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Abstract— Control of (max,+) automata is studied within a
behavioral framework. The classical tensor product of their
linear representations and its generalized version extends the
parallel composition of logical automata to (max,+) automata.
In terms of behaviors (formal power series) these correspond to
Hadamard product and a generalized version of it is studied in
this paper. Supervisory control theory based on the generalized
version of Hadamard product has an advantage that both
logical and timing aspects can be captured at the same time
using residuation theory of (multivariable) formal power series.
Rationality as an equivalent condition to realizability of the
resulting controller series is discussed.

I. INTRODUCTION

(Max,+) automata have been introduced by S. Gaubert in
[6] as (possibly nondeterministic) weighted automata with
weights (multiplicities) in the (R∪{−∞}, max, +) semiring.

An important class of Timed Discrete Event (dynamical)
Systems (TDES), where both synchronization of tasks and
resource sharing (choice) take place can be represented by
(max,+) automata.

Recently, we have proposed two approaches to control
(max,+) automata: an automaton or state-based one [11] and
a behavioral (or formal power series) approach in [12].

The definition of parallel composition of weighted au-
tomata from [2] has been used in [12] for supervisory
control of (max,+) automata. This composition corresponds
to the tensor product in terms of linear representation in the
(R∪{−∞}, max, +) semiring. The controlled (closed-loop)
system is given by the parallel composition of the controller
automaton with the plant automaton.

In terms of behaviors, tensor product of (max,+) automata
(strictly speaking of their linear representations) corresponds
to Hadamard product of series. However, in the general case
with uncontrollable events that can neither be forbidden and
can nor be postponed (delayed), the approach proposed in
[12] is not very elegant, because logical and timing aspects of
control are separated: first supremal controllable sublanguage
of the support of specification series is constructed and only
in the second phase timing aspects are considered using
residuation of Hadamard product, i.e. Hadamard inversion.
This is not very elegant and suffers also from a computational
viewpoint.

In this paper both logical and timing aspects of supervisory
control are captured at the same time by generalizing parallel
composition. This generalized version of the parallel compo-
sition of (max,+) automata, that we propose to take care of
uncontrollable events, admits a similar representation (tensor
product of the linear representations). Within a behavioral
(formal power series) framework the parallel composition we
propose corresponds to a generalized version (distinguishing

uncontrollable events) of Hadamard product. Control with
respect to the just in time criterion is then based on the resid-
uation of generalized Hadamard product of formal power
series.

This paper is a natural continuation and extension of
results presented in [12]. Because we provide a single, closed
expression, i.e. a formula for computation of controller series
based on residuation of generalized Hadamard product of
formal power series, the tedious two steps approach of [12]
is then avoided.

This paper is organized as follows. In the next section
basic algebraic preliminaries are recalled. In Section III we
recall the definition of (max,+) (weighted) automata and pro-
pose a generalized parallel composition of (max,+) automata,
which is applied to their supervisory control. Section IV is
devoted to the main result of the paper: supervisory control
of (max,+) automata is proposed, where both timing and
logical aspects are handled at the same time. Rationality of
the resulting controller series, i.e. of residuated series of the
(generalized) Hadamard product is also discussed in Section
IV. Conclusion is given in Section V.

II. ALGEBRAIC PRELIMINARIES

An idempotent semiring (also called dioid) is a set D
endowed with two inner operations denoted ⊕ and ⊗. The
addition ⊕ is commutative, associative, has a unit element ε,
i.e. ε⊕a = a for each a ∈ M , and is idempotent: a⊕a = a
for each a ∈ M . The multiplication ⊗ is associative, has
a unit element e, and distributes over ⊕. Moreover, ε is
absorbing for ⊗, i.e. ∀a ∈ M : a⊗ ε = ε⊗ a = ε.

In any dioid, a natural order is defined by: a ¹ b ⇔ a⊕b =
b. A dioid D is complete if each subset A of D admits a
least upper bound denoted

⊕
x∈Ax, and if ⊗ distributes with

respect to infinite sums. In particular, T =
⊕

x∈Dx is the
greatest element of D. In a complete dioid, the greatest lower
bound, denoted by ∧, always exists; a ∧ b =

⊕
x¹a,x¹b x.

The simplest examples of dioids are number dioids such
as Rmax = (R ∪ {−∞},max, +) with idempotent addition,
denoted by ⊕: a⊕ b = max(a, b), and conventional addition
playing the role of multiplication, denoted by a ⊗ b (or ab
when unambiguous). If we add T = +∞ to this set, the
resulting dioid is complete and denoted by Rmax.
Matrix dioids are introduced in the same manner as in the
conventional linear algebra. The (max,+) identity matrix of
Rn×n

max is denoted by E.
Let us denote by N the set of natural numbers with zero. In
complete dioids the star operation can be introduced by the



formula
a∗ =

⊕

n∈N
an,

where by convention a0 = e and an = a⊗ an−1 for any a.
Theorem 2.1 (see [3]): Let D be a complete dioid,

x, a, b ∈ D. Equation

x = x⊗ a⊕ b, (1)

admits b⊗ a∗ as the least solution.
We recall basic notions and results of residuation theory

which allows defining ’pseudo-inverses’ of some isotone
maps (f is isotone if a ¹ b ⇒ f(a) ¹ f(b)) defined on
ordered sets and, in particular, on dioids (see [3], §4.4.4).

Definition 2.1: An isotone map f : D → C, where D and
C are dioids, is said to be residuated if there exists an isotone
mapping h : C → D such that

f ◦ h ¹ IdC and h ◦ f º IdD. (2)

IdC and IdD are identity maps of C and D respectively. h
is unique, it is denoted f ] and is called residual of f .
If f is residuated then ∀y ∈ C, the least upper bound of
subset {x ∈ D|f(x) ¹ y} exists and belongs to this subset. It
is equal to f ](y). Let us recall that multiplication in complete
dioids is residuated. In particular, we have the following
result.

Theorem 2.2: In a complete dioid D the isotone map
Ra : x 7→ x ⊗ a is residuated. The greatest solution of
x⊗ a ¹ b exists and is equal to Ra

](b), also denoted b◦/a.
This ’quotient’ satisfies the following formulæ

(x◦/a)⊗ a ¹ x, (f.1)
(x⊗ a)◦/a º x. (f.2)

Now we recall formal languages, formal power series and
their properties. Formal languages over a finite alphabet A
are subsets of the free monoid A∗ of all finite sequences
of words from A. The zero language is 0 = {}, the unit
language is 1 = {ε}. We say that u = u1 . . . uk ∈ A∗ is
a subword of w ∈ A∗ if there exists a factorization w =
w1u1w2 . . . wkukwk+1 with wi ∈ A∗, i = 1, . . . k + 1. The
corresponding subword order on A∗ is u ¹ w iff u is a
subword of w ∈ A∗.
In the sequel we will work with the dioid of formal power
series in the noncommutative variables from A (transition
labels) and coefficients from Rmax (corresponding to time).
Formal power series form a dioid denoted Rmax(A), where
addition and (Cauchy) multiplication are defined as follows.
For two formal power series
s = ⊕w∈A∗s(w)w ∈ Rmax(A) and s′ ∈ Rmax(A),

s⊕ s′ , ⊕w∈A∗(s(w)⊕ s′(w))w ,

s⊗ s′ , ⊕w∈A∗(⊕uv=ws(u)⊗ s′(v))w.

This dioid is isomorphic to the dioid of generalized dater
functions from A∗ to Rmax via a natural isomorphism
similarly as the dioid Zmax(γ) of formal power series is
isomorphic to the dioid of daters from Z to Zmax, used to

study Timed Event Graphs (TEG) [3, §5.3]. This isomor-
phism associates to any y : A∗ → Rmax the formal power
series ⊕w∈A∗y(w)w ∈ Rmax(A). This dioid is complete if
we work with series that admit coefficients in the completion
of Rmax, that is Rmax. We point out that for s, s′ ∈ Rmax(A),
s ¹ s′ with respect to the natural order on Rmax(A) means
that ∀w ∈ A∗ : s(w) ¹ s′(w) in the sense of natural order
on Rmax, i.e. s(w) ≤ s′(w) for all w ∈ A∗. The language
supp(s) = {w ∈ A∗ : s(w) 6= −∞} is called the support
of the series s. It is known that a formal power series is
recognizable by a finite weighted automaton iff it is rational,
i.e. it can be formed by rational operations from polynomial
series (those with finite support).

Besides Cauchy multiplication of series another multipli-
cation (elementwise or word by word), called Hadamard
product, will be needed and is defined by:

s, s′ ∈ Rmax(A), s¯ s′ , ⊕w∈A∗(s(w)⊗ s′(w))w.

The following proposition states that Hy : Rmax(A) →
Rmax(A), s 7→ s¯ y is residuated.

Proposition 2.3: The isotone mapping Hy: Rmax(A) →
Rmax(A), s 7→ s ¯ y is residuated and its residual is given
by

H]
y(s)(w) = s(w)◦/y(w), (3)

i.e. H]
y(s) =

⊕
w∈A∗(s(w)◦/y(w))w.

Let us mention that the claim of Proposition 2.3 can be
strengthened, because Hadamard product admits an inverse,
sometimes called Hadamard quotient of a formal power
series. In this paper we use however a generalized version of
Hadamard product, which is only residuated, and therefore
we keep the notation of residuation theory.

Let us denote by Pc for a subset Ac ⊆ A the natural
projection from A∗ to A∗c that is morphism of monoids that
from any string w ∈ A∗ projects away events from Au =
A \ Ac, cf. [17]. Formally, Pc : A∗ → A∗c it is defined as
follows on events from A

Pc(a) =
{

a if a ∈ Ac

ε if a ∈ A \Ac

and Pc is extented to words in such a way that Pc is
concatenative: Pc(a1 . . . an) = Pc(a1) . . . Pc(an). Similarly,
Pc is extended to languages (subsets of A∗) in an obvious
way: for L ⊆ A∗: Pc(L) = ∪w∈LPc(w) ⊆ A∗c . In the sequel
Ac and Au play the role of controllable and uncontrollable
events, respectively. Natural projections have many useful
properties, among them we need the Lemma below.

Lemma 2.4: Let Ac ⊆ A with the corresponding natural
projection Pc : A∗ → A∗c and the inverse projection P−1

c :
Pwr(A∗c) → Pwr(A∗). Then we have
(i) Pc ◦ P−1

c is identity, i.e. ∀L ⊆ A∗c : Pc(P−1
c )(L) = L

(ii) ∀L ⊆ A∗ : L ⊆ P−1
c (Pc)(L)

A notion of projection of formal power series will be
needed.

Definition 2.2: For any formal power series s =
⊕w∈A∗s(w)w ∈ Rmax(A) and Ac ⊆ A, with the associated



natural projection Pc : A∗ 7→ A∗c , we associate the projected
series P (s) given by the following coefficients:

P (s)(w) = s(Pcw).
Let us note the difference between P (s) and the following
formal power series: P̃ (s) = ⊕w∈A∗s(w)Pcw ∈ Rmax(A)
that we have introduced in [11]. It is easily seen on the
series supports (that are languages). While the operator
P̃ (s) can only decrease the support, our operator P (s)
can only increase the support. In particular, let us notice
that P has values in Rmax(A) and not in Rmax(Ac). For
instance, if Ac = {a} ⊆ {a, u} = A and s = 1 ⊕ 2a
then P (s) = 1u∗ ⊕ 2u∗au∗. Indeed, we have by definition
P (s)(ε) = P (s)(u) = P (s)(u2) = · · · = s(ε) = 1 and
similarly, P (s)(w) = s(a) = 2 for any w ∈ u∗au∗. We
have in general P (s) º s for any s ∈ Rmax(A). Hence, our
operator P : Rmax(A) → Rmax(A) is not compatible with
projection on languages (it is not the morphic extension of
Pc).

Finally, we recall basic definitions of tensor products that
will be used in section III.

If A = (aij) is a m × n matrix and B is a p × q matrix
over a dioid, then their Kronecker (tensor) product A ⊗t B
is the mp× nq block matrix

A⊗t B =




a11 ⊗B · · · a1n ⊗B
...

. . .
...

am1 ⊗B · · · amn ⊗B




Otherwise stated, using the block form, the tensor product
C = A ⊗t B of two square matrices A = (aij)n

i,j=1 and
B = (bkl)m

k,l=1 is the block n.m × n.m matrix, where the
element indexed by ik and jl is given by Cik,jl = aij ⊗ bkl.

III. PARALLEL COMPOSITION OF (MAX,+) AUTOMATA

First we recall the definition of (max,+) automata, which
are automata with multiplicities in the Rmax semiring [6].

Definition 3.1: A (max,+) automaton over an alphabet A
is a quadruple G = (Q,α, t, β), where Q is a finite set
of states, α : Q → Rmax, t : Q × A × Q → Rmax, and
β : Q → Rmax, called input, transition, and output delays,
respectively.

The transition function associates to a state q ∈ Q, a
discrete input a ∈ A and a new state q′ ∈ Q, an output
value t(q, a, q′) ∈ R corresponding to the a−transition from
q to q′ or t(q, a, q′) = ε if there is no transition from q
to q′ labelled by a. The real output value of a transition is
interpreted as the minimal duration of the transition.

A (max,+) automaton is equivalently defined by a triple
(α, µ, β), where α ∈ R1×Q

max , β ∈ RQ×1
max and µ is a morphism

defined by:

µ : A → RQ×Q
max , µ(a)q q′ , t(q, a, q′).

We will call such a triple a linear representation.
Note that the morphism matrix µ of a (max,+) automaton

can also be considered as an element of Rmax(A)Q×Q, i.e.

µ = ⊕w∈A∗µ(w)w by extending the definition of µ from
a ∈ A to w ∈ A∗ using the morphism property

µ(a1 . . . an) = µ(a1) . . . µ(an).

Since we want to extend the supervisory control tech-
niques from logical to (max,+) automata, it is useful to
formulate (max,+) automata in standard automata description
(using initial and final states).

A (nondeterministic) (max,+) automaton over event alpha-
bet A is the 4-tuple G = (Q, q0, Qm, t), where Q is the set
of states, q0 is the initial state, Qm is the subset of final or
marked states, and t : Q× A×Q → Rmax is the (possibly
nondeterministic) transition function with inputs in A and
outputs in Rmax.

Note that the last definition does not consider initial
delays, resp. final delays or strictly speaking these are only
Boolean and equal to e iff the corresponding state is initial,
resp. final.

The behaviour of the (max,+) automaton G = (Q,α, t, β)
is given by the formal power series l(G) ∈ Rmax(A) defined
for w = a1 . . . an ∈ A∗ by

l(G)(w) = max
q0,...,qn∈Q

α(q0)⊗
[

n∑

i=1

t(qi−1, ai, qi)

]
⊗ β(qn).

(4)
Thus l(G)(w) is the longest path along the word w starting at
an initial state and ending at a final state, which corresponds
to the completion time of the task w. Note that using the
matrix formalism we have: l(G)(w) = α⊗ µ(w)⊗ β.

that
Any (max,+) automaton admits the following linear de-

scription in the dioid Rmax(A) of formal power series:

x = xµ⊕ α (5)
y = xβ, (6)

where we also call µ =
⊕

a∈A µ(a)a ∈ Rmax(A) the
morphism matrix.

Recall that according to theorem 2.1 the least solution to
this equation is y = αµ∗β.

Let A = Ac ∪ Au be the partition of A into disjoint
subsets of controllable and uncontrolable events, respectively.
The parallel composition below is defined as an extension
of parallel composition (synchronous product) from logical
to timed DES. The first automaton plays the role of the
controller and the second is the system (to be controlled).
We assume that the event sets of the controller and the plant
automata are identical which is a standard assumption in
supervisory control. In the case of controller defined only
on a subalphabet it can be completed by inverse projection
(i.e. by selflooping of all states with events not belonging to
the subalphabet) to an automaton over the whole alphabet.

Definition 3.2: Consider the two following (max,+) au-
tomata corresponding to the controller and the system:

Gc = (Qc, qc,0, Q
c
m, tc), G = (Qg, qg,0, Q

g
m, tg). (7)



Their parallel composition, modelling the system under
control, is

Gc‖Au
G = (Qc ×Qg, q0, Qm, t)

with q0 = 〈qc,0, qg,0〉, Qm = Qc
m ×Qg

m,

t(〈qc, qg〉, a, 〈q′c, q′g〉) =





tc(qc, a, q′c)⊗ tg(qg, a, q′g), if a ∈ Ac

tg(qg, a, q′g), if a ∈ Au and qc = q′c
ε, if a ∈ Au and qc 6= q′c

(8)
This definition can be viewed as an extension of prioritized

synchronous composition from [8] from Boolean to the
(max,+) case. Let us notice that this definition reflects the
intuitive requirement that the controller automaton does not
make any move if an uncontrollable event occurs: there are
only selfloops of uncontrollable events. In fact we have two
possibilities: either impose this restriction on the transition
structure of the controller or define the parallel composition
according to formula (8), where the cases qc = q′c and qc 6=
q′c are distinguished. Actually, in the case qc = q′c we have
t(〈qc, qg〉, a, 〈q′c, q′g〉) = tg(qg, a, q′g) = tg(qg, a, q′g) ⊗ e =
tc(qc, a, q′c) ⊗ tg(qg, a, q′g) if we adopt the above described
restriction on controller automata.

Controllable transitions (i.e. tg(qg, a, q′g), a ∈ Ac) in
the plant G can be in the composed system Gc‖AuG both
disabled (due to ε absorbing for multiplication : when the
synchronizing transition of the controller is not defined
tc(qc, a, q′c) = ε) and delayed (when tc(qc, a, q′c) ≥ 0). The
delay is added to the duration of the corresponding transition
in Gc‖AuG. On the other hand, uncontrollable transitions
(i.e. tg(qg, a, q′g), a ∈ Au) in the plant G can be in the
composed system Gc‖AuG neither disabled nor delayed.

Remark 3.1: There is the following interpretation of the
parallel composition of a system with its controller. The
controller is another (max,+)-automaton running in paral-
lel (in a standard synchronous manner) with the system’s
automaton, that observes the generated events and either
generates the same event as the controller, in which case
it may delay the execution of the corresponding transition
by the number of time units given by the weights of the
transition in the controller (in case of a controllable event)
or does not generate this event. In the latter case the event
that was possible in the uncontrolled system is disabled in the
parallel composition (this event should be controllable in ac-
cordance with definition). Uncontrollable events can neither
be prevented from happening and can nor be delayed, the
uncontrollable transition in the parallel composition inherits
the duration from the original uncontrolled plant G.

Proposition 3.2: Consider two (max,+) automata and their
linear representations:

Gc = (αc, µc, βc), G = (αg, µg, βg). (9)

Their parallel composition in terms of linear representation

is

Gc‖AuG = (α, t, β)
α = αc ⊗t αg,

∀a ∈ Ac : µ(a) = µc(a)⊗t µg(a),
∀a ∈ Au : µ(a) = E ⊗t µg(a),

β = βc ⊗t βg.
Proposition 3.2 is useful for computing the behavior of

the composed system consisting of a controller and a plant.
Although we have formulated parallel composition in the
state based framework (in order to make a clear connection
with the classical supervisory control theory) the last propo-
sition can be viewed as an equivalent definition of parallel
composition for (max,+) automata in terms of their linear
representations that admit nonzero initial and final delays
from Rmax.

IV. APPLICATION TO SUPERVISORY CONTROL

Now parallel composition of Definition 3.2 is applied to
the supervisory control of (max,+) automata.

We recall that the common event alphabets of the system
and the controller is A. As usual in supervisory control, A =
Ac ∪ Au is partitioned into disjoint subsets of controllable
events (which can be forbidden as well as delayed) and
uncontrollable events (which can neither be forbidden nor
delayed).

A behavioral framework is considered: instead of working
with (max,+) automata we work with their behaviors: formal
power series from Rmax(A). This is quite natural, because
control specifications of supervisory control are typically
given by languages, here by formal power series. The result-
ing series corresponding to an optimal supervisor can then
be realized by a (max,+) automaton, provided it is rational.

A two step procedure has been proposed in [12] that con-
sists in separating the logical and timing aspects of control:
first supremal controllable sublanguage of the specification
support is computed and then timing aspects are considered
(which amounts to Ac = A). In this paper we propose a more
challenging approach and show how to handle the logical and
timing aspects of the specification at the same time, within
a single step procedure.

The relationship between tensor product and usual product
of matrices, well known as the mixed product property will
be useful:

Property 4.1: For matrices A,B, C, D of suitable dimen-
sions over commutative dioid Rmax we have:

(A⊗t C)⊗ (B ⊗t D) = (A⊗B)⊗t (C ⊗D).
We need a formula for the behavior (i.e. formal power series)
of parallel composition of the controller (max,+) automaton
with the plant (max,+) automaton.

Theorem 4.2: The behavior of the parallel composition
(according to Definition 3.2) is given by:

l(Gc‖G)(w) = lc(Pc(w))⊗ lg(w).
By comparing the definition of Hadamard product with the

formula of the last theorem we can view the right hand side



as a kind of generalized Hadamard product (in presence of
uncontrollable events). We propose the following definition.

Definition 4.1: Let A = Ac ∪ Au with the associated
natural projection Pc : A∗ → A∗c . The generalized Hadamard
product of two formal power series s and s′, denoted ¯Au ,
is defined by (s¯Au

s′)(w) = s(Pc(w))⊗ s′(w).
It follows from theorem 4.2 that

l(Gc‖G) = l(Gc)¯Au l(G).

This can be applied to control of (max,+) automata in a
behavioural framework.

Let yref be a specification series, the problem is to find
the greatest controller series, denoted yC such that yC ¯Au

y ¹ yref . Having in mind the meaning of order relation
in Rmax(A), one can give the following interpretations.
Finding the greatest yC , that is the greatest coefficients
yC(w) for all w, and as a by-product the greatest coefficients
(yC¯Au

y)(w), means that the controller will delay as much
as possible the completion of the sequence of events w in the
supervised system (whose behavior is given by yC ¯Au y).
In addition, since yC ¯Au y ¹ yref , the completion date
in the supervised system (yC ¯Au y)(w) is earlier than the
completion date specified by yref (w) for all sequence w.
In other words, the considered control objective satisfies the
just-in-time criterion, notably considered for the control of
Timed Event Graphs (see for example [9], [10]).

Let us introduce the notation

HAu
y : s 7→ s¯Au y

for the right generalized Hadamard product.
Since HAu

z : Rmax(A) → Rmax(A) is again a residuated
mapping (with its residuated mapping denoted by (HAu

y )]),
there exists the greatest yC such that HAu

y (yc) ¹ yref ,
namely yopt

C := (HAu
y )](yref ).

Proposition 2.3 has the following variant in presence of
uncontrollable events (Au 6= ∅).

Proposition 4.3: The mapping HAu
y : Rmax(A) →

Rmax(A) is residuated and its residuted mapping is given
by

(HAu
y )](s)(w) = (10)

{ ∧
u∈P−1

c (w)∩supp(y)((s(u)◦/y(u)), if w ∈ A∗c
T, if w 6∈ A∗c

We can check the correctness of this result by the fol-
lowing alternative approach. Using the following modified
definition of projected formal power series Py : Rmax(A) →
Rmax(A) with

Py(s)(w) =
{

s(Pc(w)), if w ∈ supp(y)
ε, if w 6∈ supp(y) (11)

we have in fact HAu
y = Hy ◦ Py , i.e. ∀s ∈ Rmax(A):

HAu
y (s) = Hy(Py(s)). This is because ⊗ is absorbing and

hence for w 6∈ supp(y) we can put Py(s)(w) = ε without
modifying the Hadamard product HAu

y (s)(w).

Proposition 4.4: Mapping Py defined by (11) on complete
dioids of formal power series is residuated with its residuated
mapping given by

P ]
y(s)(w) =

{ ∧
u∈P−1

c (w)∩supp(y) s(u), if w ∈ A∗c
T, if w 6∈ A∗c

Using the well known formula from residuation theory
(HAu

y )] = P ]
y ◦ H]

y , it remains to substitute the formulae
for P ]

y (prop. 4.4) and H]
y (prop. 2.3). This yields to the

same formula as the one obtained in proposition 4.3.
Remark 4.5: We point out the following analogy with the

classical supervisory control theory. The residuated mapping
(HAu

y )](s) plays the role (i.e. is a generalization of) the
supremal controllable sublanguage of specification (refer-
ence) series s with respect to the plant y and Au. Indeed,
HAu

y (s) plays the role of infimal controllable superlanguage
of the specification series s with respect to y and Au. It
is just an extension to the (max,+) case of the algebraic
counterpart of supervised product defined by coinduction
in [14]. Actually, if we denote in the classical supervisory
control theory the operator HL(K) = inf C(K, L,Au) the
resulting closed-loop system, which corresponds to the infi-
mal controllable superlanguage of the specification language
K with respect to plant language L and Au, then it can
be shown that this mapping is residuated in the dioid of
formal languages and its residuated mapping is nothing else
but H]

L(K) = sup C(K, L,Au). The last proposition can
then be viewed as a generalization of the formula for supC
operator from Ramadge-Wonham theory.

Example 1: We consider a DES (e.g. a manufacturing
system) in which three distinct tasks can be done. These
tasks, labelled a, b and c, last respectively 3, 4 and 5 units
of time. The system can perform the following sequences
of tasks : a, ab, abc, abcb, abcbc, . . .. This system can be
modeled by the (max,+) automaton G displayed on figure
1.(a). The behavior of G can be traduced by the following
series in Rmax(A):

y = 3a(9bc)∗(4b + e).

For instance, y(ab) = 7 means that the sequence ab will
be completed at the earliest at date 7 (considering that the
system starts to operate at time 0).
It is assumed that the start of tasks a and c can be delayed
(we may decide to postpone the execution of these tasks
when they should be performed) or even forbidden (their
execution can be prevented). On the contrary, the task b can
neither be delayed nor forbidden (this task starts as soon as it
can be performed). Denoting A = {a, b, c} the set of events
(alphabet), we then have Ac = {a, c} and Au = {b}.
We would like that the system operates at the latest according
to the following series:

yref = 4a⊕ 9ab⊕ 14abc.

This means that the sequences a, ab and abc should be
completed at the latest at dates 4, 9 and 14 respectively. In
addition, any other sequence of tasks should not happen.
This series is recognized by the (max,+) automation Gref



displayed in figure 1.(b).
In order to achieve this goal, we will apply the proposed
supervisory control.

b/4

(b)c/5

a/3 c/5

(a)

a/4 b/5

4321321

11 22

a/4 b/4

33

(c)

Fig. 1. G (a), Gref (b), Gs (c)

Our approach dealing at the same time with both log-
ical and timing aspects yields according to formula for
(HAu

y )], yopt
c (a) = min(yref (a)◦/y(a), yref (ab)◦/y(ab)) =

min(4◦/3, 8◦/7) = 1, because ab ∈ supp(y) and Pc(ab) = a,
i.e. {u ∈ PcP

−1
c a∩ supp(y)} = {a, ab}. For any other w ∈

A∗∩supp(y), we have w /∈ A∗c∩ and yopt
c (w) = T . It is then

easy to check that the behavior of the system under control
is ys = yopt

c ¯ y =
⊕

w∈A∗ (yopt
c (Pc(w))⊗ y(w)) w =

4a ⊕ 8ab. A (max,+) automation Gs which realizes ys is
displayed in figure 1.(c).

Let us remark finally that one should be aware of unde-
cidability of equivalence (equality) of two rational formal
power series with coefficients in Rmax [13]. Consequently,
inequality is also undecidable. It is a serious problem as
it is in general difficult or even impossible to verify that
the synthesized controller satisfies the specification. On the
other hand, our controller must satisfy the specification by
construction, so there is no need for a systematic verifica-
tion. Fortunately, there exist classes of formal power series,
where equality is decidable, for (max,+) series equality (and
inequality) is known to be decidable for series that are both
(max,+) and (min,+) rational. Interestingly, it has been shown
in [16] that these important classes of formal power series
coincide with the so called unambiguous series. If we confine
ourselves to this class of series there is no problem with
decidability of inequalities.

Another important question is whether/when the resulting
controller is rational. According to the above results this
amounts to study the rationality of residuated mapping of
Hadamard product. It turns out to be a difficult problem.
The results of [16] are again helpful in this respect. Actually,
the residuated mapping of Hadamard product can be viewed
as the Hadamard product by the series that has inversed
coefficients. More precisely, for any series r ∈ Rmax(A) let
us denote by C(r) the series with the coefficients C(r)(w) =
−r(w) ∈ Rmax. Then the residuated mapping of Hadamard
product can be written by H]

y(s)(w) = s(w)◦/y(w) = s¯Cy.
Since Hadamard product is known to be a rational oper-
ation (realized by tensor product of linear representations,
while realizable and rational formal power series coincide
according to Schutzenberger’s theorem), residuated mapping
of Hadamard product is rational iff the "inversion" operator
C : Rmax(A) → Rmax(A) preserves rationality. It has been

shown in [16] that for a formal power series s ∈ Rmax(A)
we have C(s) ∈ Rmax(A) iff s is unambigous. Moreover
we recall that it is proven therein that s ∈ Rmax(A) is
unambigous iff it is at the same time (max,+) and (min,+)
rational.

V. CONCLUSION

We have presented a control mechanism for (max,+)
automata based on the tensor product of their linear repre-
sentation, i.e. Hadamard product of the corresponding formal
power series. Both logical and timing aspects of their control
have been studied using behavioral (formal power series)
framework. In presence of uncontrollable events we have
developped an approach based on a generalized version of
Hadamard product and on direct application of residuation
theory: both logical and timing aspects of supervisory control
are handled at the same time.

In a future work we plan to develop decentralized control
of (max,+) automata based on their synchronous product to
be introduced.
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