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We deal with timed event graphs whose holding times associated with places are variable. Defining a First-In-First-Out functioning rule,
we show that such graphs can be linearly described in (max, +) algebra. Moreover, this linear representation allows extending the just
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1 Introduction

An event graph is a Petri net such that each place has only one input arc and one output arc. Event graphs
are well adapted to model synchronization phenomena which can appear in particular in manufacturing
systems or in communications networks. If holding times are associated with places, we speak of Timed
Event Graphs1 (TEGs). For example, the k-th token added at time tk in place p2 of the TEG represented
in figure 1 must stay in this place up to time tk + τp2(k) before becoming available, and with the earliest
functioning rule, transition x2 fires as soon as a token is available in place p2. Assuming that, for any
place p, the sequence of holding times {τp(k)}k∈Z is such that tokens do not overtake one another when
traversing place p, TEGs can be modeled by linear equations in a particular algebraic structure called
dioid, and a linear system theory has been developed by analogy with conventional system theory (2),
(12), (6). Most of the results have been established with constant holding times for which the previous
assumption is obviously satisfied. Cofer et al. (5) and Brat et al. (4) have considered sequences of holding
times respectively non-decreasing and periodic such that places are overtake free.

- - - - - -
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Figure 1. A timed event graph

In this paper, we study systems which can be modeled by TEGs whose functioning is different. Indeed,
we define a functioning rule (in practical terms, a condition of availability of tokens) which ensures that
places operate as First-In-First-Out (FIFO) channels for all sequences of holding times. For example, the
k-th token added in place p2 at time tk will have to stay in this place before becoming available as long
as it is completing its holding time (i.e., up to time tk + τp2(k)) and as long as preceding tokens are
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1One can assume without loss of generality that the firings of transitions are instantaneous (2, §2.5.2).
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completing their holding times (i.e., up to time max
i<k

[ti + τp2(i)]). Such a rule allows studying systems

which are ”intrinsically” overtake free. Let us consider for example the automobile production line partly
shown in figure 2 where cars are handled by an asynchronous linear conveyor crossing successive working
areas possibly separated by buffer zones. In each working area, a fixed number of cars can be processed
simultaneously (two in the represented working area). Cars cannot overtake one another on the conveyor;
buffer zones and working areas work as FIFO channels. The evolution of cars in the considered portion of
the line can be modeled by the TEG in figure 1 only if we use the proposed functioning rule. Indeed, a
token in place p2 (representing a car being processed) must not overtake the preceding token(s) even if its
holding time τp2(·) (corresponding to the processing time which may depend on the number of optional
extras for example) is smaller than those of the preceding token(s).

buffer
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Figure 2. A portion of an automobile production line

TEGs functioning according to the proposed rule are named thereafter FIFO TEGs. As tokens cannot
overtake one another, we show that these graphs can be modeled by linear equations in the dioid called
(max,+) algebra. This representation constitutes an extension of the modeling approach in (max, +)
algebra.
Assuming that sequences of holding times are given, we present an optimal control of FIFO TEGs under
just in time criterion. The synthesis of this control appears to be a generalization of an existing result for
TEGs with constant holding times (2, §5.6), (9).
The paper is organized as follows. In Section 2, we define FIFO TEGs and briefly introduce dioids as well
as Residuation theory. In Section 3, we give state representation and input-output relationship of FIFO
TEGs. In Section 4, the optimal control of FIFO TEGs under just in time criterion is stated. A numerical
experimentation of the control synthesis is proposed in Section 5 leading us to a just in time strategy for
a car production line.

2 Preliminaries

2.1 FIFO Timed Event Graphs

We denote by P (respectively, Q) the finite set of places (respectively, transitions) of a TEG, and Mp ∈ N
the number of tokens being initially in place p ∈ P; p• (respectively, •p) refers to the output transition
(respectively, the input transition) of place p. We define similarly sets q• and •q as the set of output places,
and the set of input places, of a transition q ∈ Q.
The holding time is the minimum amount of time that tokens have to stay in a place: the k-th token in
place p incurs the holding time denoted τp(k).

Definition 2.1 We define the earliest FIFO functioning rule of a TEG as follows.

(i) A transition q fires as soon as each place upstream from q contains at least one available token.
(ii) We denote q(n) the date of the n-th firing of transition q. This firing consumes one token in each

upstream place and produces one token in each downstream place. A token added in place p ∈ q•
at time q(n) is indexed k with k = n + Mp and becomes available for transition p• from instant
max
1≤i≤n

{q(i) + τp(i + Mp)}.

A TEG functioning according to this rule is called a FIFO TEG.
The only originality in the proposed functioning rule concerns the tokens availability. Classically, the token
indexed k in place p is said to be available as soon as its holding time τp(k) is over (7), (2, ch. 2), besides
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the above definition of availability ensures that tokens cannot overtake one another when traversing places
(places operate as FIFO channels).

2.2 Dioids, Residuation theory

Refer to (2) and (3) for exhaustive presentations on dioids and Residuation theory.
A dioid is an idempotent semiring (D,⊕,⊗), the neutral elements of operators ⊕, ⊗ are denoted respectively
ε and e. Due to idempotency of ⊕, a natural order relation is defined by a º b ⇐⇒ a ⊕ b = a (a ⊕ b
is the least upper bound of {a, b}). A dioid D is complete if every subset A of D admits a least upper
bound equal to ⊕{x∈A}x and if ⊗ distributes over infinite sums (the greatest lower bound of {a, b}, noted
∧, then exists; a ∧ b = ⊕{x¹a,x¹b}x). The greatest element of a complete dioid D is noted > and is equal
to

⊕
x∈D x.

Let Zmax be the set Z ∪ {±∞} endowed with max as ⊕ and usual addition as ⊗. It is a complete dioid
with neutral elements ε = −∞ and e = 0, and is often called (max,+) algebra.
In this paper, we will also consider the complete dioid denoted (Σ,⊕,⊗) composed of non-decreasing maps
from Z into Zmax, and endowed with:

• the pointwise max as ⊕, (u⊕ v)(k) = max(u(k), v(k));
• the sup-convolution as multiplication, (u⊗ v)(k) = sup

s∈Z
{u(k − s) + v(s)}.

The neutral elements are ε(k) = −∞, ∀k ∈ Z; e(k) = −∞, ∀k < 0 and 0 otherwise.
Starting from a ’scalar’ dioid, consider N×N matrices with entries in D. Sum and product of matrices are
defined conventionally after the sum and product of scalars in D. This set of matrices endowed with these
two operations is a dioid denoted DN×N. The N-dimensional vectors can be handled by embedding such
vectors in square matrices with N− 1 additional rows or columns with entries equal to ε (in the following
we will ’abusively’ speak of dioids of column vectors, then denoted DN).

A mapping f : C 7→ D, where C and D are ordered sets, is residuated if for all y ∈ D, the least upper
bound of subset {x ∈ C | f(x) ¹ y} exists and belongs to this subset. It is then denoted f ](y). Mapping
f ] : D 7→ C is called the residual of f . When C and D are complete dioids, a mapping f is residuated if,
and only if, f(εC) = εD and for every subset X of C, f(

⊕
x∈X x) =

⊕
x∈X f(x).

In a complete dioid, mapping x 7→ a ⊗ x is residuated; its residual is denoted y 7→ a ◦\y or y 7→ y
a . Some

standard formulæ (2, §4.4) which will be useful later on are recalled below :

a⊗ (a ◦\x) ¹ x (f.1)
a ◦\(x ∧ y) = (a ◦\x) ∧ (a ◦\y) (f.2)

(a⊗ b) ◦\x =
a ◦\x
b

(f.3)

3 Representations of FIFO TEGs in (max,+) algebra

3.1 State model

The modeling methodology for FIFO TEGs is similar to the one presented in (2, chap. 2) for TEGs.

Definition 3.1 With each transition q ∈ Q is associated a dater variable also denoted q: q(k) denotes
the date of the (k + 1)-th firing of transition q. By convention we have q(k) = +∞ if q is fired less than k
times, and, q(k) = ε for all k < 0 (daters belong to the set Σ of non-decreasing maps from Z into Zmax).

The sequences of holding times τp(k), p ∈ P, k ∈ Z are assumed to be given nonnegative and finite
integers.
For sake of briefness, we suppose here that initial tokens are available from instant −∞. Towards the
modeling of FIFO TEGs in (max, +) algebra, as for TEGs, this comes down to considering canonical
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Figure 3. Illustration of remark 2

initial conditions (see in (2, §2.5) how to deal with ’non-zero’ initial conditions).

Assertion 3.2 The dater variables of a FIFO TEG satisfy the equation

q(k) =
⊕

{q′=•p|p∈•q}

⊕

i≤k

[
τp(i)⊗ q′(i−Mp)

]
, k ∈ Z,

or equivalently

q(k) = q(k − 1)⊕
⊕

{q′=•p|p∈•q}

[
τp(k)⊗ q′(k −Mp)

]
, k ∈ Z. (1)

Remark 1 Eq. (1) can be seen as a particular instance of Eqs. proposed in reference (1) in order to capture
queues with customer-varying service times, and to study liveness, absence of explosion as well as stability
in integrated service networks.

Remark 2 Eq. (1) does not model the behavior of a TEG (with the standard functioning rule) for which
each transition is recycled1. Consider for example the simple TEG functioning according to the FIFO rule
represented in figure 3.(a). Its dynamic behavior is described by equation

q2(k) = τ(k)q1(k)⊕ q2(k − 1) (2)

with
k q1(k) τ(k)
0 1 3
1 2 1
...

...
...

we have q2(0) = 4 and q2(1) = 4. Eq. (2) does not model the dynamic behavior of the TEG represented
in figure 3.(b) functioning according to the usual rule. Indeed, even if transition q2 is recycled, with the
classic rule, tokens may overtake one another in the timed place, and with the previous scenario, the first
and second firings of transition q2 occur at time 3 and 4 respectively.

We partition the set of transitions Q = U ∪X ∪Y, where U is the set of transitions with no predecessor
(input transition), Y is the set of transitions with no successor (output transition), and X = Q \ (U ∪ Y)
(state transitions). We denote by u (respectively x, y) the vector of input (respectively, state, output)
daters q, q ∈ U (respectively, X , Y). As for TEGs (see (2, §2.5)), after several manipulations the following
standard state model can be obtained:

{
x(k) = A(k)x(k − 1)⊕B(k)u(k)
y(k) = C(k)x(k) , k ∈ Z, (3)

1A transition q is said to be recycled if {p ∈ P | p ∈ •q, p ∈ q•, Mp = 1} 6= ∅.
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where A(k), B(k), C(k) are matrices of respective dimensions N× N, N× P, R× N 2 with entries in Zmax.

3.2 Input-output relationship

The recursive equation of (3) can also be written

x(k) = Φ(k, k0)x(k0)⊕
k⊕

j=k0+1

Φ(k, j)B(j)u(j), k ≥ k0, (4)

where the state-transition matrix Φ(k, i) is given by

Φ(k, i) =





not defined , i > k

e (identity element of Zmax
N×N) , i = k

A(k)⊗A(k − 1)⊗ · · · ⊗A(i + 1) , i < k

.

Remark 3 The state-transition matrix satisfies the composition property

Φ(k, i) = Φ(k, l)⊗ Φ(l, i) , where k ≥ l ≥ i,

and in particular for k > i: Φ(k, i) = A(k)Φ(k − 1, i), Φ(k, i) = Φ(k, i + 1)A(i + 1).

The input-output relationship is deduced from Eq. (4) with x(k0) = u(k0) = ε for k0 ≤ 0, and is given
by

∀k ∈ Z, y(k) =
⊕

j∈Z
h(k, j)u(j) (5)

where h is called the impulse response and is defined by

h(k, j) =
{

C(k)Φ(k, j)B(j) , k ≥ j
ε (Q× P matrix of null elements of Zmax) , k < j

. (6)

Remark 4 For conventional discrete-time linear time-varying systems (11), (10), the input-output rela-
tionship is given by: y(k) =

∑k
j=−∞ h(k, j)u(j). The analogy with formula (5) should be clear.

4 Just in time control

The input-output relationship of FIFO TEGs can be written

y = H(u), (7)

where the map H: (ΣP,⊕,⊗) 7→ (ΣQ,⊕,⊗) is defined by

[H(u)](k) =
⊕

j∈Z h(k, j)u(j) (cf. Eq. (5)).

Then the just in time control problem for a FIFO TEG can be formulated as follows: being given the
sequences of holding times {τp(k)}k∈Z, p ∈ P (matrices {A(k), B(k), C(k)}k∈Z and as a by-product the
impulse response h are computable), and denoting z ∈ ΣQ an output signal to be tracked (desired firing

2We have R =| Y |, but N (resp. P) may be greater than | X | (resp. | U |) because the state vector x (resp. input vector u) may
have been extended to obtain the standard Eqs. (3).
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sequences of output transitions), we aim at computing the greatest control u (latest firing sequences of
input transitions) such that

y = H(u) ¹ z,

i.e., such that the firing dates of output transitions occur at the latest before the desired ones.
This optimal control, denoted uopt, exists if H is residuated (cf. Section 2.2). Dioids (ΣP,⊕,⊗) and
(ΣQ,⊕,⊗) being complete, we only need to show that H satisfies the necessary and sufficient conditions
recalled in Section 2.2:

• ∀k ∈ Z,
[H(εΣP)

]
(k) =

⊕
j∈Z

h(k, j)⊗ εΣP(j) = εΣQ(k);

• ∀k ∈ Z,
[H(

⊕
i

ui)
]
(k) =

⊕
j∈Z

h(k, j)⊗ [ ⊕
i

ui(j)
]

=
⊕
i

⊕
j∈Z

h(k, j)⊗ ui(j) =
[⊕

i
H(ui)

]
(k).

Control input uopt therefore exists and is defined by:

uopt ,
⊕

{u∈ΣP|H(u)¹z}
u = H](z).

Proposition 4.1 Control uopt(k), k ∈ Z, is defined by

uopt(k) =
[H](z)

]
(k) =

∧

i∈Z

z(i)
h(i, k)

. (8)

Proof Let w be the signal defined by: ∀k ∈ Z, w(k) =
∧

i∈Z h(i, k) ◦\z(i).

(i) Let us first show that w is a solution to H(v) ¹ z. Using formula (f.1) we have, for all k:

⊕

j∈Z
h(k, j)w(j) =

⊕

j∈Z
h(k, j)

[ ∧

i∈Z

z(i)
h(i, j)

]
¹

⊕

j∈Z
h(k, j)

z(k)
h(k, j)

¹
⊕

j∈Z
z(k) = z(k).

(ii) Let us show that w is greater than any solution to H(v) ¹ z:
∀k ∈ Z,

⊕
j∈Z h(k, j)v(j) ¹ z(k) ⇔ ∀k ∈ Z, ∀j ∈ Z; h(k, j)v(j) ¹ z(k)

⇔ ∀k ∈ Z, ∀j ∈ Z; v(j) ¹ h(k, j) ◦\z(k) ⇔ ∀j ∈ Z, v(j) ¹ ∧
k∈Z h(k, j) ◦\z(k) = w(j).

¤

In the following, we show that uopt is solution to a system of recurrent equations which proceed backwards
in event numbering. These equations offer a strong analogy with the adjoint-state equations of optimal
control theory, and constitute an extension to the time-varying case of an existing result for (max,+) linear
systems (6), (2, §5.6).

Proposition 4.2 The control uopt given by Eq. (8) is the greatest solution to





ξ(k) =
ξ(k + 1)
A(k + 1)

∧ z(k)
C(k)

u(k) =
ξ(k)
B(k)

∀k ∈ Z. (9)
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Proof Using successively Eq.(6), formulæ (f .3) and (f .2), we have

uopt(k) =
∧

i∈Z

z(i)
h(i, k)

=
∧

i≥k

z(i)
h(i, k)

=
∧

i≥k

z(i)
C(i)Φ(i, k)B(k)

=

∧
i≥k

[
C(i)Φ(i, k) ◦\z(i)

]

B(k)
.

We set ξ(k) =
∧

i≥k C(i)Φ(i, k) ◦\z(i).

(i) Let us first show that ξ is solution to the first Eq. of (9). We have, for all k:

ξ(k + 1)
A(k + 1)

∧ z(k)
C(k)

=

∧
i≥k+1 C(i)Φ(i, k + 1) ◦\z(i)

A(k + 1)
∧ z(k)

C(k)

=
∧

i≥k+1

z(i)
C(i)Φ(i, k + 1)A(k + 1)

∧ z(k)
C(k)

(thanks to (f.2) and (f.3))

=
∧

i≥k+1

z(i)
C(i)Φ(i, k)

∧ z(k)
C(k)Φ(k, k)

(owing to Rem. 3 and Φ(k, k) = Id)

=
∧

i≥k

z(i)
C(i)Φ(i, k)

= ξ(k) .

(ii) Any solution to the first recursive Eq. of (9) can be written

ξ(k) =
ξ(k + k0)

Φ(k + k0, k)
∧

k+k0−1∧

j=k

z(j)
C(j)Φ(j, k)

, k ∈ Z, k0 ≥ 0.

We have ∀k, ξ(k) ¹ ξ(k) when k0 7→ +∞. In other words, ξ is greater than any solution to the first
Eq. of (9).

¤

At the stage of application, an appropriate initial condition of the recursive equation of (9) can be:

∃kf such that z(k) = > (= +∞) and ξ(k) = >, ∀k > kf .

When we are focusing on the control of a manufacturing system, this may mean that either only a
finite number (kf ) of products must be delivered, or, the production schedule is not known beyond the
kf -th product to deliver. In both cases, the missing or unknown future orders are then supposed not to
constrain the current running of the manufacturing system.

Remark 1 For TEGs with constant holding times, the computation of the difference ξi(k)−xi(k) indicates
the greatest delay by which the k-th firing of the transition xi may be postponed by an exogenous event,
with respect to its earliest possible occurrence, without affecting the output transition firing (2, §5.6). In
time-varying systems context, a practical information, inspired by the previous notion of ’time margin’,
is to know if values of some variable holding times can be increased, with respect to their values used to
compute the optimal control, without affecting the output transition firing. More precisely, the difference
ξi(k) − xj(k − 1) indicates the greatest possible value of the holding time τp(k) of place p (with p ∈ xi

•
and p ∈ •xj) without affecting the output transition firing.
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5 Application to a production line

As an example, let us extend the working area of the automobile production line represented in figure
2. In practice, the cars are often carried by a single conveyor along the assembly line to avoid loading
and unloading operations between two successive working areas. So, an assembly line is often composed
of successive working areas of cars, possibly separated by buffer zones, which are linked with a conveyor
system (8), as illustrated in figure 4. Each working area has a particular job to do, e.g. placing the
windscreens or installing the seat belts. The processing time of a car in a working area may depend on
its options and some working areas can process several cars in parallel. We consider here an asynchronous
conveyor system, which allows the cars to move forward independently along the assembly line.

Working area 1 Working

area 2

Working area 3 Buffer zoneBuffer zone Working area 4

- - - - -

Figure 4. The car assembly line considered as an example

The assembly line represented in figure 4 may be modeled by the FIFO TEG in figure 5. The firing of
transition u (respectively, y) modelizes the input (respectively, the output) of a car in production. The firings
of internal transitions modelize the inputs and the outputs of cars in the working areas, or in the buffer
zones. The holding times in buffer zones, denoted τ3 and τ5, have constant values, while the processing times
of working areas 1, 2, 3 and 4, denoted τ1(·), τ2(·), τ4(·) and τ6(·) respectively, may depend on the indices of
tokens. Let us note that the tokens in the timed places represent the position of six cars initially on the assembly line.

-- - -- -

ª
I

- -

ª

- -

ª
I

- -

ª
I

Work. area1

- -

ª
I

Work. area2 Buffer zone Work. area3 Buffer zone Work. area4

τ1(·) τ2(·) τ3 τ4(·) τ5 τ6(·)

I

yu

- -

ª

x1 x2 x3 x4 x5 x6 x7

I

Figure 5. The FIFO TEG corresponding to the system described in figure 4

The state model representing the dynamic behavior of this FIFO TEG (cf. Section 3.1) is given by




x1(k)
x2(k)
x3(k)
x4(k)
x5(k)
x6(k)
x7(k)

x4(k − 1)




=




e e · · · · · ·
τ1(k) τ2(k) e e · · · ·
· τ2(k) e e · · · ·
· · τ3 e e · · ·
· · · · e e · τ4(k)
· · · · τ5 τ5 e τ5 ⊗ τ4(k)
· · · · · τ6(k) e ·
· · · e · · · ·




⊗




x1(k − 1)
x2(k − 1)
x3(k − 1)
x4(k − 1)
x5(k − 1)
x6(k − 1)
x7(k − 1)
x4(k − 2)




⊕




e
·
·
·
·
·
·
·




⊗ u(k)

y(k) = (· · · · · · e ·)⊗




x1(k)
x2(k)
x3(k)
x4(k)
x5(k)
x6(k)
x7(k)

x4(k − 1)
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in which ’·’ corresponds to ε.
Four types of cars are supposed to be assembled, their processing times in working areas are given in Table
1.

Type Area 1 Area 2 Buffer Area 3 Buufer Area 4
P1 1 1 1 2 1 1
P2 1 2 1 3 1 2
P3 2 2 1 2 1 2
P4 2 2 1 3 1 2

Table 1. Processing times in working areas of the four types of cars

Table 2 gives the desired sequence of production for twelve cars (their types and their desired delivery
dates). Index k in this sequence starts at 6, since six cars are initially on the assembly line, and will then
be previously delivered.

k 6 7 8 9 10 11 12 13 14 15 16 17
Type of cars P1 P2 P2 P2 P2 P2 P3 P3 P3 P4 P4 P4

z(k) 15 16 18 19 22 23 25 26 26 29 30 32
Table 2. Desired sequence of production

Figure 6 represents both the trajectory of the optimal control uopt (”release dates of cars on the
assembly line”) computed thanks to Eqs. (9), the trajectory of output y (”delivery dates of processed
cars”) in response to uopt computed with Eqs. (3), as well as the tracked output z (”desired delivery dates
of processed cars”).

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

30

35

 events

tim
e

 o : control input (uopt)  , + : output response (y), * : tracked ouput (z) 

Figure 6. Results for the numerical example

The shift in indices between control input uopt and output response y is due to the six cars initially
present on the assembly line.
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We observe that output y in response to the computed optimal control uopt is smaller than the tracked
output z (given in Table 2). In terms of production system, that means that cars are all delivered before
the desired dates. Furthermore, note that the releases of cars in the working area always occur at the latest
such that processed cars are delivered at or before the desired dates.

6 Conclusion

We have defined a class of timed event graphs whose FIFO characteristic is inherent to a new functioning
rule. We give linear representations of these graphs in (max, +) algebra. The synthesis of the just in time
control of such graphs is proposed and is principally based on Residuation theory and dioid properties.
Its application to just in time strategy for production lines is presented.

To the sight of their representations, one can say that these graphs allow modelling a class of time-
varying (max, +) linear systems. Possible extensions for this work would then consist in transposing existing
results for conventional time-varying linear systems to the max-plus algebraic framework. In particular,
authors have studied (max,+) linear periodic systems in (13) (regarding manufacturing systems, the
approach is restricted to cyclic production). A formal definition as well as a characterization of their
impulse response have been proposed. Several notions and results from conventional periodic system theory
are also transposed to the algebraic context of dioids: the monodromy matrix whose spectral properties are
used to study steady states of autonomous systems, the cyclic time invariant reformulation of a periodic
state space which is exploited to study state space realization of periodic systems.
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des Sciences et Technologies de Lille, 1997.

[9] E. Menguy, J.-L. Boimond, L. Hardouin, and J.-L. Ferrier. Just in time control of linear systems
in dioid: Update of reference input, presence of uncontrollable input. IEEE TAC, 45(11):2155–2159,
2000.

[10] A. Halanay and V. Ionescu. Time-Varying Discrete Linear Systems. Birkhauser Verlag, 1994.
[11] E. W. Kamen. Fundamentals of linear time-varying systems. In W. S. Levine, editor, The Control

Handbook. IEEE Press and CRC Press, 1996.
[12] M. Plus. A linear system theory for systems subject to synchronization and saturation constraints.

In Proceedings of the first European Control Conference, Grenoble, July 1991.
[13] S. Lahaye, J.-L. Boimond, and L. Hardouin. Linear Periodic Systems Over Dioids. Discrete Event

Dynamic Systems: Theory and Applications, Kluwer Academic Publishers, 14:133–152, 2004.


