
ON JUST IN TIME CONTROL OF FLEXIBLE

MANUFACTURING SYSTEMS VIA DIOID

ALGEBRA

Michel ALSABA, Jean-Louis BOIMOND and Sébastien LAHAYE ∗

∗ LISA, 62 avenue Notre Dame du Lac - Angers, France
∗∗ Email: [alsaba, boimond, lahaye]@istia.univ-angers.fr

Abstract: This paper deals with the just in time control of flexible manufacturing
systems when reference input is a priori known. The control is based on basic
results of residuation in dioid algebra and a local scheduling rule of Early Due
Date (to solve possible conflicts). Copyright c©2006 IFAC

Keywords: Flexible manufacturing system, timed Petri nets, timed event graphs,
timed state graphs, heap of pieces, scheduling, dioid, residuation, just in time
control.

1. INTRODUCTION

This work deals with the Just in Time (JIT) con-
trol of Flexible Manufacturing Systems (FMS),
i.e., how to delay system inputs at the latest
such that system outputs occur before the desired
reference input? The JIT control we propose re-
quires an a priori known reference input. FMS are
characterized by the production of several types
of parts, which is specified by given operating
sequences of tasks and some resources (like ma-
chines or robots) shared between several tasks.

The system we consider is such that each type
of parts crosses successive stages arranged in a
linear manner as a production line. A systematic
construction of FMS using Petri nets is proposed
in (Amar et al., 1992). As an illustrative example
let us introduce the FMS described by figure 1 in
which three types of parts (A, B, C) are treated.
A part A visits the following sequence of tasks:
machine M1 (the presence of two tokens in place
P3 means that the machine can process two parts
simultaneously and independently), then machine
M2 (also used to process parts B). A part B
visits the following sequence of tasks: machine
M3 (also used to process parts C), then machine

X6 Y3

P7

P8

P9

X4

X1 X2 X3

U3U2U1

m
a
c
h
in

e
 M

1

Part A Part B Part C

P1

P2
P3

8

P5 P6

Y2Y1

P10

P11

P12

m
a
c
h
in

e
 M

2

m
a
c
h
in

e
 M

3

Fig. 1. Example of FMS.

M2. Finally a part C is simply processed by the
machine M3.
It is known that there is no optimal solution, in
general, for the JIT control problem of considered
systems, due to the scheduling of the shared
resources. Such a problem, analogous to a jobshop
scheduling problem, is NP-hard when a ressource
is shared by 3 jobs or more (Sotskov, 1991). The
alternative solution to manage a shared ressource
is based on a local scheduling rule. The proposed
control method leads to subdivide Petri nets into
different graphs.



We use Timed State Graphs (TSG) to represent
choices phenomena, see the shared resources of
machine M2, or M3, in figure 1. In this paper,
we use a task scheduling rule called Early Due
Date, or Jackson rule (Jackson, 1955). It is simple,
efficient and gives in general good results when
the criterion is based on lateness, which is the
case in this paper (the lateness Li = Ci − di

where Ci is the completion time of task i and
di is the due date of task i). Applied on the
basic TSG described by the figure 2, where are
only represented two types of tasks for clarity
reason, this scheduling rule is obtained simply
by arranging tasks I1O1 and I2O2 by order of
increasing desired achievement dates indicated by
reference input (tasks I1O1, I2O2 correspond to
the treatment of pieces 1, 2 respectively). The
scheduling being fixed, we propose a JIT optimal
control method of safe TSG (i.e., one token at
most in each place), in the sense that the resource
is attributed at the latest to tasks. The control is
based on heap model of TSG.

We use Timed Event Graphs (TEG) to repre-
sent synchronization and delay phenomena. Well
known results on residuation in (max, +) algebra
allow the computation of a JIT optimal control of
these graphs, see (Cohen et al., 1989). Note that
TEG are not necessarily safe, see machine M1
described in figure 1, contrary to TSG supposed
safe.

This modeling approach appears to us better than
a global transformation of a timed Petri net into
a TEG, as proposed in (Trouillet and Benasser,
2002). In fact, the transformation of a timed Petri
net into an equivalent TEG supposes an a priori
conflits arbitration for each given reference input,
which could be costly in calculation time due to
possibly important dimension of resulting TEG.
In contrast, the representation of a timed Petri net
is independent of the considered scheduling, and
in consequence, of the reference input behavior,
which is particularly interesting in our case, in
the sense that any reference input trajectory can
be considered.

This paper is organized as follows. In the second
section are recalled some basic facts about dioid,
residuation theory, timed Petri nets and heap
models. We model and control FMS in the third
section, by subdividing Petri nets in TSG and
TEG. As an illustration, control algorithm is
applied to the system represented in figure 1.

2. PRELIMINARIES

2.1 Dioid

See (Cohen et al., 1989), (Baccelli et al., 1992, §4)
for an exhaustive presentation of dioid theory.

A dioid D is a set endowed with two inner op-
erations denoted by ⊕ (addition) and ⊗ (mul-
tiplication), both associative and both having a
neutral element denoted by ε and e respectively,
such that ⊕ is also commutative and idempotent
(i.e., a ⊕ a = a). The ⊗ operation is distributive
with respect to ⊕, and ε is absorbing (i.e., ε ⊗
a = a ⊗ ε = ε). The symbol ⊗ is often omitted.

A dioid D is complete if it is closed for infinite
sums and if the product distributes over infinite
sums too, i.e., if ∀c ∈ D and ∀A ⊆ D,

c ⊗

(

⊕

x∈A

x

)

=
⊕

x∈A

c ⊗ x.

The upper bound, noted >, of a complete dioid is
the sum of all its elements and it is absorbing for
the addition (i.e., ∀a,>⊕ a = >).

An order relation, noted �, can be associated with
a dioid D by the following equivalence: ∀ a, b ∈
D, a � b ⇔ a = a ⊕ b. This order confers upon
a complete dioid a structure of complete lattice.
So we can introduce an operator Inf , noted ∧,
verifying: ∀ a, b ∈ D, a � b ⇔ b = a ∧ b.

The set R ∪ {±∞}, endowed with the max oper-
ator as sum and the classical sum as product, is
a complete dioid, usually denoted by Rmax with
ε = −∞, e = 0 and > = +∞.

If D is a dioid, the set Dn×n of n×n matrices and
entries in D is also a dioid where sum and product
are defined by:

(A ⊕ B)ij = Aij ⊕ Bij , (A ⊗ B)ij =

n
⊕

k=1

Aik ⊗ Bkj .

2.2 Residuation theory

A presentation of this theory in the context of
dioid is given in (Baccelli et al., 1992, §4.4).
The residuation theory provides, under some as-
sumptions, the greatest solution to the inequality
f(x) � b, where f is an isotone mapping (i.e.,
a � b ⇒ f(a) � f(b)) defined over ordered sets.

An isotone mapping f : D → F , where D and
F are ordered sets, is a residuated mapping if
for all b ∈ F the upper bound of the subset
{x ∈ D | f(x) � b} exists and belongs to this
subset.

Theorem 1. (Baccelli et al., 1992, §4.4.2) Let f :
D → F be an isotone mapping from the complete
dioid D into the complete dioid F . The following
statements are equivalent:

(i) Mapping f is residuated.
(ii) There exists a unique isotone mapping f ] :

F → D, called residual, such that f◦f ] � idF
and f ] ◦ f � idD where idF and idD are
identity mappings in F and D respectively.

Mappings La : x 7→ ax and Ra : x 7→ xa defined
over a complete dioid D are both residuated. Their



residuals are usually denoted by L]
a(x) = a◦\x and

R]
a(x) = x◦/a respectively.

Let A ∈ Dm×n, B ∈ Dm×p, C ∈ Dn×p, then ma-
trix residuation in function of scalar residuation
is defined by:

A◦\B ∈ Dn×p, (A◦\B)ij =
m
∧

l=1

Ali◦\Blj ,

B◦/C ∈ Dm×n, (B◦/C)ij =
p
∧

k=1

Bik◦/Cjk .

Moreover, matrix residuation satisfies:
B◦/(AC) = (B◦/C)◦/A ∈ Dm×m,
(AC)◦\B = C◦\(A◦\B) ∈ Dp×p.

2.3 Petri nets

See (Murata, 1989) for an exhaustive presentation
of Petri nets. Considered timed Petri nets are nets
with only holding times associated to places.

A Timed Petri Net (TPN) is a 5-tuple G =
(T ,P ,F , M, τ), where T is the finite set of transi-
tions, P is the finite set of places, F ⊆ (P × T ) ∪
(T ×P) is the set of arcs, M : P → N is the initial
marking and τ : P → N is the holding time.

We denote by x• (resp., •x) the set of direct
successors (resp., predecessors) of a node (place
or transition) x. We call language of the Petri net
G the set L ⊂ T ∗ of firing sequences starting from
M and resulting in a reachable marking, where
T ∗ are the set of words on the alphabet T .
Transitions are fired according to the following
rule. We assume that a transition Ti becomes
enabled at instant t, then the firing of Ti occurs
in two steps:
At instant t, one token is removed from each place
p ∈ •Ti;
At instant t, one token is added in each place
p ∈ T •

i and can contribute to the enabling of the
transitions in p• after instant t + τp.

2.4 Heap models and heap automata

See (Gaubert and Mairesse, 1999) for an exhaus-
tive presentation of heap automata where it is
shown that heap models are particularly interest-
ing for the successive evaluation of a large number
of schedules in safe TPN. Such heap automata
can be seen as special (max, +) automata, which
compute, with a computational complexity in-
dependent of the schedule, the height of heaps
of pieces to have a makespan evaluation. Heap
models are used here to model TSG in order to
develop a control method which comes down to
addressing a model inversion problem.
The heaps vertical axis indicates its height and
its horizontal axis is for a finite number of slots.
A piece is a solid (possibly not connected) ”block”
occupying some of the slots, with staircase-shaped
upper and lower contours, see figure 3. With an
ordered sequence of pieces, we associate a heap by

pilling up the pieces, starting from an horizontal
ground. A piece is only subject to vertical trans-
lations and occupies the lowest possible position,
provided it is above ground and the pieces previ-
ously piled up.

A heap model is a 5-tuple H = (T ,R, R, l, u),
where:
T is a finite set whose elements are called pieces.
R is a finite set whose elements are called slots.
R : T → P(R) gives the subset of slots occupied
by a piece.
l : T × R → R ∪ {−∞} gives the height of the
lower contour of the piece at the different slots.
u : T × R → R ∪ {−∞} gives the height of the
upper contour of the piece at the different slots
(by construction, we have: u ≥ l).
By convention, l(a, r) = u(a, r) = −∞ if r /∈ R(a)
and minr∈R(a)l(a, r) = 0 (a piece can not be lower
than the ground).

We will interpret a k length word ω = a1...ak ∈ T ∗

as the heap obtained by pilling up the k pieces
a1, ..., ak (in this logical order). We define the
upper contour of the heap ω as the card(R)-
dimensional row vector xH(ω), where xH(ω)r is
the height of the heap on slot r. For example,
we have relatively to the heap of pieces that
corresponds to the word I1O1 represented in
figure 3: xH(I1O1)1 = τ1, xH(I1O1)2 = τ +
τ1, xH(I1O1)3 = −∞. The horizontal ground as-
sumption yields xH(e) = (0, ..., 0) where e denotes
the empty word. The height of the heap ω is
yH(ω) = maxr∈RxH(ω)r.

A heap automaton is 4-tuple A = (Q, I, F,M),
where:
Q is a finite set (of states);
I ∈ R

1×Q
max and F ∈ R

Q×1
max are the initial and final

vectors respectively;
M is a morphism (M(a ⊗ b) = M(a) ⊗ M(b))

defined by: M : T ∗ → R
Q×Q

max , a 7→ M(a) =
I ⊕ [l̃(a, .)]tu(a, .), where I is the identity matrix
defined by Iii = e = 0, Iij = ε = −∞, i 6= j,

where l̃(a, i) = −l(a, i) if l(a, i) 6= ε and l̃(a, i) = ε
otherwise, and where l̃(a, .), u(a, .) are viewed as
row vectors.

We verify that:






xH(e) = It
R,

xH(ωa) = xH(ω)M(a),
yH(ω) = xH(ω)IR,

(1)

where IR is the card(R)-dimensional column vec-
tor whose entries are equal to e.

Theorem 2. (Gaubert and Mairesse, 1999) Let
H = (T ,R, R, l, u) be a heap model. The heap
automaton (R, It

R, IR,M), associated with the
heap model H, recognizes the upper contour xH

and the height yH, which means that ∀ω ∈ T ∗ we
have:



xH(ω) = It
RM(ω) ,

yH(ω) = It
RM(ω)IR.

A useful interpretation of a heap model consists
in viewing pieces as tasks and slots as resources.
Each task ”a” requires a subset of the resources
(given by R(a)) during a certain amount of time
(u(a, r) − l(a, r) for a resource r ∈ R(a)). In fact,
in TPN context, the maps yH and xH correspond
to dater functions in the sense that xH(ω)r rep-
resents the achievement time of task r when the
word ω is applied.

Theorem 3. (Gaubert and Mairesse, 1999) Let
G = (T ,P ,F , M, τ) be a safe TPN with language
L. Then the heap model H = (T ,P , R, l, u), with:
∀a ∈ T , R(a) = a• ∪ •a,
∀a ∈ T , ∀p ∈ a•, u(a, p) = τp,
∀a ∈ T , ∀p ∈ •a\a•, u(a, p) = 0, where ”\” is the
set substraction,
∀a ∈ T , ∀p ∈ R(a), l(a, p) = 0,
is such that:
∀ω ∈ L, xG(ω) = xH(ω), yG(ω) = yH(ω),
which means that dater functions of vector xG and
of the scalar yG of the net G coincide respectively
with the upper contour xH and the height yH of
the associated heap model H.

Firing times of a safe TPN are recognized by a
heap automaton as a result of the previous two
theorems. For example, let us consider the basic
TSG described by figure 2 which could correspond
to the machine M2 or M3 of figure 1.

I1 I2

O2O1

P

P1 P2

t

t
2

t
1

Piece 1 Piece 2

Fig. 2. A basic TSG.

The associated heap model is defined by:
T = {I1, I2, O1, O2},R = P = {P1, P, P2};
R(I1) = R(O1) = {P1, P},
R(I2) = R(O2) = {P, P2};
u(I1, .) = [τ1, 0,−∞], l(I1, .) = [0, 0,−∞],
u(I2, .) = [−∞, 0, τ2], l(I2, .) = [−∞, 0, 0],
u(O1, .) = [0, τ,−∞], l(O1, .) = [0, 0,−∞],
u(O2, .) = [−∞, τ, 0], l(O2, .) = [−∞, 0, 0].

We have represented in figure 3 the heaps of
pieces associated with words I1, O1 and I1O1. We
directly read the values xH(I1O1) = [τ1, τ1τ,−∞]
and yH(I1O1) = τ1τ where τ1τ correspond to
τ1 + τ in usual algebra.

The corresponding heap automaton is defined by
the 4-tuple (P , (e e e), (e e e)t,M) where M is
defined as follows:

time

time

time

slot

slot

slot
0

0

0

+

piece corresponding to word

piece corresponding to word

pieces corresponding to word

Fig. 3. Heaps of pieces associated with words
I1, O1, and I1O1.

M(I1) = I ⊕





−e
−e
ε





(

τ1 e ε
)

=





τ1 e ε
τ1 e ε
ε ε e



 ,

M (O1) = I ⊕





−e
−e
ε





(

e τ ε
)

=





e τ ε
e τ ε
ε ε e



,

in the same way,

M (I2) =





e ε ε
ε e τ2

ε e τ2



 ,M (O2) =





e ε ε
ε τ e
ε τ e



.

As a result we have, M (I1O1) = M (I1)M (O1) =




τ1 τ1τ ε
τ1 τ1τ ε
ε ε e



 and M (I2O2) =





e ε ε
ε τ2τ τ2

ε τ2τ τ2



.

3. MODELING AND CONTROL OF FMS

We deal with the JIT control of FMS modeled
by TPNs: given desired output transitions fir-
ing dates defined by the dater function Z =
{z(k)}k=0,...,kf

, find the latest input transitions
firing dates U = {u(k)}k=0,...,kf

such that output
transitions firing dates Y = {y(k)}k=0,...,kf

occur
before the given ones. In a production context, it
amounts to satisfying the customer demand while
minimizing internal stocks. This output tracking
problem is optimally solved via residuation theory
for TEG (Cohen et al., 1989).
In the method we propose, TPN are subdivided
into TEG and TSG in order to separate the syn-
chronization phenomena from the choice phenom-
ena. Modeling and control of these graphs are de-
scribed in the two following subsections. The JIT
control applied to TSG is such that the scheduling
of a shared resource is obtained by using the Early
Due Date, or Jackson rule (Jackson, 1955), i.e., by
ordering tasks according to increased achievement
desired dates indicated by the reference input.

3.1 Modeling and control of TEG

TEG are well adapted to model synchronization
phenomena and correspond to linear dynamic
systems in dioid algebra (see (Cohen et al., 1989),



(Baccelli et al., 1992)). Let us consider the dioid
Rmax to linearly represent the dynamic behavior
of a TEG that corresponds to the following state
representation:

{

x(k) = Ax(k − 1) ⊕ Bu(k),
y(k) = Cx(k).

(2)

Given a reference input Z, the JIT control so-
lution, noted uJIT , for the model described by
the equations (2) is defined by the backtracking
costate equations:

{

ξ(k) = A◦\ξ(k + 1) ∧ C◦\Z(k),
uJIT (k) = B◦\ξ(k),

(3)

where ξ represents the costate vector, see (Baccelli
et al., 1992, §5.6).

3.2 Modeling and control of TSG

A heap automaton can be seen as a (max, +)
linear system whose dynamics is driven by let-
ters. For a given sequence of letters a1...ak, we
set x(k) = x(a1...ak), then equations (1) could
correspond to the following recurrence relation at
step k:

{

x(k) = x(k − 1)M (ak) ,
y(k) = x(k)F,

(4)

for k ≥ 1 and x(0) = (0, ..., 0).
Considering the basic TSG of figure 2 where I1, I2
are input transitions and O1, O2 are internal (and
output) transitions of the graph. The components
of the row state vector x(k) are dates of avail-
ability of token numbered k in places P1, P, P2
respectively.
Such state equations represent a non stationary
system, let A(k) = M(ak) be the associated ma-
trix at step k, we have ak = I1O1, or I2O2 which
depends of the sequence choice at step k. Let
F1 = (e, ε, ε), F2 = (ε, ε, e), F3 = (e, e, ε), F4 =
(ε, e, e) be the interface vectors joining daters of
transitions to daters of places as described above.
Finally, adding inputs to the model, the non au-
tonomous state equations become:

{

x(k) = x(k − 1) ⊗ A(k) ⊕ u(k) ⊗ B(k),
y(k) = x(k) ⊗ C(k),

(5)

where u = (I1, I2), x = (xP1, xP , xP2), y =
(O1, O2);
B(k) = F1M(I1O1), resp. F2M(I2O2), C(k) =
F t

1 , resp. F t
2 , depending on the sequence I1O1,

resp. I2O2, applied at step k.

Similarly to (Lahaye et al., 1999) we compute:
x(k) =

⊕

j≤k

u(j)B(j)Φ(j, k) and

y(k) =
⊕

j≤k

u(j)B(j)Φ(j, k)C(k),

where Φ(j, k) is the transition matrix given by:

Φ(j, k) =











not defined if j > k,

I if j = k,

A(j + 1)A(j + 2)...A(k) otherwise.

Then, we deduce that the JIT control, noted
uJITIi

, is given by:
uJITIi

(k) =
∧

k≤j

ZOi(j)◦/(B(k)Φ(k, j)C(j)),

=
∧

k≤j

ZOi(j)◦/(Fi(k)A(k)A(k + 1)..A(j)F t
i (j)),

where the reference input ZOi(j) = ZO1(j), resp.
ZO2(j) (i.e., the desired output of Y1, resp. Y2)
according to sequence I1O1, resp. I2O2, occurring
at step j.
Let ∆(k) =

∧

k≤j

ZOi(j)◦/(A(k)A(k+1)..A(j)F t
i (j))

the costate vector, we obtain (using section 2.2)
the following costate equations:
{

∆(k) = (∆(k + 1) ∧ ZOi(k)◦/F t
i (k))◦/A(k),

uJATIi
(k) = ∆(k)◦/Fi(k),

The use of Jackson scheduling rule, which sched-
ules a resource while respecting the order of in-
creased desired achievement dates indicated by
reference input, corresponds to apply the follow-
ing control algorithm at step k (with k = l + h):
If Z1(l)�Z2(h) then






∆(k) = (∆(k + 1) ∧ ZO2(h)◦/F t
2)◦/M(I2O2),

uJATI2
(h) = ∆(k)◦/F2,

h = h − 1,
(6)

else






∆(k) = (∆(k + 1) ∧ ZO1(l)◦/F t
1)◦/M(I1O1),

uJATI1
(l) = ∆(k)◦/F1,

l = l − 1,
(7)

where uJATI1
(l)(resp. uJATI2

(h)) corresponds to
input transition firing date I1(l)(resp. I2(h)). It
clearly appears that scheduling rule of the shared
resource carries out a selection among the se-
quences I1O1 and I2O2 at each step k of the al-
gorithm. Let us note that the test ZO1(l)�ZO2(h)
gives a priority to the first production line (I1, O1)
when the reference input date is the same for the
two lines. The obtained control is equivalent to
the optimal JIT control of TEG, corresponding to
TPN obtained by considering the used scheduling.

3.3 Modeling and control of FMS

Production lines of FMS is an assembly of TSG
and TEG joined in series which leads to a simple
construction of FMS models. Let us consider by
example the FMS of figure 1 which corresponds
to the combination of subgraphs described in
figure 4. Note that the subgraphs TEG, TSG1 and
TSG2 are coupled, in the sense of merging some
transitions (see transition X4, X6 in figure 1 or
figure 4 which both belong to two subgraphs).

Given Z a reference input, we start the resid-
uation from the end, i.e. at step kf , as usual
in backward algorithm. A special care has to be
done to interfaces between different subgraphs



because some transitions, called interface tran-
sitions, are common to these subgraphs. Due to
the coupling described above the costate vectors
are mutually effected. Let ∆1, ∆2 be the costate
vectors associated to the subgraphs TSG1, TSG2
respectively. If the single resource of machine 2
is affected to part A then the first equation in
(7) becomes ∆2(k2) = ∆2(k2 + 1)◦/M(I1O1) ∧
Z1(l)◦/(M(I1O1)F1

t) ∧ (ξ1(l + 2) − 2)◦/F3
t (the

last term reflects the influence of subgraph TEG)
and the second equation in (7) becomes ξ4(l) =
∆2(k2)◦/F1 where k2 = l + h. If the single re-
source of machine 2 is affected to part B then the
first equation in (6) becomes ∆2(k2) = ∆2(k2 +
1)◦/M(I2O2) ∧ Z2(h)◦/(M(I2O2)F2

t) ∧ ∆1(k1 +
1)◦/(1F4

tF3), the last term reflects the influence
of the last sample calculated of the resource as-
signment time in subgraph TSG1 projected into
TSG2. Dually in the last case, subgraph TSG2
will affect the costate variable of subgraph TSG1
according to the equation: ∆1(k1) = ∆1(k1 +
1)◦/M(I1O1) ∧ ∆2(k2)◦/(M(I1O1)F1

tF2). Finally
if the last resource is affected to part C then
the costate vector is calculated using: ∆1(k1) =
∆1(k1 +1)◦/M(I2O2)∧Z3(g)◦/(M(I2O2)F2

t) and
ξ3(g) = ∆1(k1)◦/F2 where k1 = h + g. The other
state vectors are calculated using equation (3), for
example ξ1(l) = ξ4(l) − 8. In this paragraph, the
control method is described on a particular exam-
ple for a better understanding. A generalization
of this approach is currently being formalized.

TEG TSG1

TSG2

U1 U2 U3

X4 X6

Y1 Y2 Y3

X4

X1

U1

M1

P1

P2
P3

TEG

X6 Y3

P7

P8

P9

X2 X3

U3U2

M3

P5 P6

TSG1

Y2Y1

P10

P11

P12

M2

X4 X6

TSG2

8

Fig. 4. Block diagram corresponding to FMS of
figure 1.

3.4 Numerical application

Let us apply the previous control algorithm on ex-
ample of figure 1. The reference input we consider
is:

Z =





18 20 42 43 45
ε 19 21 31 41
ε 19 24 37 40



,

We apply the previous algorithm, step by step,
beginning from the end kf = 5, we obtain from
the first interface:
ξ4 =

(

10 16 32 38 42
)

and ξ1 =
(

2 8 24 30 34
)

,
we obtain from the second interface:

ξ6 =
(

ε 14 20 26 30
)

, ξ2 =
(

ε 11 17 23 27
)

and ξ3 =
(

ε 15 21 36 39
)

. Finally we find the
input
UJIT 1

=
(

0 6 22 28 32
)

, UJIT 2
=

(

ε 7 13 19 23
)

,

UJIT 3
=

(

ε 12 18 33 36
)

.
The system output corresponding to UJIT is given
by:

Y =





13 19 35 41 45
ε 15 21 27 31
ε 16 22 37 40



. We can verify that

Y � Z.

4. CONCLUSION AND PERSPECTIVES

In this paper we have considered the just in
time control problem of flexible manufacturing
system. It is presented for a particular example.
At present, we are working on a formalization
which allows the generalization of systems classes,
we can consider, for this control method.

REFERENCES

Amar, S., E. Craye and J.C Gentina (1992). A
Method Of Hierarchical Specification And
Prototyping Of FMS. In: Proceedings of the
IEEE-ETFA. Vol. 1. pp. 44–49.

Baccelli, F., G. Cohen, G.J. Olsder and J.-P.
Quadrat (1992). Synchronization and Linear-
ity: An Algebra for Discrete Event Systems.
Wiley and Sons.

Cohen, G., P. Moller, J-P. Quadrat and M. Viot
(1989). Algebraic Tools for the Performance
Evaluation of Discrete Event Systems. IEEE
Proceedings: Special issue on Discrete Event
Systems 77(1), 39–58.

Gaubert, S. and J. Mairesse (1999). Modeling and
Analysis of Timed Petri Nets Using Heaps
of Pieces. IEEE Trans. on Automatic Control
44(4), 683–697.

Jackson, J.R. (1955). Scheduling a Production
Line to Minimize Maximum Tardiness. Re-
search report 43. University of California.
Los Angeles. Management Science Research
Project.

Lahaye, S., J.-L. Boimond and L. Hardouin
(1999). Optimal Control of (Min,+) Linear
Time-Varying Systems, Petri Nets and Per-
formance Models. Proceedings of PNPM’99.
Zaragoza Spain. pp. 170–178.

Murata, T. (1989). Petri Nets: Properties, Analy-
sis and Applications. In: Proceedings of the
IEEE.. Vol. 77(4). pp. 541–580.

Sotskov, Y.N. (1991). The Complexity of Schedul-
ing Problems with 2 and 3 Jobs. In: Eur. J.
Oper. Res. Vol. 53. pp. 326–336.

Trouillet, B. and A. Benasser (2002). Cyclic
Scheduling Problems with Assemblies: An
Approach Based to the Search of Initial
Marking in a Marked Graph. IEEE Trans. on
Systems, Man and Cybernetics.


