
1. Introduction . . .

2. Review in . . .

3. The road . . .

4. The . . .

5. Connection . . .

6. Roads and . . .

7. A numerical . . .

Page 1 / 22

JJ J I II

UPPER BOUNDS FOR THE TRAVEL TIME ON

TRAFFIC SYSTEMS

Nadir Farhi, Habib Haj-Salem & Jean-Patrick Lebacque
IFSTTAR / COSYS / GRETTIA

nadir.farhi@ifsttar.fr

Paris, June 2014.



1. Introduction . . .

2. Review in . . .

3. The road . . .

4. The . . .

5. Connection . . .

6. Roads and . . .

7. A numerical . . .

Page 2 / 22

JJ J I II

Outline

(1) Introduction to the approach.

(2) Short review in network calculus.

(3) The road section model.

(4) The controlled road section model.
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1. Introduction to the approach

• Travel time is one of the key measures of performance and
comfort on road networks.

• It is stochastic, highly variable.

• We need good indicators and measures of its variations.

• We derive here upper bounds on the travel time through
an itinerary.

• We use an algebraic formulation of the cell-transmission
model (Daganzo 1994) on a raod section.
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• The dynamics is written linearly in mlin-plus algebra.

• The impulse response of the linear system is interpreted
as a service curve in the network calculus theory.

• We then derive an upper bound for the travel time.
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• To extend this drivation , we base on a system theory
approach.

• We define elementary traffic systems, and algebraic oper-
ators to concatenate them in order to get a large system.

• The concatenation consists in giving the service curve of
the large system in function of those of the elementary
systems.
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2. Review in deterministic network calculus

• Arrival curve. α is an arrival curve if
U ≤ α ∗ U ie U(t)− U(s) ≤ α(t− s),∀0 ≤ s ≤ t.

• Service curve. β is a service curve if
Y ≥ β∗U ie Y (t) ≥ min0≤s≤t{U(s)+β(t−s)}, ∀t ≥ 0.

Two indicators of the service performance:

• The backlog of data in the server B(t) := U(t)− Y (t).

• The virtual delay d(t) := inf{h ≥ 0, Y (t+ h) ≥ U(t)}.
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Three bounds are obtained:

• The virtual delay is bounded:

d(t) ≤ sup
t≥0
{inf{h ≥ 0, β(t+ h) ≥ α(t)}}, ∀t ≥ 0.

• The backlog is bounded:

B(t) ≤ sup
s≥0
{α(s)− β(s)}.

• The outflow is upper bounded by the arrival curve α� β:

(α� β)(t) := sup
s≥0
{α(t+ s)− β(s)}.
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2.1. Matrix arrival.

Definition. For a given n-vector U of cumulated arrival flows
Ui, i = 1, 2, · · · , n, a n×n matrix α is said to be a T -arrival matrix
for U if

∀i, j, Ui ≤ δ−Tijαij ⊗ Uj ,

That is

∀i, j, ∀s, t ∈ N, Ui(t)− Uj(s) ≤ αij(Tij + t− s).

• It is possible to have Ui(t)− Uj(s) > 0 even for s > t.
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2.2. Service Matrix and virtual delay.

Definition. (service matrix) For a given server with input vector
U and output vector Y , a n × n matrix β is said to be a service
matrix for the server, if Y ≥ β × U .

Definition (virtual delay). For a given server with input vector U
and output vector Y , the virtual delay of the last quantity arrived
at time t from the ith input to depart from the jth output, denoted
di(t) is defined:

di(t) = inf{d ≥ 0, Yi(t+ d) ≥ Ui(t)}.
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3. The road section model

• Ufw: cumulated forward inflow to the section.

• Yfw: cumulated forward outflow from the section.

• Ubw: cumulated backward supply from section i+ 1.

• Ybw: cumulated backward supply from section i.

• Zfw = (Yfw − n)+ Zbw = (Ybw − n̄)+.

• Assumption: Ufw(0) = Yfw(0) = Ubw(0) = Ybw(0) = 0.



1. Introduction . . .

2. Review in . . .

3. The road . . .

4. The . . .

5. Connection . . .

6. Roads and . . .

7. A numerical . . .

Page 12 / 22

JJ J I II

3.1. The traffic dynamics.

• We base on the cell-transmission model (Daganzo 1994).

• with a trapezoidal fundamental traffic diagram.

• We get the dynamics



1. Introduction . . .

2. Review in . . .

3. The road . . .

4. The . . .

5. Connection . . .

6. Roads and . . .

7. A numerical . . .

Page 13 / 22

JJ J I II

• By using the min-plus algebra notations, we get

• We can write

• Then Y ≥ (e⊕ C ∗A∗ ∗B) ∗ U .

• Hence Z ≥ H ∗ (e⊕ C ∗A∗ ∗B) ∗ U with

H =

(
γ−n ε
ε γ−n̄

)
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4. The controlled road section model

• We consider that the section is controlled with a traffic
light.

• We denote C: the cycle, G: the green time, R: red time.

• In the dynamics, we replace

with
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5. Connection of traffic systems
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6. Roads and itineraries

• A road of m sections is obtained by composing m road
sections.

• The service matrix of each road section can be obtained
by Theorem 2, given fundamental traffic diagrams of each
section.

• The service matrix of the whole road is then obtained by
the composition of the road section systems and by apply-
ing Theorem 4.

• A controlled road of m sections is obtained similarly by
composing m−1 uncontrolled road sections with one con-
trolled road section.

• An itinerary in a controlled road network is build by com-
posing a number of controlled roads.
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• A service matrix for the itinearay R1, 1 R2,R3, and R4:

(1) Determine service matrices for all the uncontrolled
sections of the itinerary, by Theorem 2.

(2) Determine service matrices for all the controlled sec-
tions of the itinerary, by Theorem 3.

(3) Determine service matrices for all the roads of the
itinerary, by Theorem 4.

(4) Determine a service matrix for the itinerary by con-
necting the systems R1, R2, R3, R4, by Theorem 4.
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6.1. Upper bound calculus.

• An arrival matrix is given expressing the traffic demand
in the network.

• A service matrix is obtained as explained above.

• Theorem 1 gives upper bounds for the travel time for any
input - output couple of the traffic system.
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7. A numerical example

• v = 15 m/s, w = −7 m/s, ρj = 1/10 veh/m.

• Ufw of road 1, and Ubw of raod 4 are taken in such a way
that the arrival flows do not exceed (in average) the service
offered by the whole route.

• We first compute T12 = 60 s and T21 = 8 s.

• Then the arrival matrix is obtained.
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7.1. The results.
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