens for each place P is referred to as
canonical initial conditiongBC0OQ92, §2.6.3.4]. One may also write that "the system
is with no initial energy”, in the sense that all the firings caused exclusively by initial
tokens take place at timecc.
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Weakly compatible initial conditions

A classical assumption in Petri net theory is to consider that the graph is "frozen
before timet = 0. Tokens "visible" at = 0 are then those of the initial marking.
In order to consider such a functioning, we define for each plaaeountenw ,(t)
which denotes the number of initial tokens which are or have been availahié fqy
to timet. We then denote ageakly compatible initial conditiorf8C0Q92, §2.5.2.1]
the following assumptions for each plaee P:

. initial tokens cannot be available before tifé.e., w,(t) = 0 for¢t < 0;

. attimer,, all the initial tokens have been or are availabke, w,(r,) > M,.

In order to obtain the corresponding evolution equations, we define for trangition

v(t) = EP wy(t), @)

PE®q

and we then have from equations (5) and (6):

a0 = P |awtt-n)2dt-m)| v, ®

g€ (*q)
in whichp = ¢'°* N *q.

Remark 4 Inequation (8){v,(t) }+cz can be seen as the counter function of a fictive
transition, located upstream transitignthe role of which is to keep initial tokens in
places®q according to the weakly compatible initial condition defined{ly, (¢) }+cz

for each place € °q. o

5.3. Staterepresentation

We patrtition the set of transitiond = &/ U X U Y in which{ is a set of source
transitions,) is a set of sink transitions ard = Q \ (¢/ U Y). We denote by: (resp.
x, y) the vector of input (resp. state, output) counter&)} ., ¢ € U (resp.X’, )).
We denote by,,, the maximum holding time of a TEG with variable resourées,

Tm = I;IEH%([TP].

Without loss of generality, we furthermore assume that all the places immediately
downstream (resp. upstream) source transitions (resp. sink transitions) have zero
holding times (nothing prevents from adding a place with zero holding time and a
transition each time this assumption is not satisfied). With the preceding conventions,
the dynamic behavior of a TEG with variable resources under canonical initial condi-
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tions obeys:
2() = @ Alt,t -t —i) & B(t, Hult)
=0 tEL 9)
y(t) = C(t,t)z(t)
in which,

< A(t,t —i)is a|X| x |X| matrix defined by A(t,t —i)]z2r = Qg (¢, — 1) if there
is a placep with 7, = i betweene’ andz, [A(t,t)]z.- = € otherwise;

« B(t,t) is a|X| x [U| matrix defined by B(t,t)].. = aqu(t,t) if there is a place
betweenu andz, [B(t, t)],. = € otherwise;

. C(t,t) is a|Y| x |X| matrix defined by{C (¢, )],z = ay2(t,t) if there is a place
between: andy, [C(t, )], = € otherwise.

The state equation in (9) is implicit due to the places with zero holding times. The
dioid composed of matrices with elements(inin, +) algebra (see examples 2 and
3) being complete, the least solution to this implicit equation exists (cf. theorem 1). It
makes sense to select the least solution since it corresponds to the earliest functioning
of the net, and the state equation can then be written as follows.

2(t) = égZ(t,t — i)zt —i) & B(t, u(t), t € Z, (10)

with A(t,t —i) = A(t,t)" ® A(t,t —i) andB(t,t) = A(t,t)" @ B(t,t).

Remark 5 Anentry[A(t, t)"].. gives the minimum weight of paths composed.of
places with zero holding times from transiti@ehto transitionz. By weight of a path,
one should understand here the number of initial tokens plus the cumulated number
of tokens "added" (or more precisely, the difference between the counters associated
with transitions inZ and those from transitions if?) in places of this path up to time
t. As for all t, the weight of a circuit can obviously not be negative, the calculus of
A(t,t)" is finite:

A(t,1)" = Do A1) = Docicpa Alts1)".

In order to obtain a recurrence of order 1, we set:

)= (e(t) a@t-1) ... zlt—71u+1)",
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At t—1) A, t—2) ... o At t—Tm)
6|X|><|X| 6|X|X|X| E‘X‘X‘X‘
A(t) = glxIxixl elX1x1| gl XIxIx]| RETED |
: ' . E|X|><|X|
6|X|><|X| E‘X‘X‘X‘ 6|X|X|X| E\X\X\X\
B(t) = (E(t,t) E\X\X\Lﬂ E\X\x‘(,”)‘r’
é(t): (C(t,t) elvixix E\y\x\x\).

A TEG with variable resources has finally the following standard state model.

Et) = A@zE(t—1)® B(t)a(t)
i e (11)
gty = C)I(t)
Remark 6 By assumption at 85.2, we havé € Z, Yo € O, i(t) = o(t) = 0 for
t <0, which implies thatd(t) = A(0), B(t) = B(0) andC(¢t) = C(0) fort < 0. If

we furthermore assume that:
Z(t) = £(0), a(t) = u(0) andg(t) = 3(0) for¢ < 0,
the state equation of (11) is implicit for< 0, we have:
Z(0) = A(0)z(0) @ B(0)u(0).
We select the least solution (cf. theorem 1) which corresponds to the earliest function-
ing, and equations (11) can then be written:

#(t) = A(0) B(0)a(0) <0
it) = Azt -1)@B@)at) ,t>0
gty = Ci) ,t € 7.

<

Example 4 We consider the TEG with variable resources represented in figure 1(b),
with 1 = 1 andr; = 2. Its dynamic behavior obeys equations (9) with:

1 (t) e . . .9
o= |20 Ben=| | aeo={
z4(t) i1(t) —o1(t)
A== 07 T Ae-2 = t-2—ost) - |
ctty=( - e ),

in which each element™is equal toe.
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We can select the least solution to this implicit equation in order to get equation
(10) with

e il(t) —Ol(t)+2 -2 il(t) —Ol(t)+2

[At O] = | . | ARt = .
iwt)—oi(t) - e i1(t) — o1 (t)
At,t —2) = [A(t,1)]" @ A(t,t —2) = A(t, t — 2).
The matricesA(t), B(t) andC'(t) are easily established (simple rewriting) in order to
obtain the standard state model (11). O

Remark 7 (Case of weakly compatible initial conditions) With weakly compati-
ble initial conditions, dynamics of a TEG with variable resources obeys:

2(t) = @At — i)t —i) @ B, Hult) ® va(t)
=0 LAET, (12)
y(t) = Ct.t)z(t) ®vy(t)
in which,

« A(t,t —1i), B(t,t —i) andC(t,t — i) have been defined at equations (9);
. vy(t) is alX| column vector defined bl + (t)].. = v.(¢) (cf. equation (7));

. vy(t) is a|Y| column vector defined by (t)], = v, (t) (cf. equation (7)).

With manipulations similar to those described previously, it is possible to obtain the
following standard state model:

{ (t) = A@)z(t—1)® B(t)u(t) © vx(t)

yt) = C@)a(t) o vy(t)

,tEZ (13)

5.4. Input-output representation

Starting from the standard state model (11), we will here explicit the input/output
relationship and identify the impulse response of TEG's with variable resources.
The state equation of (11) can also be written

t

#(t) = Bt t)i(t) © @D B(LHBGII) ¢ > to
Jj=to+1
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in which thestate-transition matrix®(¢, ¢) is given by

not defined ,i >t
&t i) =< Id ,i=t.

A @At-) o @ A>i+1) i<t
Then we have, fot > t,

i(t) = C(1)®(t,t0)E(te) & € Ct)®(t,5)B()a(s)- (14)

j=to+1
Remark 8 The state-transition matrix satisfies the composition property
®(t,j) = @(t, k) ® ©(k,j) ,witht > k > j,

and in particular fot > j + 1

B(t,j)=A)B(t —1,5) = B(t,j + 1A + 1).

Proposition 3 The least solution of equations (11) is given by
vt e Z, y(t) =P h(t,)a() (15)
J<t

in whichh is called the impulse response and is defined by

h(t,j) = C(t)2(t, §)B(j), forj < t. (16)
Proof By tendingt, towards—oo in equation (14), it is clear that any solutignis
greater thary.
Settingy (t) = C(t)z(t) with

x(t) = @ (¢, 4) B()a(),
J<t

we show thatr satisfies the state equationin (11):

z(t) =@ <, (t,4)B()uls)

= @< 2t )B()a) ® B(t)a(h)

At) | D<oy ®(t — 1,5)B(j)a(j)| @ B(t)i(t) (thanks to rems)

= A(t)x(t — 1) @ B(t)a(t).

|
An element[h(t,j)]yu is the response at timeof outputy resulting from an
impulse, denoted,, at timej and defined by
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e(=+o00) ,j>0
applied on input:. Such an input comes down to firing the transition labelezh
infinity of times after timej.
Remark 9 For conventional discrete-time linear time-varying systems [Kam96], the
input/output relationship is given by:

y(k) = 3 bk, ju(j)

The analogy with formula (15) should be clear. o

Remark 10 (case of weakly compatible initial conditions) With weakly compat-
ible initial condition, input-output relationship of a TEG with variable resources is
given by:

y(t) = @ h(t, )ali) & yo(t),t € Z, 17)
i<t

in which
. his defined by (16);

. yoisgivenby: yo(t) = @é(t)@(t,j)ﬁx(j) ® y(t),t € Z.

6. Conclusion

The studied graphs belong to a subclass of timed free-choice nets which includes
the timed event graphs. They can be seen as timed event graphs on which source
and/or sink transitions are added to some places. These additional transitions allow
modeling additions and withdrawals of resources (tokens) in the course of time.

One gives an expression of the asymptotic throughput if the underlying timed event
graph is strongly connected. As for timed event graphs, this expression combines the
sum of holding times and the number of tokens initially contained in each circuit, and
also the average values of the counters associated with the additional transitions.
Using arouting policy(or preselection policy we establish a state model with variable
parameters ifimin, +) algebra of systems modeled by these graphs. The parameters,
which represent the additions and withdrawals of resources, are supposed to be known
a priori. Canonical and weakly compatible initial conditions are considered. We also
explicit the input-output relationship of these systems. To the sight of these representa-
tions, one can say that the studied graphs define a clésg0f+) linear time-varying
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systems. The future works will aim at extending to the time-varying case the existing
results concerning timed event graphs (which can be seen as linear and time-invariant
systems ovefmin, +) algebra). A first attempt can be found in [LBH99] in which we
generalize the synthesis of the just-in-time control. Furthermore, we are inclined to
think that some results for conventional time-varying systems could be adapted to the
(min, +) linear time-varying systems introduced in this paper.
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