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Abstract. A specification of the linear system theory over dioids is proposed for periodic systems.
Using the conventional periodic system theory as a guideline, we study periodic systems for which the
underlying algebraic structure is a dioid. The focus is on representations (impulse response and state
model) associated with such systems, the properties of these representations as well as the state space
realization.
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1. Introduction

Linear systems hold a very important place in systems theory. Besides, results on
linear systems are so wealthy that control engineers very often attempt to analyze
non-linear systems via a linear approximation. This approach is not always possible,
and in particular, Discrete Event Dynamic Systems (DEDS) cannot reasonably be
approximated by usual linear models. In fact, basic phenomena that characterize their
dynamics, such as synchronization and competition, are very nonlinear and nonsmooth
phenomena. Typical examples of DEDS are flexible manufacturing systems, telecom-
munication networks, parallel processing systems and logistic systems, the importance
of which is constantly increasing with the emergence of new technologies. Nevertheless,
it has been shown that a class of DEDS, those involving synchronization phenomena,
can be modeled by linear equations in particular algebraic structures, called dioids.
For about twenty years, this property has motivated the elaboration of a ”new linear
system theory” in which the underlying algebra is a dioid. This theory offers a striking
analogy with conventional linear system theory since concepts such as state represen-
tation, transfer matrices, optimal control, corrector synthesis and identification theory
have been introduced (Cuninghame-Green, 1979; Cohen et al., 1989; Baccelli et al.,
1992; Cottenceau et al., 1999; Menguy et al., 2000).
At the current stage, studies essentially concern linear time-invariant systems1. Nev-
ertheless, lots of systems arising in practice are time-varying, that is, the values of
their output response depend on when the input is applied. Time variation is a result
of system parameters changing which may happen for example in a manufacturing
system, when processing times of successive parts are different. Starting from this
observation, linear time-varying systems over dioids have been studied in (Lahaye
et al., 1999a; Lahaye et al., 1999b; Lahaye, 2000) with the aim of widening the field of
application of the linear systems theory over dioids. In (Lahaye, 2000), among relevant

1 Their behavior is usually graphically represented by timed event graphs with constant timings
(see (Cohen et al., 1989)).
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applications, the so-called repetitive manufacturing systems have been identified as
linear systems whose parameters admit periodic variations. In this paper, the focus
is precisely on this particular class of linear time varying systems, namely the linear
periodic systems. These systems have received much attention in conventional system
theory (see e.g. (Bittanti, 1996) and references therein), and, using these results as
a guideline, we aim at sketching in this paper a specific analysis for linear periodic
systems over dioids.
The outline of the paper is as follows. In section 2, some elements of the linear system
theory over dioids are presented. Linear periodic systems are introduced in section
3. Starting from a formal definition, several properties of representations associated
with such systems are exhibited. Section 4 is devoted to the state space realization
problem for linear periodic systems. We first introduce a time-invariant reformulation
of a periodic state space representation. From this so-called cyclic reformulation we
establish a necessary and sufficient condition for the existence of a periodic realization
of the impulse response of a periodic system.

2. Preliminaries

2.1. Dioid structure

DEFINITION 1. A dioid is a set D endowed with two inner operations denoted ⊕
and ⊗2. The sum is associative, commutative, idempotent (∀a ∈ D, a ⊕ a = a) and
admits a neutral element denoted ε. The product is associative, distributes over the
sum and admits a neutral element denoted e. Element ε is absorbing for the product.

In any dioid, a natural order is defined by:

a ¹ b ⇔ a ⊕ b = b (a ⊕ b is the least upper bound of {a, b}).

DEFINITION 2. A dioid D is complete if each subset A of D admits a least upper
bound denoted

⊕

x∈A x = supx∈A x, and if ⊗ distributes with respect to infinite sums.
In particular, T =

⊕

x∈D x is the greatest element of D.

EXAMPLE 3. Let Rmax be the set R ∪ {±∞} endowed with max as ⊕ and usual
addition as ⊗. It is a complete commutative dioid with neutral elements ε = −∞ and
e = 0 (T = +∞).

DEFINITION 4. [see (Gaubert, 1994, def. 1.1.5)] A dioid D satisfies the weak sta-
bilization condition if for all a, b, λ, µ ∈ D, there exist c, ν ∈ D and N ∈ N such
that

n ≥ N ⇒ aλn ⊕ bµn = cνn .

EXAMPLE 5. Dioid Rmax satisfies the weak stabilization condition.

2 As usual, the multiplicative sign may sometimes be omitted.
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In the following, we shall consider vectors and matrices with entries in a dioid. The
sum and product of matrices are defined conventionally. Let A, B ∈ Dn×n,

(A ⊕ B)ij = Aij ⊕ Bij , (A ⊗ B)ij =
n⊕

l=1
Ail ⊗ Blj .

The matrix-vector product is defined in a similar way. We denote Idn the n×n identity
matrix with entries equal to e on the diagonal and to ε elsewhere.
Given a matrix M ∈ Dn×n, we shall also consider the problem of existence of eigen-
values and eigenvectors in D, that is, the existence of (non-ε) λ ∈ D and v ∈ Dn such
that:

M ⊗ v = λ ⊗ v.

This spectral problem has been extensively studied. We only recall basic definitions
and results, the reader can consult (Baccelli et al., 1992; Gaubert, 1992; Braker, 1993)
for exhaustive presentations.

DEFINITION 6. A matrix M ∈ Dn×n is irreducible if ∀i, j; ∃l ≥ 0 s.t. (M l)ij > ε.

THEOREM 7. An irreducible matrix M ∈ Dn×n has a unique eigenvalue denoted λ.

There might be several eigenvectors of an irreducible matrix with the unique cor-
responding eigenvalue λ. Expressions of eigenvalue and eigenvectors can be found in
references above. Let us finally recall that every irreducible matrix is cyclic in the
sense of the following theorem (see e.g. (Baccelli et al., 1992, 3.7)).

THEOREM 8. Let M ∈ Dn×n be an irreducible matrix whose eigenvalue is λ. There
exist integers N and c such that

∀m ≥ N, Mm+c = λc ⊗ Mm.

The least value of c is called the cyclicity of M .

If entries belong to a dioid satisfying the weak stabilization condition (Def. 4), we have
the following extension for possibly reducible matrices.

THEOREM 9 (See (De Schutter, 2000; Gaubert, 1994, prop. 1.2.2)). Let D be a com-
mutative dioid satisfying the weak stabilization condition and let M ∈ Dn×n. For all
i, j ∈ {1, . . . , n}, there exist c ∈ N \ {0}, λ0, . . . , λc−1 ∈ D, N ∈ N such that

∀m ≥ N,
[
Mm+l+c

]

ij
= λc

l

[
Mm+l

]

ij
for l = 0, . . . , c − 1 .

2.2. Signals and systems

Let D be a complete dioid. A signal is here supposed to be a function from Z into D.
Whereas in the conventional system theory the set of signals is endowed with a vector
space structure, in our context, the set of signals DZ is equipped with a moduloid
structure. More precisely, we denote E the set DZ endowed with the two following
operations:
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4 S. Lahaye,J.-L. Boimond and L. Hardouin

− an inner operation, denoted ’⊕’, which plays the role of addition of signals: ∀u, v ∈
DZ, ∀t ∈ Z; (u ⊕ v)(t) = u(t) ⊕ v(t) ;

− an external operation, denoted ’·’, which plays the role of product of a signal with
a scalar: ∀a ∈ D, ∀v ∈ DZ, ∀t ∈ Z; (a · v)(t) = a ⊗ v(t) .

DEFINITION 10. [Linear system] A p-input, q-output system is a mapping S : Ep →
Eq, u 7→ y. It is called linear over dioid (D,⊕,⊗) if

∀u, v ∈ Ep ; S(u ⊕ v) = S(u) ⊕ S(v) ,
and ∀u ∈ Ep, ∀a ∈ D ; S(a · u) = a · S(u) .

(1)

Classically, an additional continuity assumption is made for the considered systems.
Namely, we require that for any finite, or infinite, collection (ui)i∈I

S(
⊕

i∈I

ui) =
⊕

i∈I

S(ui) .

EXAMPLE 11. An elementary linear system is the system denoted ∆s, whose output
y is equal to its input u delayed by s (s ∈ Z) :

∀t ∈ Z, y(t) = [∆s(u)] (t) = u(t − s) .

DEFINITION 12. A linear system S is causal if for all inputs u1 and u2

∀τ ∈ Z, u1(t) = u2(t) for t ≤ τ ⇒ [S(u1)] (t) = [S(u2)] (t) for t ≤ τ .

DEFINITION 13. A linear system S is time-invariant if

∀u ∈ E , ∀s ∈ Z ; S(∆s(u)) = ∆sS(u) ,

in which ∆s is the elementary delay system (see ex. 11).

2.3. Representations of linear systems

2.3.1. Impulse response
It is well known that any linear system can be represented by a unique mapping called
impulse response. With the aim of doing so over a dioid D, we define the Dirac function
at 0 and its shifted versions as

e : t → e(t) =

{

e if t = 0,

ε otherwise;
and ∀t ∈ Z , δs(t) = ∆s(e(t)) = e(t − s) .

Hence, it can be checked by direct calculation that

∀u ∈ E , ∀t ∈ Z ; u(t) =
⊕

s∈Z

u(s)e(t − s) =
⊕

s∈Z

u(s)δs(t) .

Starting from this decomposition of signals, the impulse response of a linear system
has been defined as in the following theorem.
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THEOREM 14 (See (Baccelli et al., 1992, 6.3.1)). Let S be a linear system, then there
exists a unique mapping h : Z

2 7→ Dq×p, (called impulse response) defined by

h(t, s) = [S (δs)] (t) , (2)

such that
∀u ∈ Ep, ∀t ∈ Z ; y(t) = [S(u)] (t) =

⊕

s∈Z

h(t, s)u(s) .

2.3.2. State space representation
State space representations of linear systems over dioids have also been studied. In
particular, a p-input, q-output system is said to be linear and causal if it can be
represented by the following state space model

x(t) = A(t − 1)x(t − 1) ⊕ B(t)u(t) (3)

y(t) = C(t)x(t) (4)

in which

− A(t) ∈ Dn×n, B(t) ∈ Dn×p and C(t) ∈ Dq×n.

− u(t) ∈ Dp (respectively x(t) ∈ Dn, y(t) ∈ Dq) is called the input (respectively
state, output) vector.

The solution to Eq. (3) is

t > t0, x(t) = Φ(t, t0)x(t0) ⊕
t⊕

j=t0+1

Φ(t, j)B(j)u(j) ,

in which Φ(t, t0) is called transition matrix by analogy with conventional time-varying
linear system theory (Kailath, 1980; Kamen, 1996) and is defined by

Φ(t, t0) =







not defined for t < t0,
Idn for t = t0,
A(t − 1)A(t − 2) ⊗ · · · ⊗ A(t0) for t > t0.

(5)

By definition, this matrix satisfies the composition property:

t ≥ j ≥ t0, Φ(t, t0) = Φ(t, j) ⊗ Φ(j, t0) , (6)

and in addition,
t > t0, Φ(t, t0) = A(t − 1)Φ(t − 1, t0) . (7)

The input-output relationship is simply deduced from the output equation (Eq. (4)):

∀t ∈ Z, y(t) =
⊕

s∈Z

h(t, s)u(s) (8)
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6 S. Lahaye,J.-L. Boimond and L. Hardouin

where h, the impulse response, is defined by

h(t, s) =

{
C(t)Φ(t, s)B(s) , t ≥ s,
ε , t < s.

(9)

3. Linear periodic systems

In this very section the study of linear periodic systems is tackled. At first, linear
periodic systems are defined as systems which commute with the delay operator on
signals for delays corresponding to their period. Secondly, we exhibit several properties
of representations associated with such systems. Towards their impulse responses, a
necessary and sufficient condition is given to characterize the periodicity. We also
introduce the notion of monodromy matrix in state space representation. Spectral
properties of the monodromy matrix of an autonomous periodic system notably allow
showing that its state couples with a periodic steady state in finite time.

DEFINITION 15. A system S is called periodic of period T (or shortly T -periodic),
if T is the least positive integer such that

∀u ∈ Ep, S(∆T (u)) = ∆TS(u) ,

where ∆ is the delay operator on signals (see ex. 11).

From this definition, one can easily deduce that a T -periodic system S satisfies :

∀u ∈ Ep,∀n ∈ Z ; S(∆nT (u)) = ∆nTS(u) . (10)

Remark 1. Whereas a time-invariant system S (see def. 13) commutes with operator
∆s for all values of delay s ∈ Z, i.e.

S (∆s(u)) = ∆s (S(u)) ,

a T -periodic system commutes with ∆s only for s multiple of period T . Moreover, a
time-invariant system can be seen as a 1-periodic system.

3.1. Impulse response

The next proposition provides a condition on its impulse response which characterizes
the T -periodicity of a linear system.

PROPOSITION 16. A linear system S is T -periodic if, and only if, T is the least
positive integer such that its impulse response h satisfies

∀t, s ∈ Z, h(t + T, s + T ) = h(t, s) . (11)

DEDS.tex; 1/09/2003; 18:30; p.6



Linear Periodic Systems Over Dioids 7

Proof. Necessary condition: Suppose that system S is T -periodic, we get

h(t + T, s + T ) =
[

S(δs+T )
]

(t + T ) (by definition of h, see Eq. (2))

=
[

∆−T
(

S(δs+T )
)]

(t)

=
[

S
(

∆−T (δs+T )
)]

(t) (S is T -periodic, see Eq. (10))

= [S(δs)] (t)
= h(t, s) .

Sufficient condition: As

h(t + T, s + T ) =
[

S(δs+T )
]

(t + T ) =
[

∆−T
(

S(δs+T )
)]

(t),

and

h(t, s) = [S(δs)] (t) =
[

S
(

∆−T (δs+T )
)]

(t),

equality (11) implies that S is T -periodic.

3.2. State space representation

A linear and causal system described by a state space representation given by Eqs.
(3)-(4) is said T -periodic if T is the least positive integer such that

∀t ∈ Z, A(t + T ) = A(t), B(t + T ) = B(t), C(t + T ) = C(t) .

LEMMA 17. Transition matrix Φ defined by (5) is T -periodic, i.e.

t ≥ t0, Φ(t + T, t0 + T ) = Φ(t, t0) ,

if, and only if, A(t), t ∈ Z, is T -periodic.
Proof. Straightforward.

The T -periodicity of Φ also allows writing

t ≥ t0,∀m ∈ Z, Φ(t + mT, t0 + mT ) = Φ(t, t0) . (12)

Setting t = i + nT with T > i ≥ t0 and n ∈ N, we get

Φ(i + nT, t0)
= Φ(i + nT, t0 + nT )Φ(t0 + nT, t0 + (n − 1)T ) ⊗ . . . ⊗ Φ(t0 + T, t0) (see Eq. (6))
= Φ(i, t0)Φ(t0 + T, t0) ⊗ . . . ⊗ Φ(t0 + T, t0)

︸ ︷︷ ︸

n times

(see Eq. (12))

= Φ(i, t0)[Φ(t0 + T, t0)]
n

.

DEFINITION 18. By analogy with conventional theory (Bittanti, 1996; Bolzern
et al., 1986), matrix Mt0 = Φ(t0 + T, t0) is called monodromy matrix at t0.
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For autonomous systems, that is systems for which the input is zero (u(t) = ε, ∀t ∈ Z

in Eq. ( 3)), the state vector obeys:

x(i+nT ) = Φ(i+nT, t0)x(t0) = Φ(i, t0)[Φ(t0 + T, t0)]
nx(t0) = Φ(i, t0)M

n
t0

x(t0) . (13)

In other words, the monodromy matrix describes the evolution of the state over one
period. This relation allows showing that an autonomous periodic system couples to
a periodic regime in finite time.

PROPOSITION 19. If the monodromy matrix Mt0 is irreducible with eigenvalue λ,
then there exist two integers N and c such that for n ≥ N

x
(
i + (n + c)T

)
= λcx(i + nT ) . (14)

Proof. From Eq. (13), a direct application of Th. 8, for n large enough, leads to

x
(
i + (n + c)T

)
= Φ(i, t0)M

n+c
t0

x(t0)
= Φ(i, t0)λ

cMn
t0

x(t0)
= λcΦ(i, t0)M

n
t0

x(t0)
= λcx(i + nT )

in which λ (resp. c) is the eigenvalue (resp. the cyclicity) of Mt0 .

Remark 2. If the dioid, in which the signals take their values, satisfies the weak
stabilization condition (see Def. 4), the existence of a steady state can be shown even
if the monodromy matrix is reducible. Under this assumption, theorem 9 indeed applies
and similarly a steady state can then be identified.

PROPOSITION 20. The spectrum of Mt0 = Φ(t0 + T, t0) is independent of t0. Fur-
thermore, if x(t0) is an eigenvector of Mt0 with corresponding eigenvalue λ, then
x(t) = Φ(t, t0)x(t0) is an eigenvector of Mt = Φ(t+T, t) with corresponding eigenvalue
λ.

Proof.

• For any pair (t0, t1) with t0 + T ≥ t1 ≥ t0, the monodromy matrices at t0 and at
t1 can respectively be written
• Φ(t0 + T, t0) = Φ(t0 + T, t1)Φ(t1, t0) (see Eq. (6)) .
• Φ(t1 + T, t1) = Φ(t1 + T, t0 + T )Φ(t0 + T, t1) (see Eq. (6))

= Φ(t1, t0)Φ(t0 + T, t1) (Φ is periodic) .

In other words, by setting F = Φ(t1, t0) and G = Φ(t0 + T, t1), these monodromy
matrices can be written: Φ(t0 + T, t0) = GF and Φ(t1 + T, t1) = FG.
If λ is a (nonzero) eigenvalue of Φ(t1 + T, t1), i.e., FGx = λx, x 6= ε, then
GFGx = Gλx = λGx, or GFy = λy with y = Gx.
Since λ 6= ε and x 6= ε, y = Gx 6= ε; so that λ is an eigenvalue of Φ(t0+T, t0) = GF
as well.
By reversing the role of Φ(t0 + T, t0) and Φ(t1 + T, t1) in the above argument,
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it conversely follows that all the (nonzero) eigenvalues of Φ(t0 + T, t0) are also
eigenvalues of Φ(t1 + T, t1).

• Let us assume that x(t0) is an eigenvector of Mt0 with corresponding eigenvalue
λ. We have for t ≥ t0
Mtx(t) = Φ(t + T, t)x(t) = Φ(t + T, t)Φ(t, t0)x(t0)

= Φ(t + T, t0)x(t0)
= Φ(t + T, t0 + T )Φ(t0 + T, t0)x(t0) (see Eq.(6))
= Φ(t, t0)λx(t0)
= λx(t)

which shows that x(t) is an eigenvector of Mt with eigenvalue λ.

Remark 3. In (Lahaye, 2000), potential applications to manufacturing systems have
been studied. In particular, an automobile production line and an electronic cards
production line have been modeled by a state representation (3-4) in dioid Rmax in
which

− variables, corresponding to entries of vectors u(t), x(t) and y(t), denote input
release dates of successive products (electronic cards or automobiles) at distinct
stages of assembly lines,

− coefficients of matrices A(t), B(t) and C(t) correspond to the processing times
of successive products at different levels of production lines. These parameters
depend upon the types of products processed.

In these manufacturing systems, production is usually repetitive, that is, the types of
products successively released on the production line are ordered in a periodic manner.
Then these systems can be studied as periodic systems in Rmax since matrices A(t),
B(t), C(t) admit periodic variations.
When they are maximally solicited (release dates of products are considered to be
equal to −∞, i.e., u(t) = ε, ∀t ∈ Z), proposition 19 allows claiming that they couple
to a periodic regime. More precisely, their state vector satisfies Eq. (14) in Rmax for n
large enough; in conventional algebra, this leads to:

x
(
i + (n + c)T

)
= c × λ + x(i + nT ) .

The value (c×λ)/(c×T ) = λ/T gives to the cycle time of the system, that is, the mean
production time of an electronic card or a vehicle. The product c × T is equal to the
length of the periodic pattern. Finally, proposition 20 allows claiming that the cycle
time is identical for any circular permutation of the periodic sequence of production.
Such applications in performance evaluation of assembly lines may be used to ease
scheduling and/or design decisions since they enable the evaluation of the relevance
of different solutions (scheduling and/or re-engineering of production lines).
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4. State-space realization for linear periodic systems

Consider that we only know the impulse response of a periodic system. The state space
realization problem tackled in this section aims at constructing a periodic state space
model of this system. Actually, we only address the starting point of such an approach.
In fact, being given the impulse response of a periodic system (characterized by Eq.
(11)), we exhibit a necessary and sufficient condition for the existence of a periodic
realization.
As for conventional periodic systems (Bru et al., 1997), the realization problem is
studied by means of a time-invariant reformulation of their periodic state space rep-
resentation. This so-called cyclic reformulation has been defined by analogy with
conventional theory (Misra, 1996) and is introduced in a first place.

4.1. Cyclic time-invariant reformulation of a periodic state space

representation

First of all, we point out some properties of the kT×kT matrix denoted Pk and defined
by

Pk =














ε ε . . . ε Idk

Idk ε
. . . ε ε

ε Idk
. . . ε ε

ε ε
. . . ε ε

ε ε
. . . Idk ε














. (15)

Matrix Pk satisfies:

P T
k = IdkT , and consequently P T+j

k = P j
k , j ∈ N. (16)

LEMMA 21. Let F (t), t ∈ Z, be a T -periodic l × m matrix, and F̂ (t) the lT × mT
block-diagonal matrix defined by

F̂ (t) = diag
(
F (t), F (t + 1), . . . , F (t + T − 1)

)
.

We have
F̂ (i) ⊗ P j

m = P j
l ⊗ F̂ (i + j) . (17)

Proof. We shall prove (17) by induction on index j. Using the T -periodicity of matrix

F , one checks by direct calculation that (17) is satisfied for j = 1, i.e.:F̂ (i) ⊗ Pm =

Pl ⊗ F̂ (i+1). Suppose that (17) is satisfied for j = n, i.e.: F̂ (i)⊗Pn
m = Pn

l ⊗ F̂ (i+n).
We show that (17) is also satisfied for j = n + 1:

F̂ (i) ⊗ Pn+1
m = F̂ (i) ⊗ Pn

m ⊗ Pm

= Pn
l ⊗ F̂ (i + n) ⊗ Pm (by assumption)

= Pn
l ⊗ Pl ⊗ F̂ (i + n + 1) (since (17) is true for j = 1)

= Pn+1
l ⊗ F̂ (i + (n + 1)) .
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PROPOSITION 22. Let
(
A(t), B(t), C(t)

)
, t ∈ Z, be a realization of a linear T -

periodic system and t0 an initial time instant. Signals x̃, ũ and ỹ defined by

x̃(t) = P t−t0
n ⊗

(

x(t)⊤ x(t + 1)⊤ . . . x(t + T − 1)⊤
)⊤

,

ũ(t) = P t−t0
p ⊗

(

u(t)⊤ u(t + 1)⊤ . . . u(t + T − 1)⊤
)⊤

,

ỹ(t) = P t−t0
q ⊗

(

y(t)⊤ y(t + 1)⊤ . . . y(t + T − 1)⊤
)⊤

satisfy the following time-invariant state space representation

x̃(t) = Ãx̃(t − 1) ⊕ B̃ũ(t) (18)

ỹ(t) = C̃x̃(t) (19)

in which

Ã =










ε . . . ε A(t0 + T − 1)

A(t0)
. . . ε ε

ε
. . . ε ε

ε
. . . A(t0 + T − 2) ε










, (20)

B̃ = diag
(
B(t0), . . . , B(t0 + T − 1)

)
, C̃ = diag

(
C(t0), . . . , C(t0 + T − 1)

)
. (21)

Proof. By stacking equations of the state space model of a periodic system for
instants t, t+1, . . . , t+T −1, we get an equivalent periodic state space representation
defined by

x̂(t) = Â(t − 1)x̂(t − 1) ⊕ B̂(t)û(t) (22)

ŷ(t) = Ĉ(t)x̂(t) (23)

with

x̂(t) =
(

x(t)⊤ x(t + 1)⊤ . . . x(t + T − 1)⊤
)⊤

, Â(t) = diag
(
A(t), . . . , A(t + T − 1)

)
,

û(t) =
(

u(t)⊤ u(t + 1)⊤ . . . u(t + T − 1)⊤
)⊤

, B̂(t) = diag
(
B(t), . . . , B(t + T − 1)

)
,

ŷ(t) =
(

y(t)⊤ y(t + 1)⊤ . . . y(t + T − 1)⊤
)⊤

, Ĉ(t) = diag
(
C(t), . . . , C(t + T − 1)

)
.

Let us set 





x̃(t) = P t−t0
n ⊗ x̂(t)

ũ(t) = P t−t0
p ⊗ û(t)

ỹ(t) = P t−t0
q ⊗ ŷ(t)

or equivalently with t = i + nT , t0 + T > i ≥ t0, and thanks to Eqs. (16)






x̃(i + nT ) = P i+nT−t0
n ⊗ x̂(i + nT ) = P i−t0

n ⊗ x̂(i + nT )
ũ(i + nT ) = P i+nT−t0

p ⊗ û(i + nT ) = P i−t0
p ⊗ û(i + nT )

ỹ(i + nT ) = P i+nT−t0
q ⊗ ŷ(i + nT ) = P i−t0

q ⊗ ŷ(i + nT )
.
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Multiplying each equation respectively by P T−i+t0
n , P T−i+t0

p and P T−i+t0
q , as well as

using Eqs. (16), we get







x̂(i + nT ) = P T−i+t0
n ⊗ x̃(i + nT )

û(i + nT ) = P T−i+t0
p ⊗ ũ(i + nT )

ŷ(i + nT ) = P T−i+t0
q ⊗ ỹ(i + nT )

Since Â(·), B̂(·), Ĉ(·) are periodic, the state space model defined by (22)-(23) can then
be written

PT−i+t0
n x̃(i + nT ) = Â(i − 1)PT−i+t0+1

n x̃(i + nT − 1) ⊕ B̂(i)PT−i+t0
p ũ(i + nT )

PT−i+t0
q ỹ(i + nT ) = Ĉ(i)PT−i+t0

n x̃(i + nT ) ,

or, multiplying the state equation by P i−t0
n and the output equation by P i−t0

q ,

x̃(i + nT ) = P i−t0
n Â(i − 1)PT−i+t0+1

n x̃(i + nT − 1) ⊕ P i−t0
n B̂(i)PT−i+t0

p ũ(i + nT )

ỹ(i + nT ) = P i−t0
q Ĉ(i)PT−i+t0

n x̃(i + nT ) .

By using (17), we obtain

P i−t0
n Â(i − 1)P T−i+t0+1

n = P i−t0
n P T−i+t0+1

n Â(i − 1 + T − i + t0 + 1)

= P T+1
n Â(T + t0)

= PnÂ(t0) (from Eqs. (16) and since Â is periodic)

= Ã .

Similar arguments lead to equalities

P i−t0
n B̂(i)P T−i+t0

p = B̃ , P i−t0
q Ĉ(i)P T−i+t0

n = C̃ .

Which finally shows that x̃, ũ and ỹ satisfy Eqs. (18)-(19).

Although not explicitly specified, time-invariant realization (Ã, B̃, C̃) depends on the
initial time instant t0. Since its realization (A(t), B(t), C(t)), t ∈ Z, is periodic, it
is obvious that a T -periodic system has only T different time-invariant realizations
(Ã, B̃, C̃).

4.2. State space realization

The state space realization has previously been studied for linear time-invariant sys-
tems over dioid Rmax (Olsder, 1986; De Schutter and De Moor, 1995). In particular, be-
ing given the impulse response of a (max, +) linear time-invariant system, a necessary
and sufficient condition for the existence of a state realization has been stated. Making
use of the cyclic time-invariant reformulation, the following proposition extends this
condition to periodic systems.
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PROPOSITION 23. Let D be a commutative dioid satisfying the weak stabilization
condition. A mapping h : Z

2 → Dq×p, satisfying Eq. (11) is the impulse response of
a system represented by a T -periodic realization (A(t), B(t), C(t)), t ∈ Z, if, and only
if,

∀t0 ∈ Z, ∀i ∈ {1, . . . , q}, ∀j ∈ {1, . . . , p},
∃c ∈ N \ {0}, ∃λ0, . . . , λc−1 ∈ D, ∃N ∈ N

such that ∀m ≥ N , ∀l ∈ {0, . . . , c − 1}, ∀s ∈ {0, . . . , T − 1}
[
h
(
t0 + s + (m + l + c)T, t0

)]

ij
= λc

l

[
h
(
t0 + s + (m + l)T, t0

)]

ij
. (24)

Proof. The proof is quite lengthy and technical. For the sake of clarity, we only give
here a sketch of proof (see appendix for a complete account).
Necessary condition comes down to checking that the impulse response of any T -
periodic realization (A(t), B(t), C(t)), t ∈ Z satisfies Eq. (24). With this end in view,
theorem 9 must be applied to the time-invariant cyclic reformulation defined in propo-
sition 22 for any T -periodic realization.
Being given a mapping h : Z

2 → Dq×p satisfying both Eq. (11) and the condition given
by Eq. (24), sufficient condition consists in finding a periodic state realization of h. In
particular, in the Single Input Single Output case, it can be shown that the following
realization is suitable. For all t0 ∈ Z, we define a realization (A(t0), B(t0), C(t0)), in
which A(t0) is a (c2 + N)T × (c2 + N)T matrix,

A(t0) =












Aλc−1
ε . . . ε

ε Aλc−2

. . .
...

...
. . .

...
ε . . . ε Aλ0

ε
Q . . . . . . Q AN












, (25)

in which

• Q is a NT × cT matrix whose entries are equal to ε except for Q1,cT = e.

• AN and each Aλl
, l = 0, 1, . . . , c − 1 are respectively a NT × NT sub-diagonal

matrix, and a cT × cT matrix with the following Frobenius normal form

AN =












ε . . . . . . ε

e
. . .

...
ε e
...

. . .
. . .

. . .
...

ε . . . ε e ε












, Aλl
=












ε . . . . . . ε λc
l

e
. . . ε

ε e
...

. . .
. . .

. . .
...

ε . . . ε e ε












.

C(t0) is a (c2 + N)T row vector defined as follows

C(t0) =
(
ε . . . ε e

)
. (26)
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14 S. Lahaye,J.-L. Boimond and L. Hardouin

The column vector B(t0) is defined by

B(t0) =
(

B⊤
λc−1

B⊤
λc−2

. . . B⊤
λ0

B⊤
N

)⊤

, (27)

in which

• BN is a NT column vector

BN =
(
h(t0 + NT − 1, t0) h(t0 + NT − 2, t0) . . . h(t0, t0)

)⊤
,

• each block Bλl
, l = 0, 1, . . . , c − 1, is a cT × 1 vector

Bλl
=

(
ε . . . ε
︸ ︷︷ ︸

lT times

h(t0 + (N + l)T + T − 1, t0) . . . h(t0 + (N + l)T, t0) ε . . . ε
︸ ︷︷ ︸

(c−l−1)T times

)⊤

.

Let us note that the ’sufficient condition’ part of the preceding proof provides a
method for constructing a periodic realization (A(t), B(t), C(t)), t ∈ Z, of an impulse
response satisfying Eq. (24). This construction of state matrices can be seen as a first
step towards a parametric identification of periodic systems. In addition, it is usually
required that dimensions of matrices A(·), B(·) and C(·) must be as small as possible.
This problem is not tackled in this paper. Let us note that this problem has been ex-
tensively studied for (max, +) linear time invariant systems (Olsder, 1986; De Schutter
and De Moor, 1995; Olsder and Schutter, 1999), and it has been shown to be NP -hard
(Blondel and Portier, 1999).

5. Conclusions and further research

We have studied linear periodic systems for which the underlying algebra is a dioid.
A formal definition as well as a characterization of their impulse response have been
proposed. Several notions and results from conventional periodic system theory are
transposed to the algebraic context of dioids: the monodromy matrix whose spectral
properties are used to study steady states of autonomous systems, the cyclic time
invariant reformulation of a periodic state space reformulation which is exploited to
study state space realization of periodic systems.
We are inclined to think that further results established for conventional periodic
systems could be transposed or adapted for ’our’ periodic systems. In particular, the
model matching problem, which has been solved for conventional periodic systems
in (Colaneri and Kucera, 1997) by means of the cyclic time-invariant reformulation,
seems to be a promising direction of investigation. Such a study would constitute an
extension of results proposed in (Cottenceau et al., 1999; Cottenceau et al., 2001) for
linear time-invariant systems over dioids.
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Appendix

Proof of Prop. 23. Necessary condition: Let (A(t), B(t), C(t)), t ∈ Z, be a T -periodic
realization of impulse response h (i.e. h(t, s) is defined by (9) for all t, s ∈ Z). By
using proposition 22, for each t0 ∈ Z, this realization admits a time-invariant cyclic
reformulation (Ã, B̃, C̃) with corresponding impulse response

h̃(t) =

{

C̃ÃtB̃ , t ≥ t0,
ε , t < t0.

Let us observe that ÃmT = diag
(
A1, A2, . . . , AT

)
, for m ≥ 1, where the diagonal

blocks can be written
A1 = A(t0 + T − 1) ⊗ . . . ⊗ A(t0) ⊗ Mm−1

t0

A2 = A(t0) ⊗ Mm−1
t0

⊗ A(t0 + T − 1) ⊗ . . . ⊗ A(t0 + 1)
A3 = A(t0 + 1)A(t0) ⊗ Mm−1

t0
⊗ A(t0 + T − 1) ⊗ . . . ⊗ A(t0 + 2)

...
AT = A(t0 + T − 2) ⊗ . . . ⊗ A(t0) ⊗ Mm−1

t0
⊗ A(t0 + T − 1)

with Mt0 = A(t0 +T −1)⊗ . . .⊗A(t0). More generally, any non zero block (i.e. whose
entries are all different from ε) of matrix Ãs+mT with 0 < s ≤ T can be written in a
factorized form as

F ⊗ Mm−1
t0

⊗ G

in which F, G are n × n matrices with entries in D.
By theorem 9, for all i, j ∈ {1, . . . , n}, there exist c ∈ N\{0}, λ0, . . . , λc−1 ∈ D, N ∈ N

such that ∀m ≥ N , ∀l ∈ {0, . . . , c − 1}

[
Mm+l+c

t0

]

ij
= λc

l

[
Mm+l

t0

]

ij
.

From the preceding observation, we hence have a more general formulation for matrix
Ãs+mT :
∀t0 ∈ Z, ∀i, j ∈ {1, . . . , nT}, ∃c ∈ N \ {0}, ∃λ0, . . . , λc−1 ∈ D, ∃N ∈ N

such that ∀m ≥ N , ∀l ∈ {0, . . . , c − 1}, ∀s ∈ {0, . . . , T − 1}

[
Ãs+(m+l+c)T ]

ij
= λc

l

[
Ãs+(m+l)T ]

ij
,

which implies ∀i ∈ {1, . . . , qT}, ∀j ∈ {1, . . . , pT},

[
h̃(s + (m + l + c)T )

]

ij
= λc

l

[
h̃(s + (m + l)T )

]

ij
. (28)

Let us now observe from Eqs. (20)-(21) that

t ≥ t0 , h̃(t) = P t
q ⊗ diag

(
h(t0 + t, t0), h(t0 + t + 1, t0 + 1), . . . , h(t0 + t + T − 1, t0 + T − 1)

)
.

From Eq. (28), we then deduce that
∀t0 ∈ Z, ∀i ∈ {1, . . . , q}, ∀j ∈ {1, . . . , p},
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∃c ∈ N \ {0}, ∃λ0, . . . , λc−1 ∈ D, ∃N ∈ N

such that ∀m ≥ N , ∀l ∈ {0, . . . , c − 1}, ∀s ∈ {0, . . . , T − 1}

[
P s+(m+l+c)T

q diag
(
h(t0 +s+(m+ l+c)T, t0), . . . , h(t0 +s+(m+ l+c)T +T −1, t0 +T −1)

)]

ij

= λc
l

[
P s+(m+l)T

q diag
(
h(t0 + s + (m + l)T, t0), . . . , h(t0 + s + (m + l)T + T − 1, t0 + T − 1)

)]

ij

which, thanks to Eq. (16) applied to matrix Pq and by identification, leads to the
condition given by Eq. (24).

Sufficient condition: In the Single Input Single Output case, we must check that
matrices A(t0), B(t0), C(t0) defined by Eqs. (25-27), constitute a state realization of h.

Although denoted A(t0) and C(t0), these matrices, by construction, do not depend
on t0. From Eq. (11) satisfied by h, we obtain that matrix B(t0) is T -periodic: B(t0 +
T ) = B(t0) for all t0 ∈ Z. By direct calculation, we have for all t0 ∈ Z

− for m ≤ N , s = 0, . . . , T − 1, l = 0, . . . , c − 1

C(t0 + s + (m + l)T )Φ(t0 + s + (m + l)T, t0)B(t0)
= C(t0 + s + (m + l)T )A(t0 + s + (m + l)T − 1) ⊗ . . . ⊗ A(t0)C(t0)

= C(t0)A(t0)
s+(m+l)T B(t0) (since A(t0), C(t0) do not depend on t0)

= h(t0 + s + (m + l)T, t0)

− for r ∈ N
+, s = 0, . . . , T − 1, l = 0, . . . , c − 1

C(t0 + s + (N + cr + l)T )Φ(t0 + s + (N + cr + l)T, t0)B(t0)

= C(t0)A(t0)
s+(N+cr+l)T B(t0)

= (λc
l )

rh(t0 + s + (N + l)T, t0)
= h(t0 + s + (N + cr + l)T, t0) (thanks to condition (24))

We can consequently conclude that (A(t0), B(t0), C(t0)), t0 ∈ Z, is a periodic realiza-
tion of the impulse response h.

For the Multiple Input Multiple Output case, consider arbitrary indices i ∈ {1, . . . , q},
j ∈ {1, . . . , p}, and the mapping hij(·, ·) = [h(·, ·)]ij . Since h is assumed to satisfy
condition (24), obviously mapping hij also satisfies Eq. (24). From the first part of this
proof, hij admits a periodic realization denoted (Aij(t0), Bij(t0), Cij(t0)), t0 ∈ Z. If we
repeat this reasoning for all pairs of indices (i, j) with i ∈ {1, . . . , q} and j ∈ {1, . . . , p},
and if we define block matrices such that

A(t0) = diag
(
A11(t0), A12(t0), . . . , A1p(t0), A21(t0), . . . , Aqp(t0)

)
,
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B(t0) = C(t0) =

















B11(t0) ε . . . ε
ε B12(t0) . . . ε
...

...
. . .

...
ε ε . . . B1p(t0)

B21(t0) ε . . . ε
ε B22(t0) . . . ε
...

...
...

ε ε . . . Bqp(t0)


















,








C11(t0) . . . C1p(t0) ε . . . ε
ε . . . ε C21(t0) . . . ε
...

...
...

...
ε . . . ε ε . . . Cqp(t0)








.

then (A(t0), B(t0), C(t0)), t0 ∈ Z, is a periodic realization of h.

DEDS.tex; 1/09/2003; 18:30; p.18


