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1. INTRODUCTION

In this paper, we study DEDS (Discrete Events
Dynamic Systems) that can be modeled by a
linear representation on (max, +) algebra. This
class corresponds to TEG (Timed Event Graphs).
A linear system theory has been developed for
these particular systems in Baccelli et al. (1992).
Strong analogies then appear between the classi-
cal linear system theory and the (max, +)-linear
system theory. Some control problems for these
systems have previously been tackled. In all these
works, the problematic was to compute an optimal
solution in regards of the just-in-time criterion,
indeed the proposed control laws satisfy some
given control objectives while delaying as much
as possible occurrences of input or internal events.
In Cottenceau et al. (2001), the authors compute
a greatest feedback controller (which enables to
delay as much as possible occurrences of input
or internal events) in order that the controlled
system behaves as close as possible to a given
reference model.

For our concern, the aim of the control is to
delay as less as possible the system while en-
suring some given specifications. For example,
in a railway network, one can aim at limiting
the number of trains in a path while minimizing

the induced delays. Another possible application
concerns production systems subject to critical
time constraints, in which sojourn times of pieces
must not exceed a given value at some stages.
The control is formalized as a state feedback on
state. This control structure has previously been
considered in Lüders and Santos-Mendes (2002).
Originalities of this paper lies in the considered
criterion (minimization of delays instead of just-
in-time), the specification of the control objective
(constraints instead of reference model) and the
approach for the controller synthesis (new results
on fixed points of antitone mappings instead of
Residuation theory).

In section 2, we recall some results from the dioid
theory and introduce results concerning isotone
and antitone mappings. Section 3 is devoted to
the modeling of DEDS. The proposed control law
is presented in section 4.

2. ALGEBRAIC TOOLS

2.1 Dioid theory

A dioid (D,⊕,⊗) is a semi-ring in which the
sum, denoted ⊕, is idempotent. The sum (resp.
product) admits a neutral element denoted ε



(resp. e). A dioid is said to be complete if it is
closed for infinite sums and if product distributes
over infinite sums too. The sum of all its elements
is generally denoted > (for top).

Example 1. The set Zmax = (Z∪{−∞}) endowed
with the max operator as sum and the classical
sum as product is a (non-complete) dioid. If we
add > = +∞ (with convention > ⊗ ε = +∞ +
(−∞) = −∞ = ε) to this set, the resulting dioid
is complete and is denoted Zmax.

Due to the idempotency of the sum, a dioid is
endowed with a partial order relation, denoted º,
defined by the following equivalence: a º b ⇔
a = a ⊕ b. A complete dioid has a structure of
complete lattice (Baccelli et al., 1992, §4), i.e.,
two elements in a complete dioid always have a
least upper bound, namely a ⊕ b, and a greatest
lower bound denoted a ∧ b =

⊕
{x|x¹a, x¹b} x in

the considered dioid.

Let D and C be two complete dioids. A mapping
f : D → C is said to be isotone (resp. antitone) if
a, b ∈ D, a ¹ b ⇒ f(a) ¹ f(b) (resp. f(a) º f(b)).

2.2 Residuation theory

Residuation theory Blyth and Janowitz (1972) de-
fines ”pseudo-inverses” for some isotone mappings
defined over ordered sets such as complete dioids
Cohen (1998). More precisely, if the greatest ele-
ment of set {x ∈ D|f(x) ¹ b} exists for all b ∈ C,
then it is denoted f ](b) and f ] is called residual
of f . Dually, one may consider the least element
satisfying f(x) º b, if it exists for all b ∈ C, it is
denoted f [(b) and f [ is called dual residual of f .

Example 2. The mapping Ta : D → D; x 7→ a⊕ x
is dually residuated (proof is available in (Baccelli
et al., 1992, §4.4.4)). The dual residual is denoted
T [

a(b) = b ◦− a. It should be clear that a º b ⇔
T [

a(b) = ε. If Ta is defined over Zmax then

T [
a(b) =

{
b if b > a,

ε otherwise.

2.3 Fixed points of mappings defined over dioids

Because of their lattice structure, properties
about fixed points stated for lattices also apply
over dioids.

Notation 1. Let f : D → D with D a complete
dioid, we use the following notations: Ff = {x ∈
D|f(x) = x}, Pf = {x ∈ L|f(x) º x}, Qf = {x ∈
D|f(x) ¹ x} and f2 denotes f ◦ f .

For an isotone mapping f , Tarski (1955) has
shown that sets Ff , Pf and Qf are nonempty
complete lattices. Moreover, it can be shown that
the greatest (resp. least) fixed point coincides with
the greatest (resp. least) element of Pf (resp. Qf ):

Sup Pf = Sup Ff and Sup Ff ∈ Ff ,
Inf Qf = Inf Ff and Inf Ff ∈ Ff .

(1)

In the following proposition, we specify to dioids a
well known method to compute the greatest fixed
point of an isotone mapping f .

Proposition 1. If the following iterative computa-
tion

y0 = >
yk+1 = f(yk) (2)

converges in a finite number ke of iterations, then
yke

is the greatest fixed point of f .

Concerning antitone mappings, properties about
fixed points are not that well established, and only
few works have tackled this problem Baclawski
and Björner (1979), Dacić (1983). To the best of
our knowledge, results presented in the sequel are
original. However, proposition 6 has been inspired
by (Dacić, 1983, th. A)

Notice that if f is an antitone mapping then f2 is
isotone. Let us first characterize the structure of
Pf and Qf .

Proposition 2. Let f : D → D be an antitone
mapping. Set Qf (resp. Pf ) is a complete upper
semi-lattice (resp. complete lower semi-lattice).

Proof : Let us consider two elements x, y ∈ Qf ,
we have f(x⊕y) ¹ f(x)∧f(y) ¹ f(x)⊕f(y) ¹ x⊕
y, and so x⊕ y ∈ Qf . This assertion also applies
to infinite sums. Set Pf is proved to be a complete
lower semi-lattice by identical arguments. 2

Proposition 3. Let f : D → D be an antitone
mapping and x ∈ D. We have

x⊕ f(x) ∈ Qf ,
x ∧ f(x) ∈ Pf .

Proof :

{
f(x)⊕ x º x
f(x)⊕ x º f(x)

which implies by antitony of f

f(f(x)⊕ x) ¹ f(x) ¹ f(x)⊕ x.



Respectively, f(x) ∧ x ∈ Pf since f(f(x) ∧ x) º
f(x) º f(x) ∧ x. 2

Proposition 4. Let f : D → D be an antitone
mapping, y ∈ Pf and z ∈ Qf . For all x ∈ D
such that x ¹ y (resp. x′ ∈ D such that x′ º z),
we have x ∈ Pf (resp. x′ ∈ Qf ).

The proof is based on the antitony of f :

x ¹ y ⇒ f(x) º f(y) º y º x
x′ º z ⇒ f(x′) ¹ f(z) ¹ z ¹ x′

Proposition 5. If x is a fixed point of an antitone
mapping f : D → D, then x is a minimal (resp.
maximal) element of Qf (resp. Pf ).

Proof : Let x ∈ Ff , y ∈ Pf and z ∈ Qf such
that y º x º z. Using antitony of f , we obtain
f(y) ¹ f(x) ¹ f(z) ⇒ y ¹ f(y) ¹ x ¹ f(z) ¹ z
hence y = x = z. We conclude that there is
no element of Qf (resp. Pf ) which is less (resp.
greater) than x.

2

As a corollary of this proposition, notice that if f
admits several distinct fixed points, then they are
not comparable. Furthermore, remark that set Ff

can be empty.

Proposition 6. Let f : D → D be an anti-
tone mapping. Denoting u = Inf Ff2 and v =
Sup Ff2 , we have u ∈ Pf and v ∈ Qf .

Proof : In fact, we show that f(u) = v and
f(v) = u and then f(u) º u and f(v) ¹ v. The
expression of f(u) leads to

f(u) = f(
∧

x∈Ff2 )

x) º
⊕

x∈Ff2

f(x)

(f antitone ⇒ f(a ∧ b) º f(a)⊕ f(b)).

However, elements of {f(x)|x ∈ Ff2} are fixed
points of f2 too since f2(f(x)) = f(f2(x)) =
f(x). So we can deduce that f|Ff2 is a permuta-
tion, it can be proved by considering x, y ∈ Ff2 ,
x 6= y and f(x) = f(y), we would obtain f2(x) =
f2(y) and so x = y which is a contradiction. So
last inequality can be rewritten:

f(u) º
⊕

y∈Ff2

y = v.

We previously remark that f(x) with x ∈ Ff2

is a fixed point of f2 so does f(u) and it leads

to f(u) =
⊕

y∈Ff2
y = v. From last equality, we

obtain also f(f(u)) = u = f(v).

2

Remark 1. For the following control problem, we
are interested in the computation of minimal ele-
ments of Qf . The element v, which can be com-
puted using proposition 1, constitutes an inter-
esting approximation since any x ∈ Ff , minimal
element of Qf (see proposition 5), is such that
u ¹ x ¹ v (since x also belongs to Ff2). As men-
tioned in the following corollary, v may sometimes
be the ”best approximation”.

Corollary 1. If v = u, then Ff = {v} and v is a
minimal element of Qf .

3. MODELING DEDS USING DIOIDS

3.1 State and transfer representation

Dioids enable one to obtain linear models for
DEDS which involve (only) synchronization and
delay phenomena (but not choice phenomena). It
corresponds to the class of DEDS which can be
modeled by Timed Event Graphs (TEG). The be-
havior of such systems can be represented by some
discrete functions called dater functions. More
precisely, a discrete variable x(·) is associated to
an event labeled x (firing times of transition la-
beled x in the corresponding TEG). This variable
represents the occurring dates of event x. Notice
that a dual representation for these DEDS is
called counter representation and it manipulates
variables which represent the number of the last
firing of transition x (see Baccelli et al. (1992) for
more details).

The considered DEDS can be modeled by a linear
state equation

x(k) = Ax(k − 1)⊕Bu(k), (3)

where x and u are the state and the input vectors.

An analogous transform to Z-transform (used
to represent discrete-time trajectories in conven-
tional theory) can be introduced for DEDS con-
sidered here: the γ, δ-transform. This transform
enables to manipulate formal power series, with
two commutative variables γ and δ, representing
daters trajectories. The set of these formal se-
ries is a complete dioid denoted Max

in Jγ, δK with
e = γ0δ0 as neutral element of product and ε as
neutral element of sum (the construction of this
dioid is detailed in Baccelli et al. (1992)). In the
following, we denote x the corresponding element
of {x(k)}k∈Z in Max

in Jγ, δK and we assume that
each x ∈Max

in Jγ, δK is represented by its minimum
representative (see (Baccelli et al., 1992, §5)).



In Max
in Jγ, δK, state representation (3) becomes

x = Ax⊕Bu, (4)

in which entries of matrices A and B are elements
of Max

in Jγ, δK.
Considering the earliest functioning rule (an event
occurs as soon as possible), we select the least
solution given by x = A∗Bu with A∗ =

⊕
i∈NAi

(Baccelli et al., 1992, Th 4.75), and A∗B corre-
sponds to the transfer between u and x.

Afterwards, we assume that the input matrix B is
a diagonal square matrix with entries equal to e or
ε. This assumption is not restrictive since it can
always be satisfied by extending the state vector.
Remark that the assumed structure of B is such
that B ¹ Id and Bn = B for n ≥ 1.

3.2 Causality and causal upper approximation

Variables x ∈Max
in Jγ, δK used to model TEG have

the causality property Baccelli et al. (1992). We
introduce the notion of causal upper approxima-
tion.

Definition 1. Let x ∈ Max
in Jγ, δK, x is said to be

causal if either x = ε or all exponents of x are
in N. A matrix is said causal if its entries are all
causal. The set of causal elements of Max

in Jγ, δK is
a complete dioid denoted Max+

in Jγ, δK.

Proposition 7. Let x ∈ Max
in Jγ, δK. The two fol-

lowing assertions are equivalent :

(i) x has no negative exponent in γ,
(ii) there exists a least x′ ∈Max+

in Jγ, δK such that
x′ º x. It means that there exists a causal
upper approximation of x.

Proof : If x is causal, the demonstration is obvi-
ous and x′ = x. We now consider x not causal. We
can limit the proof to the case of monomials since
a series is nothing more than a sum of monomials.

(i)⇒(ii) : Let x = γnδt, with t < 0. It is easy to
see that the monomials γnδ0 is the least element
of Max+

in Jγ, δK such that x′ º x. So, x′ = γnδ0.

(ii)⇒(i) : If there exists a least x′ ∈ Max+
in Jγ, δK

such that x′ º x with x′ = γn′δt′ and x = γnδt,
we have n′ ≤ n and t′ ≥ t. However x′ ∈
Max+

in Jγ, δK, so n′ ≥ 0 and we obtain n ≥ 0. 2

Fig. 1.

4. CONTROLLER SYNTHESIS

4.1 Problem statement

Considering DEDS modeled by their state equa-
tion (4), we are interested here in the synthesis of
”state feedback on state” controller. In this struc-
ture, a controller denoted F , is added between
internal states (see figure 1). This structure is
not usual in control theory, but has a specific
interest for DEDS. In fact, if we assume that
internal events are measurable, controller F uses
this measure to possibly delay occurrences of some
internal events. More precisely, if we consider a
DEDS modeled by a TEG, then controller F can
be realized by another TEG merged on the initial
ones. In this controlled TEG, the additional arcs
due to the controller authorize or prohibit the
firing of the controlled transitions (see figure 2).
This schema is comparable with some Petri nets
methods for controlled DEDS (Holloway et al.
(1997)). The state evolution is then described by

x = Ax⊕ Fx⊕Bu. (5)
The least solution of this equation which corre-
sponds to the earliest functioning, is given by
x = (A⊕ F )∗Bu.

Synthesis of feedback for DEDS in dioids has pre-
viously been tackled in Cottenceau et al. (2001).
The synthesis of state feedback on state controller
has been considered in Lüders and Santos-Mendes
(2002). In all these works, authors focus on just-in-
time model reference control, that is, the synthesis
of a feedback which delays as much as possible
events in the system (i.e. the greatest feedback)
such that the controlled system is not slower than
a reference model. In this paper, the control ob-
jective is different :

• we aim at ensuring some given constraints
on state (rather than satisfying a reference
model matching) for all input u. These con-
straints are defined by a matrix φ and are
formulated as the implicit inequation :

φx ¹ x, ∀u. (6)

• we pursue a feedback which delays as less as
possible the functioning of the system (rather
than the just-in-time criterion). More pre-
cisely, we aim at computing the least feed-
back F such that the state of the controlled
system given by (5) satisfies the constraints
given by (6).



4.2 Constraints specification

We now detail three kinds of constraints for DEDS
described by a TEG, that can be formulated as an
inequality (6):

• Some inner variables can be subject to a min-
imum time separation between two firings.
For a state variable xi and a time separation
denoted ∆min, we claim that xi(k + 1) º
∆min xi(k). Then, the counterpart of this
constraint in Max

in Jγ, δK is γδ∆minxi ¹ xi.
• We can also aim at bounding the sojourn

times of tokens in given paths of the TEG
(critical time constraints). Let us consider
a path from transition xi to transition xj

containing initially α tokens, we denote τ
the desired maximum sojourn time in this
path. This imposes xj(k + α) − xi(k) ¹ τ ,
which can be formulated in Max

in Jγ, δK by
γ−αδ−τxj ¹ xi.

• We may also limit the number of tokens in
paths of the TEG. Let us consider a path
from xi to xj containing initially α tokens,
we denote κ the desired maximum number
of tokens in this path. This constraint can
be specified by: κ º xi(t)− xj(t) + α, which
leads in Max

in Jγ, δK to γκ−αxj ¹ xi.

4.3 Formalization

From (5), the state of controlled system is s.t.

x º Ax⊕Bu.

Furthermore, as control objective, we aim at sat-
isfying (6), then

x º (A⊕ φ)x⊕Bu.

Since we aim at delaying as less as possible the
system, we seek the least controlled state x, that is
the least x greater than the least solution x º (A⊕
φ)∗Bu. The problem can then be formulated as
the search for a least feedback F such that

(A⊕ F )∗Bu º (A⊕ φ)∗Bu, ∀u
⇔ (A⊕ F )∗B º (A⊕ φ)∗B. (7)

Some constraints may be unsuitable, that is, there
may not exist a causal feedback enabling to sat-
isfy these constraints. The following proposition
furnishes a test on given constraints φ, stating a
necessary and sufficient condition for the existence
of a causal feedback.

Proposition 8. There exists a causal feedback F
satisfying (7) if and only if each entry of (A⊕φ)∗B
has no negative exponent in γ. We then denote G
the upper causal approximation of (A⊕ φ)∗B.

Proof : According to proposition 7, there exists a
least causal matrix G such that G º (A⊕φ)∗B if
and only if each entry of (A⊕φ)∗B has no negative
exponent in γ. It is always possible to find a causal
matrix F such that (A⊕F )∗ º G. Furthermore, by
isotony of product, we have GB º (A⊕ φ)∗B2 =
(A ⊕ φ)∗B since B2 = B. The product GB is
causal (since G and B are causal) and G is the
least causal matrix such that G º (A ⊕ φ)∗B,
so we claim that GB º G. However B ¹ Id,
one has that GB ¹ G. Therefore, and since B
is causal, there exists a causal F such that (A ⊕
F )∗B º GB = G. 2

4.4 Feedback computation

From proposition 8, we aim at computing the least
feedback F such that

(A⊕ F )∗B º G (8)

in which G is the upper causal approximation of
(A⊕ φ)∗B.

Proposition 9. Solutions of equation (8) are el-
ements of Qf (see notation 1) with f : F 7→
G ◦− (A⊕ F )∗.

Proof : We have the following equivalences

G ¹ (A⊕ F )∗B
⇔ G ¹ (A⊕ F )∗ since GB = G (see proof

of prop. 8) and B ¹ Id
⇔ G ¹ (A⊕ F )∗ ⊕ F since (A⊕ F )∗ º F
⇔ G ◦− (A⊕ F )∗ ¹ F since T(A⊕F )∗ is dually

residuated (cf. ex.2)
2

Notice that mapping f is antitone. From propo-
sition 6, the element v = Sup Ff2 (which can be
computed using proposition 1) belongs to Qf and
is then a feedback satisfying (8). From corollary
1, v is a minimal element of Qf (i.e. a minimal
feedback satisfying (8)) if v = u. Otherwise, as
mentioned in remark 1, v can be used to approx-
imate a minimal feedback satisfying (8).

4.5 Example

We consider the DEDS modeled by the TEG of
fig. 2, and represented by the following matrices:

A =




ε ε ε ε ε ε ε
δ3 γ3δ ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε δ ε ε ε ε
ε ε ε γδ5 ε ε ε
ε δ4 ε ε γ2δ2 γδ2 ε
ε ε ε ε ε δ3 ε




,



Fig. 2. A TEG (thick lines) merged with a real-
ization of its controller (thin lines)

and B is a diagonal matrix s.t.

Bii =

{
e if i ∈ {1, 3},
ε otherwise.

In a first place, we aim at illustrating that all
constraints defined as in 4.2, are not suitable. For
example, we can not impose that tokens sojourn
less than 2 time units in the place between transi-
tions x5 and x6 for all input. In fact, if transition
u1 is not fired, then initial tokens will not be
removed from this place, and we can not find any
relevant feedback. As stated in proposition 8, the
computation of (A ⊕ φ)∗B enables to detect this
unsuitable constraint since it contains an entry
with a negative exponent in γ.

We now consider suitable constraints:

• tokens must not sojourn more than 4 time
units in the place between transitions x2 and
x6, then δ−4x6 ¹ x2,

• the number of tokens between x5 and x4 must
not exceed 3, so γ2x5 ¹ x4.

We have

φ =




ε ε ε ε ε ε ε
ε ε ε ε ε δ−4 ε
ε ε ε ε ε ε ε
ε ε ε ε γ2 ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε




.

According to §4.4, we can compute the following
feedback

F = v =




ε ε ε ε ε ε ε
γδ5(γδ2)∗ ε γ3δ4(γδ2)∗ ε ε ε ε

ε ε ε ε ε ε ε
ε ε γ3δ6(γ3δ5)∗ ε ε ε ε
ε ε γ4δ11(γ3δ5)∗ ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε




which satisfies both constraints. A realization of
this controller is represented in thin lines on fig.
2. Let us note that, for this example, we have

v 6= u, and we hence can not argue thanks to
corollary 1 that v is a minimal feedback. It can
be checked that there exists a relevant feedback
F ′, defined by F ′ij = vij for (i, j) 6= (5, 3) and
F ′53 = ε, which is less than v. Nevertheless, let us
point out that the controlled system with F ′ has
the same transfer as the controlled system with v.
This observation reinforces our suggestion that v
constitutes a good approximated solution for our
control problem (see remark 1).

5. CONCLUSION

We have presented a new control problem in
(max, +)-linear system theory: ensure some given
constraints while delaying as less as possible the
system. Using results on antitone and isotone
mappings, a state feedback synthesis is proposed.
However, it must be noted that the obtained
controller is not necessarily minimal. In current
works, we attempt to refine our control approach
in that sense. We also plan to consider TEG
with uncontrollable transitions and non linear
constraints.
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