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Abstract

In this paper, supervisory control of (max,+) automata is studied. The synthesis of maximally
permissive and just-in-time supervisor, as well as the synthesis of minimally permissive and just-
after-time supervisor, are proposed. Results are also specialized to nondecreasing solutions, because
only such supervisors can be realized in practice. The inherent issue of rationality raised recently
is discussed. An illustration of concepts and results is presented through an example of a flexible
manufacturing system.

1 Introduction

Discrete event systems (DES) have been extensively studied through several distinct approaches over the
past few decades. In particular, a theory initiated by Ramadge and Wonham (Ramadge & Wonham,
1989) lies on the modeling of DES by means of conventional automata; namely, events are seen as letters
and DES are seen as finite state machines. The main results concern the logical behavior of DES,
and their initial formulations neglected timing aspects. Another approach based on (max,+) algebra
considers a more restricted class of DES (Baccelli, Cohen, Olsder, & Quadrat, 1992). In fact, while
automata naturally allow the non-determinism inherent to conflicts or choices which often exist in DES
(e.g. to capture several possible schedules), (max,+) linear stationary systems are well adapted to DES
whose behavior is deterministic (by fixing the schedules in this case). By contrast, timing aspects are
natively included and the focus is rather on quantitative measures of the behavior of DES (asymptotic
performances, earliest or latest behavior, etc).

Stéphane Gaubert first noticed in (Gaubert, 1995) that automata with multiplicities over the (max,+)
algebra contribute to fill the gap between these two approaches. Indeed, this last approach is made
attractive by the fact that it combines concepts on automata with results on (max, +) algebra, to study
at the same time the logical and timing aspects of DES. Recently, (max,+) automata have been applied
to performance evaluation (Gaubert, 1995; Gaubert & Mairesse, 1999b), scheduling (Houssin, 2011)
and control (Badouel, Bouillard, Darondeau, & Komenda, 2011; Komenda, Lahaye, & Boimond, 2009;
Su, van Schuppen, & Rooda, 2012) problems for a large class of timed DES.

This paper deals with control of (max,+) automata and it is then correlated to control approaches
for automata and (max,+) linear systems.

On the one hand, supervisory control of conventional automata has been proposed as a formal approach
to restrict the logical behavior of these systems. It has been extended to timed DES. Let us recall the
discrete time approach of (Brandin & Wonham, 1994), where discrete clock is modeled by a special
uncontrollable event called tick, and the continuous (dense) time approach based on timed automaton
model, where timed automaton is abstracted into logical automaton called region automaton (Wong-Toi
& Hoffmann, 1995). It turns out that timed automata form a very general class of timed DES, but many
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very basic problems such as checking inclusion of their behaviors (timed languages) is undecidable.
On the other hand, many concepts and results from conventional control theory have been successfully

transposed and/or adapted to the (max,+) algebraic setting. Let us mention (without aiming at the
exhaustiveness): optimal open-loop control (Cohen, Moller, Quadrat, & Viot, 1989), internal model
control (Boimond & Ferrier, 1996), feedback control (Lhommeau, Hardouin, Cottenceau, & Jaulin,
2004), model predictive control (De Schutter & van den Boom, 2001). Nevertheless, these results apply
only to the restricted class of (max,+) linear stationary systems, by means of which non-determinism
cannot be considered.

The control approach proposed for (max,+) automata thus aims at supplying algebraic results for
the control of a wide class of discrete event systems. More precisely, we have developed in (Komenda et
al., 2009) a supervisory control framework for (max,+) automata that does not use any abstraction or
discretization, and which is based on parallel composition of (max,+) automata with their supervisors.
The behavior of this parallel composition is a generalization of Hadamard product that takes into account
uncontrollable events (that can neither be prevented from occurring nor delayed).

Contribution
In this paper, after recalling our control framework and solutions from (Komenda et al., 2009), we
propose new results. First we show how to synthesize a supervisor optimal with respect to a new
criterion. Namely, we are interested in minimally permissive and ”just-after-time” supervisor in order to
guarantee a minimal required behavior and to delay the system as little as possible so that completions
of sequences occur later than prescribed dates. We are convinced that this type of control can be useful
for applications to transportation networks, manufacturing systems, communication networks, etc. For
example, in a railway network, one can aim at limiting the number of trains on a path (by increasing
dwell times at stations to improve connections) while minimizing the induced delays.

An important aspect towards applicability, namely the rationality of obtained supervisors, had been
very partially treated in (Komenda et al., 2009). Based on results from (Badouel et al., 2011), classes of
(max,+) automata representing the system and the reference are identified to be sufficient to get rational
supervisors.

Another contribution is that results are specialized to the setting of nondecreasing series, which
correspond to automata having nonnegative transition values: only such (max,+) automata are of interest
when studying DES since transition values correspond to durations in the system.

Each of the concepts and results are illustrated by academic examples through the paper. The final
section is devoted to a more substantial example which aims at demonstrating some potential applications
to manufacturing systems. A jobshop is considered and the control results are supervisors which restrict
the production to a set of possible schedules with deadlines for each of these jobs, and/or dually which
impose a minimal production corresponding to mandatory manufacturing orders to fulfill with earliest
due dates.

Scope of applicability
In the present state of the approach, the system and the control-specification are assumed to be rep-
resented by unambiguous (max,+) automata, a sufficient condition to obtain rational supervisors (see
discussion in Section 4.5). Recent contributions clarify partially the modeling power of unambiguous
(max,+) automata.

Based on results from Gaubert and Mairesse (1999b); Lahaye, Komenda, and Boimond (2014a,
2014b), the focus on unambiguous (max,+) automata leads us to consider timed DES which can be
described by safe (or 1-bounded) timed Petri nets1 for which oriented paths between any two transitions
contain at most one ”conflict place” (with more than one output transition). In few words, it is then pos-
sible to consider timed DES with mono-server resources (i.e. safe) involving synchronization phenomena
and several partially asynchronous resource-sharing phenomena. In particular, this framework is general
enough to study a wide spectrum of manufacturing systems including safe Flow-shops and Job-shops (as
illustrated in Section 5).

A recent study Komenda, Lahaye, and Boimond (2013) has shown that a class of bounded timed

1Petri nets are very well known for the modeling of DES (see for example the references (David & Alla, 2010; Murata,
1989) for an introduction).
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Petri nets can be represented by deterministic (and thus unambiguous) (max,+) automata. This paves
the way for future application of our results to timed DES with multi-server resources (i.e. non-safe).

Related work
Besides extensions of supervisory control to timed DES cited above, let us mention the approach in
Su et al. (2012) investigating the supervisory control of time-weighted systems by associating to finite-
state automata a ”mutual exclusion function” as well as a ”time-weighted function”. This time-weighted
function defines for each event a value, interpreted as the duration of the event execution. From the
time-weighted system, a heap model (i.e. a particular (max,+) automaton) is built to compute execution
times of event sequences in the system. In the corresponding (max,+) automaton, all the transitions
involving a given event are assumed have the same weight (one possible duration for an event whatever
the current state). Let us point out that, with (max,+) automata, the only way to evaluate execution
times of sequences in which an event can occur simultaneously (in an asynchronous manner) with another
event is to consider several possible transitions for this event with different durations according to the
starting state (see e.g. event a in Fig. 6 whose duration is 2 from state 1 and 0 from state 6 since it is
then executed simultaneously with event c leading to this state). In other words, the approach in Su et
al. (2012) fits rarely to the class of timed DES (involving parallel activities) considered in this paper.

In Badouel et al. (2011) authors consider the robust control of systems modeled by interval weighted
automata. Their control objective is specified by a reference model defining a tolerance on the desired
behavior of the plant (instead of a trajectory tracking objective in our case). In addition, their controller
differs from our supervisor because it cannot prevent (only delay) the occurrence of events, and no
uncontrollable events are considered.

Supervisory control has also been discussed in the framework of time/timed Petri nets. In Buy,
Darabi, Lehene, and Venepally (2005) the authors define supervisory controllers for enforcing deadlines
on transition firings in time Petri nets. Their goal is to find a supervisor, which can fire a designated
transition within a prescribed deadline. In our case, the supervisor can only delay or forbid some events
to occur. Furthermore, the events in their setting are associated with firing intervals instead of durations
and no uncontrollable transitions are present. In Heidira and Boucheneb (2013) maximally permissive
control of time Petri nets is investigated. The time information is then described by intervals instead of
durations, and the control problem is about synthesizing a maximally permissive state-based feedback
controller (limiting the firing intervals) such that some safety/reachability properties are satisfied. It
differs from ours because no time optimality is considered in their paper.

Organization
The paper is organized as follows. In the following section we recall important algebraic tools needed in
this paper. (Max,+) automata are introduced in section 3, and section 4 is dedicated to their supervisory
control. An application to the control of a manufacturing system is presented in section 5. Finally,
concluding remarks with hints on future extensions are given in section 6.

2 Preliminary definitions and results

The basic algebraic structure used across the paper is that of an idempotent semiring or dioid. In this
section, three specific dioids are introduced: (max,+) algebra, the dioid of formal languages and the dioid
of formal power series (see the monographs (Baccelli et al., 1992; Heidergott, Olsder, & Woude, 2006)
for a more exhaustive presentation). Some results of residuation theory, useful to solve inequalities on
such ordered structures, are also mentioned. Finally, basics about projections of languages are reminded.

2.1 Dioid algebra

Definition 1 A dioid is a semiring in which the addition ⊕ is idempotent. The addition (resp., the
multiplication ⊗) has a null element ε (resp., identity element e).

Example 1 The set R∪{−∞} with the maximum playing the role of addition and conventional addition
playing the role of multiplication is a dioid, denoted Rmax and usually called (max,+) algebra, with e = 0
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and ε = −∞.
The set of n× n matrices with coefficients in Rmax, endowed with the matrix addition and multiplication
conventionally defined from ⊕ and ⊗, is also a dioid, denoted Rn×n

max . The null element for the addition is
the matrix denoted εn and exclusively composed of ε (= −∞). We denote In the identity element of the
multiplication, which is the matrix with e (= 0) on the diagonal and ε (= −∞) elsewhere. To be rigorous,
note that any 1× n vector should be embedded in this dioid by adding n− 1 lines full of ε. To lighten the
presentation, this construction is sometimes omitted in the following (without affecting the results), and
the coefficients equal to ε in the matrices will be replaced by ’·’.

Example 2 If A is a finite set (alphabet), the free monoid on A is defined as the set A∗ of finite words
with letters in A. A word w ∈ A∗ can be written as a sequence w = a1a2 . . . ap with a1, a2, . . ., ap ∈ A and
p a natural number. Formal languages are subsets of the free monoid A∗. The set of formal languages,
with the union of languages playing the role of addition and concatenation of languages playing the role
of multiplication, is a dioid, denoted (Pwr(A∗),∪, .). The zero language is ε = {}, the unit language is
denoted e = {ǫ} where ǫ is the empty (zero length) string.

Example 3 A series with coefficients in Rmax and indeterminates in free monoid A∗ is simply a map
y : A∗ → Rmax. The set of these series is denoted RmaxJAK. We will represent a series y by a formal sum
y =

⊕

w∈A∗ y(w)w. If y(w) = ε, we do not need to write the monomial y(w) in the sum. Set RmaxJAK
endowed with point-wise addition and convolution multiplication is a dioid of formal power series. Thus,
for y, y′ ∈ RmaxJAK, one has:

y ⊕ y′ , ⊕w∈A∗(y(w)⊕ y′(w))w ,

y ⊗ y′ , ⊕w∈A∗(⊕uv=wy(u)⊗ y′(v))w.

The language supp(y) = {w ∈ A∗ : y(w) 6= ε(−∞)} is called the support of series y. Another multiplica-
tion of formal power series of RmaxJAK (element-wise or word-by-word), called Hadamard product, will
be needed and is defined for two series y, y′ ∈ RmaxJAK by

y ⊙ y′ , ⊕w∈A∗(y(w)⊗ y′(w))w.

For example, with A = {a, b}, y = 1a⊕ 2ab and y′ = 3ab, we have supp(y) = {a, ab}, y ⊕ y′ = 1a⊕ 3ab,
y ⊗ y′ = 4aab⊕ 5abab and y ⊙ y′ = 5ab.

In any dioid, a natural order � is defined by: a � b ⇔ a⊕ b = b. A dioid D is complete if each subset
A of D admits a least upper bound denoted

⊕

x∈Ax, and if ⊗ distributes with respect to infinite sums.
In particular, ⊤ =

⊕

x∈Dx is the greatest element of D, with the convention ⊤ ⊗ ε = ε ⊗ ⊤ = ε. In a
complete dioid, the greatest lower bound ∧ always exists: a ∧ b =

⊕

x�a,x�b x.
Note that natural order of Rmax coincides with usual order and for y, y′ ∈ RmaxJAK, y � y′ (natural

order on RmaxJAK) amounts to y(w) ≤ y′(w) for all w ∈ A∗. For example, with y = 1a ⊕ 2ab, y′ = 3ab
and y′′ = 1a⊕ 3ab⊕ 2abb, we have y � y′′ but y is not comparable to y′, y ∧ y′ = 2ab and y ∧ y′′ = y.

Dioid Rmax completed with ⊤ = +∞ is denoted Rmax, and the dioid of formal power series is complete
if coefficients are assumed to belong to Rmax.

A string u = u1 . . . uk ∈ A∗ is called a subword of v ∈ A∗ if there exists a factorization v =
v1u1v2 . . . vkukvk+1 with vi ∈ A∗, i = 1, . . . k + 1. The induced subword order on A∗ is u � v iff u
is a subword of v ∈ A∗. For example, acb is a subword of babccbc. A string u ∈ A∗ is called a prefix of
v ∈ A∗ if there exists w ∈ A∗ such that v = uw. The induced prefix order will also be used: u �p v iff u
is a prefix of v.

Let N denote the set of natural numbers with zero. In a complete dioid the star operation (sometimes
referred to as Kleene star) can be introduced by the formula

a∗ =
⊕

n∈N

an,

where by convention a0 = e and an = an−1 ⊗ a for any a and n ≥ 1.
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2.2 Residuation theory

Residuation theory makes it possible to define ’pseudo-inverses’ for isotone maps (f is isotone if a � b ⇒
f(a) � f(b)) defined on ordered sets (see (Blyth & Janowitz, 1972), and (Baccelli et al., 1992, §4.4) for
the specialization to dioids). Let B, C and D be ordered sets. An isotone map f : D → C is said to be
residuated (resp., dually residuated) if ∀y ∈ C, the least upper bound (resp., greatest lower bound) of set
{x ∈ D : f(x) � y} (resp., {x ∈ D : f(x) � y}) exists and belongs to this subset.

Theorem 1 Let us denote IdC and IdD the identity maps of C and D. An isotone map f is

• residuated iff there exists an isotone mapping h : C → D such that

f ◦ h � IdC and h ◦ f � IdD. (1)

The map h is unique, it is denoted f ♯ and is called residual of f .

• dually residuated iff there exists an isotone mapping h′ : C → D such that

f ◦ h′ � IdC and h′ ◦ f � IdD. (2)

The map h′ is unique, it is denoted f ♭ and is called dual residual of f .

Theorem 2 (Baccelli et al., 1992, §4.4.4) If f : D → C and g : C → B are residuated (resp., dually
residuated) mappings, then g ◦f : D → B is also residuated (resp., dually residuated) and (g ◦f)♯ = f ♯ ◦g♯

(resp., (g ◦ f)♭ = f ♭ ◦ g♭).

Example 4 The isotone map Ra : x 7→ x⊗ a in a complete dioid D is residuated (Baccelli et al., 1992,
§4.4). The greatest solution of x⊗ a � b exists and is equal to Ra

♯(b), also denoted b◦/a.

Example 5 The isotone map Hy: RmaxJAK → RmaxJAK, y′ 7→ y′ ⊙ y is residuated (Komenda et al.,
2009) and its residual is given by

H♯
y(y

′)(w) = y′(w)◦/y(w),

i.e., H♯
y(y

′) =
⊕

w∈A∗(y′(w)◦/y(w))w. Even more, the Hadamard product admits an inverse, which is
known as the Hadamard quotient in the theory of formal power series over rings. However, a generalized
version of the Hadamard product, defined and used further in this paper, is only residuated. Hence, the
notation from residuation theory is kept also for Hy.

2.3 Projection of languages

The natural projection from A to Ac, where Ac ⊆ A is denoted by Pc and is defined by

Pc(a) =

{

a if a ∈ Ac,
ǫ if a ∈ A \Ac,

in which ǫ denotes the empty string. Projection Pc can be extended to words such that Pc(a1 . . . an) =
Pc(a1) . . . Pc(an). It projects away from any word w ∈ A∗ the letters from Au = A\Ac (natural projection
is usually used to remove unobservable events from sequences (Lin & Wonham, 1988)). For a language
L (set of words), we have Pc(L) = {Pc(w) : w ∈ L}. The inverse projection P−1

c : Pwr(A∗
c) → Pwr(A∗),

defined on languages, is such that for all M ⊆ A∗
c , P

−1
c (M) = {w ∈ A∗ : Pc(w) ∈ M}.

3 (max,+) automata

Weighted automata (also known as automata with multiplicities) in the Rmax semiring are usually called
(max,+) automata. Stéphane Gaubert showed first their advantage to study an important class of timed
DES in (Gaubert, 1995). In fact, both synchronization between events and resource sharing (choice)
phenomena can be captured by means of (max,+) automata models. In that sense, (max,+) automata
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generalize both (max,+)-linear systems (by enabling choice) and logical automata (by introducing du-
ration of events). Moreover, this approach benefits of results both from (max,+)-linear system and
supervisory control theories. In this section, we only recall definitions and results which are necessary for
the control approach proposed in section 4. The seminal articles (Gaubert, 1995; Gaubert & Mairesse,
1999b) should be consulted for a more exhaustive introduction together with applications to the modeling
and performance evaluation of timed DES.

Definition 2 A (max,+) automaton G over an alphabet A is a quintuple G = (Q,A,Q0, t, Qm), where
Q is a finite set of states, Q0 ⊂ Q (resp., Qm ⊂ Q) is the set of initial states (resp., final states) and
t : Q×A×Q → Rmax is the transition function.2

Example 6 Figure 1 is the typical graphical representation which can be associated with every (max,+)
automaton:

• the nodes correspond to states q ∈ Q;

• an arrow exists from state q to state q′ if there exists an event a ∈ A such that t(q, a, q′) 6= ε : it
represents the state transition when event a occurs and the value of t(q, a, q′) is interpreted as the
duration associated to event a (namely, the activation time of event a before it can occur);

• an input arrow symbolizes an initial state in Q0;

• an output arrow symbolizes a final (or marked) state in Qm.

I II

a/3

d/1

c/5

III

b/4

Figure 1: A (max,+) automaton

For this example, we have Q = {I, II, III}, A = {a, b, c, d}, Q0 = {I}, Qm = {II, III}, t(I, a, II) =
3, t(II, d, II) = 1, t(II, b, III) = 4 and t(III, c, II) = 5 (the transition function is equal to ε for all other
triples (q, a, q′), q, q′ ∈ Q, a ∈ A). This means that the following sequences of events can be generated :
a, ab, ad, abc, add, adb, abcb, abcd, addd, addb, adbc, . . .. More explicitly, the marked language of the
underlying logical automaton is a(d+ bc)∗(e + b), and its prefix closure gives all the possible sequences.

In the sequel, the terminology of graph theory is transferred to automata, e.g. to specify path or
circuit of an automaton. A path which is both starting with an initial state and ending with a final state
is called a successful path. The label of a transition corresponds to the letter (event) involved in it, and
the label of a path is the concatenation of labels of successive transitions. The weight of a transition is
the value associated by the transition function, and the weight of a path is the ⊗ product (i.e. the usual
sum) of the weights of the successive transitions.

The behavior of (max,+) automaton G is the formal power series y ∈ RmaxJAK recognized by this
automaton, and is defined by: ∀w = a1 . . . an ∈ A∗,

y(w) = max
q0,...,qn∈Q

[

n
∑

i=1

t(qi−1, ai, qi)

]

, (3)

2This definition is slightly different from that in (Gaubert, 1995) where initial and final delays are considered. Note
that there is no loss of generality here since an automaton with initial and final delays can always be transformed into
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where q0 (resp., qn) is an initial state (resp., a final state). Otherwise stated, y(w) is the maximal weight
of the successful paths recognizing w.

Remark 1 The formal power series y is a generalized dater (Gaubert, 1995), where y(w) corresponds
to the time instant at which the task sequence w has been completed (by convention y(w) = −∞ = ε if w
does not occur).

A (max,+) automaton G can also be determined by a triple (known as linear representation) (α, µ, β),
where

• α ∈ R
1×|Q|

max , αq = e if q ∈ Q0 and αq = ε otherwise;

• µ : A → R
|Q|×|Q|

max , µ(a)q q′ , t(q, a, q′);

• β ∈ R
|Q|×1

max , βq = e if q ∈ Qm and βq = ε otherwise.

Similarly as timed event graphs can be described by fixed point equations in the dioid of formal
power series ZmaxJγK (see (Baccelli et al., 1992, §5.3)), any (max,+) automaton can be described by the
following equations in RmaxJAK

{

x = xµ⊕ α,
y = xβ,

in which µ =
⊕

a∈A µ(a)a ∈ RmaxJAK|Q|×|Q| is the morphism matrix. It is known that its least solution,
which corresponds to the behavior of the (max,+) automaton, is given by y = α⊗ µ∗ ⊗ β.

Example 7 Linear representation of (max,+) automaton G represented in Figure 1 is defined by

α =
(

e · ·

)

,

µ(a) =





· 3 ·

· · ·

· · ·



 , µ(b) =





· · ·

· · 4
· · ·



 ,

µ(c) =





· · ·

· · ·

· 5 ·



 , µ(d) =





· · ·

· 1 ·

· · ·



 , β =





·

e

e



 .

Let us now compute the behavior of G:

y = α⊗ µ∗ ⊗ β
= α⊗ (µ(a)a⊕ µ(b)b ⊕ µ(c)c⊕ µ(d)d)∗ ⊗ β

= α⊗





· 3a ·
· 1d 4b
· 5c ·





∗

⊗ β.

We obtain the following formal power series of RmaxJAK as the behavior of G :

y = 3a(1d⊕ 9bc)∗(e⊕ 4b).

For instance, y(ab) = 7 means that the sequence of events ab is completed at time 7 (it is assumed that
the system starts to operate at time 0).

We end this section with a classification of (max,+) automata (see (Lombardy & Mairesse, 2006)). An
automaton is said to be 1-valued if, for every word w, the successful paths labeled by w have the same
weight. An automaton is said to be unambiguous if, for every word w, there is at most one successful
path labeled by w, in other words, if for every word w
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1. there exists at most one i such that (αµ(w))i ⊗ βi 6= ε

2. ∀a ∈ A, ∀j, there exists at most one i such that (αµ(w))i ⊗ (µ(a))ij 6= ε.

An automaton is said to be deterministic if

1. there is a single i such that αi 6= ε

2. for all a ∈ A, ∀i, there exists at most one j such that µ(a)ij 6= ε.

It should be clear that ’deterministic’ implies ’unambiguous’ which implies ’1-valued’.

4 Supervisory control of (max,+) automata

We have recently extended supervisory control paradigm to (max,+) automata in (Komenda et al.,
2009). The control problem considered therein is known as maximally permissive (in the logical setting)
and optimal with respect to ”just-in-time” criterion (in the timed setting). These results are briefly
reminded and several contributions are presented in the following subsections. A solution to the dual
control problem is derived, namely it is formulated using a minimal required behavior and from the timed
viewpoint using ”just-after-time” criterion. Both control problems are then specialized to the setting of
nondecreasing formal power series, that makes possible the computation of supervisors imposing non
negative delays. Finally, rationality of the solutions is discussed.

4.1 Principle

The principle of the control proposed for (max,+) automata is close to the one considered for automata
in supervisory control theory (Ramadge & Wonham, 1989).
The DES is modeled by a (max,+) automaton G = (Q,A,Q0, t, Qm) having y ∈ RmaxJAK as behavior.
A supervisor interacting with system G is added in order to modify its behavior, that is to restrict the
set of recognized sequences and/or to adjust the durations of the sequences which are recognized. For
that purpose, the supervisor is able to decide if certain events can occur. More precisely, the partition
A = Ac ∪ Au enables us to distinguish

• Ac the set of controllable events: those are events whose validation (and consequently whose oc-
currence) can be delayed, or even forbidden, by the supervisor;

• Au the set of uncontrollable events: those are events whose validation can neither be delayed, nor
forbidden, by the supervisor.

As represented in Figure 2, the supervisor, denoted Gs, interacts as a feedback with system G. Supervisor
Gs is a (max,+) automaton (with ys ∈ RmaxJAK as behavior) defined on the same set of events A which
operates in a synchronous manner with system automaton G. Each time a state transition occurs in G :

1. supervisor Gs observes event a ∈ A having occurred in system G;

2. its state evolves accordingly;

3. according to the state which has been reached, the supervisor specifies Gs(a) which states the
controllable events enabled until the occurrence of a new event in G, as well as the validation delay
imposed by the supervisor for controllable events3.

The interaction of supervisor Gs with system G is formalized by means of a parallel composition
defined in (Komenda et al., 2009) as follows.

Definition 3 Let Gs = (Qs, A,Qs,0, ts, Qs,m) and G = (Q,A,Q0, t, Qm) be the (max,+) automata cor-

an equivalent automaton without such delays by adding new states and by considering these delays as state transitions
durations associated to new fictive initial and final events.

3Notation Gs(a) is rough because Gs is not specified as a map defined on alphabet A.
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G

Gs

aGs(a)

Figure 2: Interaction of supervisor Gs with system G as a feedback.

responding respectively to the supervisor and the system. Parallel composition Gs‖G of G and Gs, which
models the system under supervision (also called closed-loop system), is defined by:

Gs‖G = (Qs ×Q,A,Qs,0 ×Q0), tGs‖G, Qs,m ×Qm),

with
tGs‖G((qs, q), a, (q

′
s, q

′)) =






ts(qs, a, q
′
s)⊗ t(q, a, q′), if a ∈ Ac,

t(q, a, q′), if a ∈ Au and qs = q′s,
ε, if a ∈ Au and qs 6= q′s.

(4)

To be convinced that the transition function defined above captures the interaction between the system
and the supervisor properly, let us imagine that, at a given time instant, the current state of system G
is q, the current state of supervisor Gs is qs, and that event a ∈ A occurs in system G:

• For a controllable event a ∈ Ac and current state (qs, q) of the closed-loop

– if there exists a transition associated to this event in Gs, (i.e. ∃q′s such that ts(qs, a, q
′
s) 6= ε),

then this event is authorized by the supervisor and its validation in the system is delayed
by ts(qs, a, q

′
s) time units: in the system under supervision, the duration associated with this

event is ts(qs, a, q
′
s) + t(q, a, q′);

– otherwise (i.e., ∄q′s such that ts(qs, a, q
′
s) 6= ε) this event is forbidden by the supervisor: in

the system under supervision, the transition function is equal to ts(qs, a, q
′
s) ⊗ t(q, a, q′) =

ε⊗ t(q, a, q′) = ε, which means that no state transition is possible according to event a (even
if such a transition is possible in system G).

• For an uncontrollable event a ∈ Au, the supervisor can not forbid nor delay the occurrence of event
a. Therefore, the value t(q, a, q′) of transition function of the uncontrolled system is kept unchanged
in the system under supervision. Moreover, only second component of the state (qs, q) is updated
by firing this uncontrollable event a ∈ Au, which is described by the last two cases in (4).

4.2 Formulations of control problems

In supervisory control approach (see for example (Cassandras & Lafortune, 2006, sec. 3.3)), the specifica-
tions, which state the control objectives, are expressed by means of an admissible language. A procedure
(an algorithm) derives from this admissible language and from the system language, the supervisor lan-
guage. An automaton recognizing this language is built to play the role of the supervisor.
Even here, the approach adopted for (max,+) automata is comparable. Indeed, formal power series are
considered to express the specified behavior for the system under supervision, and in that sense, they
play an equivalent role to the admissible language. These formal power series are jointly used with the
ones describing the behavior of the system to compute the behavior (another formal power series) of the
supervisor. The supervisor is finally obtained by deriving a (max,+) automaton recognizing this formal
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power series as behavior.
It must be clear that the synthesis of the control does not lean on (max,+) automata as objects, but on
the formal power series associated with them in order to translate their behavior. Thus let us recall from
(Komenda et al., 2009) the behavior resulting from the parallel composition of the supervisor and the
system.

Theorem 3 The behavior resulting from the parallel composition of G and Gs is given by:

yGs‖G = ys ⊙Au
y, (5)

in which ⊙Au
is called generalized Hadamard product and is defined by ∀w ∈ A∗,

(ys ⊙Au
y)(w) , ys(Pc(w)) ⊗ y(w). (6)

The control problem that we consider amounts to solve inequalities in dioid RmaxJAK. More precisely,
being given two reference formal power series (bounding the behavior desired for the system under
supervision) yref1 and yref2 we want to

find the set of series ys such that
yref1 � ys ⊙Au

y � yref2.
(7)

This problem can be decomposed into two distinct problems, namely:

find the greatest series ys such that
yref1 � ys ⊙Au

y,
(8)

and
find the smallest series ys such that

ys ⊙Au
ys � yref2.

(9)

In fact, the map corresponding to the generalized Hadamard product is isotone, and as we show below
solutions, respectively the minimal one for (9) and the maximal one for (8), exist. Then the solution of
problem (7) is the interval whose bounds are these extremal solutions. Inequalities (8) and (9) can be
interpreted, with the natural order of RmaxJAK in mind (see example 3), to point out the meaning and
the motivations for these control problems:

• Problem (8) consists in finding the greatest formal power series ys, that is, the greatest coefficients
ys(w) for all words w, and thus (since generalized Hadamard product is isotone) the greatest
coefficients (ys⊙Au

y)(w), such that yref1(w) � (ys⊙Au
y)(w). So, the supervisor delays as much as

possible the completion of events sequence w within the system under supervision (whose behavior
is given by ys ⊙Au

y). In addition, as yref1 � ys ⊙Au
y, the completion date (ys ⊙Au

y)(w) in the
system under supervision is previous to that specified by yref1(w), for all w. Such a control objective
is conform to the so-called just-in-time criterion, which has been considered, among others, for the
control of timed event graphs (see for example (Baccelli et al., 1992, §5.6), (Lahaye, Boimond, &
Ferrier, 2008), (Amari, Demongodin, Loiseau, & Martinez, 2012)). From a logical viewpoint, this
supervisor is the most permissive one that restricts the behavior of the system into the maximally
allowed one given via yref1, where supp(yref1) is known as safety language specification. In the
rest of the paper, the solution to this control problem is then referred to as maximally permissive
and just-in-time supervisor.

• Problem (9) consists in finding the smallest coefficients ys(w) for all w, and thus the smallest
coefficients (ys ⊙Au

y)(w), such that (ys ⊙Au
y)(w) � yref2(w). In other words, the supervisor is

then expected to delay as little as possible the system such that the completion date (ys ⊙Au
y)(w)

in the system under supervision is later than the one specified by yref2(w), for all w. In that sense,
it can be compared to the control minimizing delays proposed in (Houssin, Lahaye, & Boimond,
2012) for timed event graphs. Such control problems can also be tackled thanks to model predictive
control for max-plus linear systems (De Schutter & van den Boom, 2001). From a logical viewpoint,
this supervisor is the least permissive one which guarantees minimal required behavior yref2. Note
that similar problems have been considered in supervisory control theory, where minimal required
behavior related to the computation of infimal controllable superlanguages has been studied (see
for example (Lafortune & Chen, 1990)). From now on, the solution to this control problem is then
referred to as minimally permissive and just-after-time supervisor.
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4.3 Maximally permissive and just-in-time supervisor

The notation HAu

y is used for the operator of generalized Hadamard product, namely

HAu

y : s 7→ s⊙Au
y. (10)

It has been shown in (Komenda et al., 2009) that there is an extension to the result mentioned in example
5 in presence of uncontrollable events (Au 6= ∅).

Proposition 1 Mapping HAu

y : RmaxJAK → RmaxJAK is residuated and its residual is defined by:

(HAu

y )♯(y′)(w) =
{ ∧

u∈P−1

c (w)∩supp(y) y
′(u)◦/y(u), if w ∈ A∗

c ,

T, if w 6∈ A∗
c .

(11)

Corollary 1 The solution to problem (8) is given by

ys = (HAu

y )♯(yref1).

Note that the value (HAu

y )♯(yref1)(w) = T for w 6∈ A∗
c does not influence the behavior of the system

under supervision: in fact, according to formula (6) we only need the values w ∈ A∗
c of the controller

series (HAu

y )♯(yref1) (i.e. in the projected words from A∗
c).

Remark 2 Controllability of the reference series yref1 has been studied in (Komenda et al., 2009).
More precisely, we have characterized controllable series as those that can be realized via the control
given in Corollary 1 as behaviors of closed-loop systems. In particular we have established a formula
for computation of the greatest controllable series that is smaller than the specification series yref1: this
series equals (HAu

y ◦HAu

y )♯(yref1).

Example 8 Let us return to the (max,+) automaton from example 6 and assume that events a, c and d
are controllable (can be delayed or even forbidden), while event b is not controllable. Hence, we have the
alphabet A = {a, b, c, d} with Ac = {a, c, d} and Au = {b}.
We want to impose on the system the following maximal behavior :

yref1 = 7a⊕ 8ad⊕ 9ab⊕ 13abc⊕ 14adb,

which means that sequences a, ad, ab, abc and adb must be achieved at the latest at time instants 7, 8,
9, 13 and 14. Moreover, no other word should be recognized (other possible sequences in the system, such
as add or abcd, must be forbidden by the supervisor).
By using Corollary1, we obtain ys = (HAu

y )♯(yref1) with :

ys(w) = ⊤,

for every word w /∈ A∗
c (for instance : ab, abc, adb, . . .),

ys(a) = yref1(a)◦/y(a) ∧ yref1(ab)◦/y(ab)
= 7◦/3 ∧ 9◦/7 = 2,

ys(ad) = yref1(ad)◦/y(ad) ∧ yref1(adb)◦/y(adb)
= 8◦/4 ∧ 14◦/8 = 4,

ys(w
′) = ε,

for any w′ ∈ A∗
c , w

′ /∈ {a, ad}, in particular

ys(ac) = yref1(abc)◦/y(abc) ∧ yref1(abcb)◦/y(abcb)
= 13◦/12 ∧ ε◦/16 = ε.

The role of the supervisor in this example is to delay the event (a) by two time units, to forbid all
occurrences of (c) and to enable the first occurrence of (d) while delaying it by two time units and then to
forbid the next occurrences of (d). Note that if the word abc (allowed by the specification yref1) had been
enabled, the word abcb could not have been disabled (because b is uncontrollable), which would violate the
bound imposed by yref1.

The behavior of the controlled system is ys ⊙Au
y =

⊕

w∈A∗ (ys(Pc(w)) ⊗ y(w))w = 5a⊕ 8ad⊕ 9ab⊕
12adb. A (max,+)-automaton having this behavior is represented in Figure 3.
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Figure 3: A (max,+)-automaton having ys ⊙Au
y as behavior.

4.4 Minimally permissive and just-after-time supervisor

In this subsection a solution to the dual control problem is proposed. Formal power series with inverted
coefficients defined as follows are used to solve problem (9).

Definition 4 For a series y ∈ RmaxJAK, we denote by Ây the series of RmaxJAK defined by ∀w ∈ A∗,

Ây(w) , −y(w),

where, by convention, −ε = ⊤ and −⊤ = ε. In particular, we have ÂÂy = y.

It turns out that problem (9) can easily be reformulated as a problem (8) using series with inverted
coefficients.

Lemma 1 We have
ys ⊙Au

y � yref2 ⇐⇒ Âys ⊙Au
Ây � Âyref2.

Proof: We have the following equivalences:

ys ⊙Au
y � yref2

⇐⇒ ∀w, ys(Pc(w)) ⊗ y(w) � yref2(w)
⇐⇒ ∀w, ys(Pc(w)) + y(w) ≥ yref2(w)
⇐⇒ ∀w, −ys(Pc(w)) − y(w) ≤ −yref2(w)
⇐⇒ ∀w, Âys(Pc(w)) ⊗ Ây(w) � Âyref2(w)
⇐⇒ Âys ⊙Au

Ây � Âyref2.

�

This implies that the solution computed for (8) can also be used to compute the solution of the dual
problem. More precisely, the following corollary holds true.

Corollary 2 The solution to problem (9) is given by

ys = Â
(

(HAu

Ây )♯(Âyref2)
)

.

Otherwise stated, HAu

y is dually residuated and

(HAu

y )♭(yref2) = Â
(

(HAu

Ây )♯(Âyref2)
)

.

Example 9 Let us again consider the (max,+) automaton studied in examples 6-8. The control objec-
tive of the ”dual” control problem is here given by the formal power series yref2 = 3a ⊕ 7ab ⊕ 13abc
that represents the minimal required behavior. Using Corollary 2, we obtain ys = (HAu

y )♭(yref2) =

Â
(

(HAu

Ây )♯(Âyref2)
)

with :
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• ys(w) = ε, for any word w /∈ A∗
c (e.g. ab, abc, . . .),

• ys(a) = 0, ys(ac) = 1,

• ys(w
′) = ε, for any word w′ ∈ A∗

c , w
′ /∈ {a, ac}.

The role of the controller in this example is to enable event (a) (without delaying it), to forbid all
occurrences of (d) but to authorize the first occurrence of (c) while delaying it by one time unit, and
finally to forbid any additional occurrence of (c). The resulting behavior of the controlled system is
ys = ys ⊙Au

y = 3a⊕ 7ab⊕ 13abc⊕ 17abcb.

Remark 3 The above developments could let think that the residuation of Hadamard product can simply
be obtained as the Hadamard product with a series with inverted coefficients, that is, series H♯

y(y
′) would

be equal to series Ây′ ⊙ y. This is, however, not true. For example, if y(w) = ε and y′(w) = ε for a given
w, then we have H♯

y(y
′)(w) = ⊤ whereas (Ây′ ⊙ y)(w) = ε.

4.5 Rationality of controller series

We have presented formulas to compute the optimal solutions of both control problems (maximally
permissive+just-in-time, minimally permissive+just-after-time). However, there is an important issue
whether/when the computed series of the controller is rational, because only rational controller series can
be realized by a finite (max,+)-automaton. Let us recall that a series is (max,+)-rational (respectively
(min,+)-rational) if it can be formed from series with finite support (polynomial series) by using rational
operations i.e.: sum ⊕ corresponding to max (resp. min), product ⊗ and the Kleene star.

The solution ys of control problem (8) given by Corollary 1 is based on residuation of the Hadamard
product. It is a well known fact that the Hadamard product is a rational operation recognized by the
tensor product of linear representations (see e.g. (Berstel & Reutenauer, 1988)). But the residuation
of Hadamard product of rational (max,+) series needs not be (max,+) rational (see e.g. Example 1 in
(Badouel et al., 2011)). This is because for a (max,+)-rational series y, the series with inverse coefficients
Ây is also (max,+)-rational if and only if y is at the same time (min,+)-rational as shown in (Lombardy
& Mairesse, 2006). Nevertheless, Theorem 3.1 in (Badouel et al., 2011) shows that

(a) if y is (min,+) rational and y′ is (max,+)-rational, then (Hy)
♯(y′) is (max,+)-rational

(b) if y is (max,+) rational and y′ is (min,+)-rational, then (Hy)
♯(y′) is (min,+)-rational.

As a corollary, we can identify a sufficient condition for our control problem.

Corollary 3 If the behavior y ∈ RmaxJAK of G is (min,+)-rational, then solution ys = (HAu

y )♯(yref1)

to control problem (8) is (max,+) rational. In addition, if yref1 ∈ RmaxJAK is (min,+)-rational, then
solution (HAu

y )♯(yref1) is (max,+) and (min,+)-rational.

It is known from (Lombardy & Mairesse, 2006) that the class of series that are at the same time
(max,+) and (min,+)-rational coincides with the class of unambiguous series (series recognized by an
unambiguous automaton). It is also shown that for a (max,+)-rational series y, the series with inverse
coefficients Ây is also (max,+)-rational if and only if y is unambiguous. This leads to the following
corollary for our second control problem.

Corollary 4 If the behavior y ∈ RmaxJAK of G and the reference series yref2 ∈ RmaxJAK are (min,+)-

rational, then solution ys = Â
(

(HAu

Ây )♯(Âyref2)
)

to control problem (9) is (max,+) rational (and unam-

biguous).

To conclude, to be able to compute the supervisors for both control problems in an effective way, we
will assume that the system-series y and the reference-series are unambiguous.

This assumption requires additional comments since, contrarily to conventional automata, all the
(max,+) automata do not admit equivalent deterministic (subsequently unambiguous) models (see (Lom-
bardy & Sakarovitch, 2006)). Let us mention that numerous studies have tackled the determinization
problem for automata with multiplicities in a semiring ((Gaubert, 1995; Kirsten, 2008; Klimann,
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Lombardy, Mairesse, & Prieur, 2004; Lombardy & Sakarovitch, 2006) is a very partial outline of the
literature on this subject). In main lines, semi-algorithms have been proposed, and their termination
is guaranteed only for sufficient conditions (to the best of our knowledge, the widest condition is the
so-called clones property for polynomially ambiguous automata). From the point of view of our control
problem for DES, some recent studies have brought important advances. In fact, in the continuity of
(Gaubert & Mairesse, 1999b), we have recently contributed to a modeling methodology for DES by
means of (max,+) automata (Lahaye et al., 2014a), and identified a significant class which can be rep-
resented by deterministic (and thus unambiguous) (max,+) automata (Lahaye et al., 2014b). This class
of DES that satisfy the assumptions for our control approach will be introduced in section 5. Moreover,
another, language based sufficient condition for determinization of behaviors of timed Petri nets, known
as fairness can be imposed by supervisory control as shown in Komenda et al. (2013). This approach can
be used for timed Petri nets that do not admit description by deterministic (max,+) automata.

4.6 Supervisors with non negative transition weights

It may happen that the solution to problem (8) or (9) is not a non decreasing series. As it will be
underlined below, the corresponding supervisor has then negative transition weights, and that constitutes
an unrealistic solution. It is then an interesting problem to know whether there exist non decreasing series
(that is supervisor with only positive transition weights) solutions to our control problems.

We start with the definition of a non decreasing series from RmaxJAK.

Definition 5 A series s ∈ RmaxJAK is called non decreasing on its support if

∀v, w ∈ supp(s), v �p w ⇒ s(v) � s(w), (12)

in which the first inequality employs the prefix order relation on words and the second inequality uses the
natural order on Rmax.

As an example,

• y1 = 1a⊕ 2ab⊕ 1aba⊕ 3abaa is not non decreasing on its support because y1(ab) � y1(aba) ;

• y2 = 1a⊕ 2ab ⊕ 3abaa is non decreasing on its support (although y(aba) = ε ≺ y(ab) = 2 because
aba /∈ supp(y)).

Lemma 2 The behavior y of an unambiguous (max,+) automaton is a series non decreasing on its
support iff all transition-weights are non negative or equal to ε.

Proof: In an unambiguous (max,+) automaton, any w ∈ A∗ is recognized by at most one successful path
and operator max is then no more involved in (3). A simple reasoning using mathematical induction can
then be used to prove the result.

�

It should be clear that only (max,+)-automata, where all existing transitions have non negative values (or,
equivalently, whose formal power series are non decreasing on their supports), can be used as ”realistic”
supervisors, because the weights of transitions are durations (delays to be imposed on the system). Hence,
we are looking for solutions to previously stated control problems in the subset, denoted RmaxJAK↑, of
RmaxJAK that consists of series non decreasing on their support, that is,

find ys ∈ RmaxJAK↑ such that
yref1 � ys ⊙Au

y � yref2.
(13)

As represented by the commutative diagram of figure 4, we need to investigate if HAu

y ◦I is residuated and

dually residuated, where I is the canonical injection of RmaxJAK↑ into RmaxJAK. As stated in Theorem 2,
this mapping is residuated and dually residuated iff HAu

y and I are. Since by Proposition 1 and Corollary

2 we know that HAu

y is both residuated and dually residuated, it remains to show that I is residuated
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HAu

y ◦ I

RmaxJAK↑

RmaxJAK
HAu

y

I

RmaxJAK

Figure 4: Commutative diagram.

and dually residuated as well.

Notice that we cannot use the term ”dioid of series non decreasing on their support” for RmaxJAK↑,
because it is not closed under sum of series. For instance, both s1 = 1a⊕ 2ab and s2 = 3a, are series non
decreasing on their support, but their sum s1 ⊕ s2 = 3a⊕ 2ab is not. Otherwise stated, RmaxJAK↑ is not
a sub dioid of RmaxJAK. Still, Propositions stated below show that canonical injection of RmaxJAK↑ into
RmaxJAK is residuated and dually residuated as mapping defined over ordered sets (cf. Theorem 1).

Proposition 2 The canonical injection I : RmaxJAK↑ → RmaxJAK is residuated and its residual is defined
by

I♯(s)(v) =

{ ∧

{w∈supp(s),v�pw} s(w) if v ∈ supp(s),

ε else.
(14)

Proof: It is easy to see that I♯ defined in (14) is an isotone mapping and also y1, y2 ∈ RmaxJAK, y1 �
y2 ⇒ supp(y1) ⊆ supp(y2).
Let us check that I and I♯ satisfy the inequalities (1). On one hand we have for s ∈ RmaxJAK :

(I ◦ I♯)(s) = I♯(s) � s.

On the other hand, a series non decreasing on its support s ∈ RmaxJAK↑ satisfies ∀v, w ∈ supp(s),
v �p w ⇒ s(v) � s(w), which implies s(v) =

∧

{w∈supp(s),v�pw} s(w). Hence, we obtain

(I♯ ◦ I)(s) = s.

�

The series I♯(s) defined by (14) is the greatest series smaller than or equal to s and non decreasing on its
support.

Remark 4 Proposition 2 constitutes a new formulation of Proposition 5 in (Benveniste, Gaubert, &
Jard, 1998) considering prefix order instead of subword order.

Example 10 Let us return to Example 8, with the upper bound specification y′ref1 = 7a ⊕ 8ad⊕ 9ab ⊕

13abc⊕ 14adb⊕ 18abcb⊕ 24abcbc. From Corollary 2, we have y′s = (HAu

y )♯(y′ref1)with :

• y′s(w) = ⊤, for all word w /∈ A∗
c ,

• y′s(a) = 2, ys(ac) = 1, ys(ad) = 4,

• y′s(w
′) = ⊤, for all word w′ ∈ A∗

c , w
′ /∈ {a, ac, ad}.

The series y′s is not non decreasing on its support, because y′s(a) � y′s(ac). Proposition 2 gives us the
series non decreasing on its support that is the solution to the maximally permissive and just-in-time
control problem. Namely, I♯(y′s)(a) = 1, I♯(y′s)(ac) = 1, I♯(y′s)(ad) = 4 and I♯(y′s)(w

′) = ⊤ for all
w′ /∈ {a, ac, ad}.

We also have the following result.
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Proposition 3 The canonical injection I : RmaxJAK↑ → RmaxJAK is dually residuated and its dual resid-
ual defined by

I♭(s)(w) =

{ ⊕

{v�pw} s(v) if w ∈ supp(s),

ε else.
(15)

Proof: The proof follows similar lines as for the residuation (proof of Prop. 2). It is to be noted that

• (I ◦ I♭)(s) = I♭(s) � s.

• s non decreasing on its support satisfies ∀v, w ∈ supp(s), v �p w ⇒ s(v) � s(w), which implies
s(w) =

⊕

{v�pw} s(v), hence (I♭ ◦ I)(s) = s.

�

The series I♭(s) defined by (15) is the smallest series greater or equal to s and non decreasing on its
support.

Example 11 Return to Example 9, with specification y′ref2 = 7a ⊕ 9ab ⊕ 13abc. From Corollary 2, we

obtain y′s = (HAu

y )♭(y′ref2) with :

• y′s(a) = 4, y′s(ac) = 1,

• y′s(w) = ys(w), for any word w /∈ {a, ac}.

The series y′s is not non decreasing on its support, because y′s(a) � y′s(ac). Proposition 3 gives the series
non decreasing on its support that is solution to the minimally permissive and just-after-time control
problem. More specifically, I♭(y′s)(a) = 4 and I♭(y′s)(ac) = 4.

It follows that for the combined problem the nondecreasing solution is as follows.

Corollary 5 The set of solutions to problem (13) is given by the following interval of RmaxJAK↑

[

I♭ ◦HAu

y

♭
(yref2), I

♯ ◦HAu

y

♯
(yref1)

]

.

Remark 5 Let us finally notice that although we do not assume that unambiguous system series y and
unambiguous specification series yref are non decreasing on their support, it is clear that only such
series have practical meaning. Assuming that both series are non decreasing on their support amounts to
consider special case of the above proposed solution.

5 Application to the control of a safe Job-shop

Among fields of applications for DES, manufacturing systems are often studied and we focus here on a
jobshop system to illustrate our contribution. More precisely, we consider here a jobshop processing two
jobs types J1, J2.

Job J1 consists of three elementary tasks a, b, c which have to be performed according to the sequence
abc. Processing times of a, b and c are all equal to 2.

The production sequence for job J2 is def , with respective durations 1, 1, 3 for elementary tasks d,
e and f .

Two resources R1 and R2 can process tasks one by one. Tasks a and d (resp. c and f) are processed
using resource R1 (resp. R2). Both resources R1 and R2 are required for tasks b and e. We consider all
possible sequences with the earliest functioning rule (tasks are completed as soon as possible). We also
assume that the system starts operating at date 0.

This jobshop is going to be studied by means of a (max,+) automaton model. Nevertheless, for the
sake of clarity, we mention that the system can be modeled by timed Petri net in Figure 5 in which:

• timings are associated with transitions (notation a/τ means that transition labeled a has τ for firing
time),
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• a preselection policy is used for conflicts in order to be able to code all the possible choices for
production sequences (for a place several output transitions, we consider all possible firings with
tokens in this place),

• a token from the initial marking is supposed to have arrived in the Petri net at time instant 0.

Let us point out that several references have studied how to transform a timed Petri net into a (max,+)
automaton (and vice-versa). The approaches in (Gaubert & Mairesse, 1999b; Lahaye et al., 2014a)
make it possible to associate a (max,+) automaton to any safe timed Petri net such that the completion
date of a firing sequence in the Petri net is the same as the one of the corresponding state-transitions
sequence in the (max,+) automaton. This (max,+) automaton is generally non-deterministic and may
have a larger language than the Petri net (i.e., it recognizes sequences which are not possible firing
sequences). A procedure based on completion of heap automata in (Gaubert & Mairesse, 1999a) can be
used to determinize such an automaton but it fails for our example: in brief, the cause is that the Petri
net includes pairs of transitions without any common input place and any common output place (e.g. a
and f). The recent contribution (Lahaye et al., 2014a) proposes a recursive procedure which builds a
deterministic (max,+) automaton equivalent to a safe timed Petri net. The equivalence corresponds to
the facts that the automaton and the Petri net have the same language, and that the completion date of a
firing sequence in the Petri net is the same as the one of the corresponding state-transitions sequence in the
(max,+) automaton. In addition, it is shown that this procedure terminates if the oriented path between
any two transitions contains at most one ”conflict-place” (with more than one output transition). This
condition is satisfied by the Petri net in Figure 5 and this procedure4 has been used to obtain (max,+)
automaton in Figure 6.

b/2

a/2

e/1

d/1

c/2 f/3

J1 J2

R2

R1

Figure 5: Jobshop represented as a Petri net.

As detailed in section 3 and illustrated in Example 7, it is possible to compute the behavior of the
(max,+) automaton in Figure 6 which gives the completion times for all possible production sequences
a1a2 . . . an ∈ {a, b, c, d, e}∗ in the jobshop. For the illustration (and without loss of generality), note that
we have chosen only states 6 and 9 as final: these states are reached after the completion of jobs J1
and/or J2 and without other jobs in progress. Among possible scenarios (still without loss of generality),
let us also consider production schedules v1v2 . . . vm, in which each production pattern vi, i = 1, 2, . . . ,m
includes one job J1 and one job J2, that is production schedules satisfying 1/1 ratio for jobs. There are
four possible forms for patterns vi: abcdef , abdcef , defabc and deafbc. In fact, task a (resp. d) on the
one hand, and task f (resp. c) on the other hand, are processed in a completely asynchronous manner,
which implies all the combinations mentioned in these patterns. Assuming, for example, Ac = {a, b, d, e}

4Please note that the complexity of this procedure remains to be shown.
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Figure 6: Jobshop represented as a (max,+) automaton.

(i.e. these tasks can be delayed or even disabled) and Au = {b, e}, we can use corollary 5 to synthesize
supervisors imposing these production schedules with additional logical and timing constraints such as:

(a) A deadline for completing sequences v1v2 . . . vi equals to 14× i time units. In order to express this
objective, we can use, as maximal required behavior, the following power series in RmaxJAK:

yref1 = (14abcdef ⊕ 14abdcef ⊕ 14defabc⊕ 14deafbc)∗.

Note that yref1 is recognized by unambiguous (max,+) automaton depicted in Figure 7.

(b) At the beginning of production, one may be interested in imposing particular setup sequences. For
example, let us assume that production has to start with two patterns, each corresponding to se-
quence abcdef or sequence defabc with 13 units of time as minimal duration. In other words, during
at least two cycles, ratio 1/1 must be respected, jobs J1 and J2 must be processed sequentially, and
each cycle should be completed in at least 13 time units. In order to translate this objective, we
can use as minimal required behavior the following power series in RmaxJAK:

yref2 = 13abcdef⊕13defabc⊕26abcdefabcdef⊕26abcdefdefabc⊕26defabcabcdef⊕26defabcdefabc.

As for yref1, an unambiguous (max,+) automaton recognizing yref2 can easily be found.

Remark 6 To the best of our knowledge, there is still no software tool offering the functionalities to
perform all the computations to obtain our supervisors. Nevertheless, the Scilab maxplus toolbox5, which
implements various algorithms (sum, product, Kleene star, residuation, etc.) for max-plus matrices, can
be used for intermediate steps. There exist several libraries able to manipulate weighted automata (e.g.
Vaucanson6, openFST7,..), but currently none can be used to implement directly the computations with
formal power series to get (max,+) automata supervisors.

Remark 7 Along with supervisory control approaches, our control for (max,+) automata will undoubt-
edly face a state explosion problem, that is the number of states will tend to grow exponentially in the
number of resources and variables in the system. Solutions proposed in logical automata are based on mod-
ular, decentralized, hierarchical (abstraction based) control architectures and their combinations, which are

5 http://www.cmap.polytechnique.fr/~gaubert/MaxplusToolbox.html
6 https://www.lrde.epita.fr/wiki/Vcsn
7http://www.openfst.org
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Figure 7: An unambiguous (max,+) automaton recognizing yref1.

often referred to as heterarchical architectures, which uses both horizontal (decentralized) and (vertical)
hierarchical modularity. To be able to deal with large (realistic) systems, these techniques will have to be
adapted to (max,+) automata in the future.

6 Conclusion

We have extended the control framework for (max,+) automata so that both maximally permissive and
just-in-time as well as minimally permissive and just-after-time supervisors can be synthesized. In order
to improve the applicability of results, we have specified classes for which rationality is fulfilled and spe-
cialized the results to automata with non-negative transition weights (only these solutions have a realistic
meaning). A possible application to flexible manufacturing system has finally been presented as an illus-
tration. Based on composition results from Lahaye et al. (2014a), we plan to extend our results to large
systems formed as synchronous products of (max,+) automata representing their subsystems. To be able
to deal with state explosion problem, it would also be nice to fit our results into a heterarchical approach.
Finally, another possible future investigation is to extend the approach to systems with nondeterministic
timing of transitions such as interval weighted automata and their products.
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