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A nonlinear system is considered where an aperiodic binary input signal is added to an arbitrarily distributed
noise and compared to a fixed threshold to determine the binary output signal. Noise enhancement of the
transmission of the aperiodic signal via stochastic resonance is demonstrated and studied in this nonlinear
information channel. The characterization developed goes up to the calculation of the information capacity of
the channel, defined as the maximal achievable input-output transinformation occurring when the statistics of
the input signal is matched to the noise. It is then demonstrated that a regime exists where the information
capacity of the channel can be increased by means of an increase of the noise, up to an optimal noise level
where the capacity resonates at a maximum value. The influence on this resonance of the noise distribution is
also studied. @S1063-651X~97!11302-2#

PACS number~s!: 05.40.1j, 02.50.2r, 07.50.Qx, 47.20.Ky

Stochastic resonance can be described as an effect of
noise-enhanced signal transmission that occurs in certain
nonlinear systems. Since its introduction some fifteen years
ago @1#, this effect has mainly been studied to enhance the
transmission of a periodic signal, usually a sinusoid @2,3#.
The interest of such a situation, which has received consid-
erable attention, is more of a conceptual nature: it shows that
the transmission of a ‘‘coherent’’ signal of known form can
be improved through noise addition, revealing a context
where the noise ceases to be a nuisance and is turned into a
benefit.

Exploiting stochastic resonance to improve the transmis-
sion of actual useful information requires the implication of a
broadband aperiodic signal in place of the periodic signal.
Only recently has this type of situation been approached
@4–6#. In this case, a particularly appropriate measure of the
effect is provided by information-theoretic quantities such as
the input-output transinformation in the presence of the
noise. The application of information-theoretic quantities to
characterize stochastic resonance is even more recent. The
work of @7# defines and studies such a measure in an experi-
mental realization of stochastic resonance in signal transmis-
sion by a neuron, where a transinformation is defined for an
analog input encoded in an output spike train. The work of
@8# also uses information-theoretic measures, but for stochas-
tic resonance with a periodic input signal. Simple threshold
nonlinearities exhibiting stochastic resonance with an aperi-
odic input are approached with information-theoretic mea-
sures in @9# where an input-output transinformation is de-
fined and related to the transcoding of an analog input into an
output spike train by a neuron.

In the present work we deal with stochastic resonance in
this type of threshold nonlinearity. A characterization is de-
veloped that goes up to the computation of the information
capacity of the system, defined as the maximal achievable
input-output transinformation occuring when the input statis-
tics is matched to the noise. This capacity is computed in the
presence of an arbitrary distribution for the noise. We show
that the capacity resonates at a maximum value for a suffi-
cient noise level, and study the influence of the noise distri-
bution on the resonance.

We consider a simple threshold system that we describe
as a memoryless nonlinear binary channel. The input to the
channel is a random variable X which assumes values 1 or 0
with probabilities, respectively, p1 and p0512p1 . The ef-
fect of the channel is twofold. First, a noise N is added to the
input X to yield X1N . Second, X1N is compared to a fixed
threshold u to determine the binary output Y of the channel
according to

If X1N.u
then Y51,
else Y50. ~1!

The noise N is a continuous ~or discrete! random variable
with the statistical distribution function F(u)5Pr$N<u% and
power W5E(N2). The successive realizations of the random
input X are assumed independent and identically distributed,
and this is also the case for the noise N . The input X and the
noise N are statistically independent.

The input-output transition probabilities of this binary
channel are easily derived. For instance, the probability p11
5Pr$Y51uX51% is also Pr$X1N.uuX51% which amounts
to Pr$N.u21%512F(u21). With similar rules one ar-
rives at

p115Pr$Y51uX51%512F~u21!, ~2!

p015Pr$Y50uX51%5F~u21!, ~3!

p105Pr$Y51uX50%512F~u!, ~4!

p005Pr$Y50uX50%5F~u!. ~5!

Once the transition probabilities are known, we are in the
presence of an asymmetric binary channel for which the
input-output transinformation I(X;Y ) can be computed from
the entropies as @10#

I~X;Y !5H~Y !2H~Y /X !. ~6!

The output entropy can be expressed as

H~Y !5h@p11p11~12p00!~12p1!#

1h@~12p11!p11p00~12p1!# , ~7!
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with the function h(u)52u log2(u), and the input-output
conditional entropy as

H~Y uX !5~12p1!@h~p00!1h~12p00!#

1p1@h~p11!1h~12p11!# . ~8!

Equations ~6!, ~7!, and ~8! provide an explicit expression
for the transinformation I(X;Y ) as a function of the input
probability p1 . The derivative of I(X;Y ) relative to p1 can
be computed, to yield the value p1* of p1 that maximizes
I(X;Y ) and achieves the information capacity C of the chan-
nel; this value comes out as

p1*5

ap0021

a~p001p1121 !
, ~9!

with

a511expF ln~2 !
h~p00!1h~12p00!2h~p11!2h~12p11!

p001p1121 G .
(10)

Expression ~9! used in Eqs. ~7! and ~8! results in an ex-
plicit expression for the information capacity C as the maxi-
mum of the transinformation I(X;Y ) that follows in Eq. ~6!.
The present derivation shows that, at fixed p1 , the transinfor-
mation I(X;Y ) will depend upon the noise distribution. In
particular, conditions can be found where, at fixed p1 , the
transinformation I(X;Y ) can be made to resonate at a maxi-
mum value as the noise rms amplitude is varied. This has
been reported with Gaussian noise in @9#. Here, Eqs. ~9! and
~10! further show that the optimal input probability p1* maxi-
mizing the transinformation I(X;Y ) also bears dependence
on the noise distribution. There results a ‘‘double’’ depen-
dence of the maximum transinformation C , or capacity, with
the noise distribution, that we shall now study.
Influence of the noise power: We first examine, for a

given type of noise distribution ~a Gaussian noise, for in-
stance!, the variation of the capacity C with the noise power
W5E(N2). Figure 1 represents this variation, when N is a
zero-mean Gaussian noise, and for different values of the
threshold u. The curves of Fig. 1 clearly show two different
regimes of operation for the channel. When u,1, an input
X51 is alone sufficient to trigger an output Y51. Addition
of the noise N is then only felt as a degradation of the trans-
mission, and accordingly the information capacity C de-
creases from the value C51 bit as the noise power W is
increased from the value W50. In contrast, when u.1, an
input X51 alone is unable to trigger an output Y51 in the
absence of the noise, and the resulting capacity is zero. Ad-
dition of the noise N then leads to a cooperative effect in
which the noise and the input X cooperate to reach the
threshold u which controls the triggering of the output. This
translates into a finite nonzero information capacity C , with a
domain where C can be increased by increasing the noise
power W . As visible in Fig. 1, there is an optimal noise
power W where the capacity C reaches a maximum, and
which depends on the value of u.1.

In the regime where u.1, the nonmonotonic variation of
C with W can be understood from the variations of the tran-
sition probabilities of the channel when W is increased above

zero, as represented in Fig. 2. With a fixed threshold u.1,
for small W’s, the noise alone is practically insufficient to
trigger an output Y51, and such an output will occur, with
appreciable probability, only in the presence of an input
X51. Furthermore, this outcome will first take place with an
increasing probability as W is increased. This translates into
an increasing transition probability p11 with increasing W ,
responsible for the rise of C in this domain. As the noise
power W is further increased, the possibility of an input
X50 being received as an output Y51 will begin to matter,
and from then on will entail a decreasing probability p00 and
provoke a gradual decay of the capacity C .

In the regime where the input X is subliminal ~the regime
where u.1!, the information capacity is strictly zero in the
absence of the noise. Addition of the noise to the channel
then allows a finite nonzero capacity. Moreover, there exists
a range where increasing the power of the noise results in an
increased information capacity, up to an optimal noise level
where the capacity is maximized. We are in the presence of
an effect of noise-enhanced information capacity, in which a
sufficient amount of noise becomes an essential ingredient
for an optimal transmission, and that we interpret as a form
of stochastic resonance.
Influence of the noise distribution: One can also examine

the influence of the noise distribution on the noise-enhanced
capacity effect, in the presence of a fixed threshold u.1. We
have chosen four different noises which can be characterized
by their probability density functions f (u)5dF/du , among
which are ~a! an exponential noise with

f ~u !5

1

sA2
expS 2A2

uuu

s
D , ~11!

~b! a Gaussian noise with

FIG. 1. Information capacity C ~in bits! as a function of the rms
amplitude s5AW of a zero-mean Gaussian noise with power W .
The 9 curves are obtained for 9 values of the threshold u, with
successively from the upper curve to the lowest one: u50.8; 0.9;
0.95; 0.99; 1; 1.01; 1.05; 1.1; 1.2. In the regime where u.1 ~the 4
lowest curves!, there exists a nonmonotonic variation of the capac-
ity which increases with the noise power, up to an optimal noise
level where the capacity is maximized. The inset shows the optimal
probability p1* of Eqs. ~9! and ~10! as a function of the noise rms
amplitude s when u51.2.
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f ~u !5

1

sA2p
expS 2

u2

2s2D , ~12!

~c! a uniform noise with

f ~u !5 H 1

2A3s
for uP@2A3s ,A3s# ,

0 otherwise,

~13!

~d! a two-level discrete noise with

f ~u !50.5@d~u1s !1d~u2s !# . ~14!

These four noise distributions possess an identical power
E(N2)5W5s2. With these four distributions, Fig. 3 shows
the nonmonotonic variation of the capacity C as a function
of the noise rms amplitude s5AW , when u51.2. The noise-
enhanced capacity effect is preserved in each case and is
clearly dependent upon the noise distribution when identical
noise powers are applied. The strongest effect is obtained
with the discrete noise, where the noise power has to be
sufficient to allow a finite nonzero capacity C , otherwise
with too small or too large a noise power, the capacity C
directly drops to zero. For this case of the two-level discrete
noise, the locations where the capacity drops to zero can be
simply understood from threshold-crossing arguments on the
input plus noise, and these locations follow as s50.2 and
s51.2 when the threshold is u51.2. When s is below 0.2
the channel output Y is always zero, and when s is above 1.2
the output Y is 0 or 1 with equal probabilities, irrespective of
the input X , leading in both cases to a zero capacity. An
optimal range of noise values is necessary for the channel to
have access to a nonzero capacity. This is a special case of
the noise-enhanced capacity effect.

The present study extends the scope of stochastic reso-
nance, understood as an effect of noise-enhanced signal
transmission that may occur under various forms. Here, we
have computed for a nonlinear channel, the maximal achiev-
able input-output transinformation when the statistics of the
input

is matched to the noise. We have then demonstrated the pos-
sibility of an enhancement of this information capacity by
means of noise addition.

The present model can be relevant to natural systems that
are constrained to receive input signals through a fixed
threshold that cannot be easily lowered. This is the case with
neurons in the nervous system, and one can devise a scheme
where a neuron receives input signals under the form of
trains of action potentials @11#, in contrast with the scheme in
@9# where the neuron receives an input signal under the form
of a continuous analog stimulus. An action potential ~AP! is
a stereotyped electric pulse with a duration of a few milli-
seconds ~ms!. When an input AP impinges on the neuron, it
induces a pulselike variation of the membrane potential
known as a postsynaptic potential, and which lasts also over
a duration of a few ms ~at least for appropriate neurons!.
Random fluctuations of the membrane potential also exist,
which come from stochastic activities of ionic channels in
the membrane. These fluctuations act as a noise which lin-
early superposes to the postsynaptic potentials reproducing
the input APs, and altogether they determine the value of the
membrane potential. There is then a natural unit of time, the
refractory period of a few ms, which fixes a rate at which the
neuron can emit an output AP, each time its membrane po-
tential reaches a prescribed firing threshold. The magnitude
of the postsynaptic potentials is a function of the synaptic
efficacy of the input pathway. On a low-efficacy input path-
way, the magnitude of the postsynaptic potentials may be
insufficient to reach the firing threshold. Addition of the
noise then may bring the necessary assistance to reach this
threshold. One can then introduce probabilities of co-
occurrence of APs at the input and at the output, and define
an information capacity for the transmission of APs which
can be expected to benefit from the noise enhancement here
described.

The present model of a simple nonlinear channel, which is
exactly calculable and which proves the possibility of noise
enhancement of an information capacity, can serve as a use-
ful tool for further developments of stochastic resonance and
its applications.

FIG. 2. Information capacity C ~in bits! and transition probabili-
ties p11 and p00 ,as a function of the rms amplitude s5AW of a
zero-mean Gaussian noise with power W , in a regime with u51.2
where the noise-enhanced capacity effect takes place. The inset
shows the capacity C ~in bits! as a function of the optimal probabil-
ity p1* of Eqs. ~9! and ~10!.

FIG. 3. Information capacity C ~in bits! as a function of the rms
amplitude s5AW of the noise with power W , in a regime with
u51.2 where the noise-enhanced capacity effect takes place. Four
different noise distributions with identical power W are used: ~a!
exponential noise of Eq. ~11!, ~b! Gaussian noise of Eq. ~12!, ~c!
uniform noise of Eq. ~13!, and ~d! two-level discrete noise of Eq.
~14!.
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