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Abstract

We compare the performance of two detection schemes in charge of detecting the presence of a signal buried in an

additive noise. One of these is the correlation receiver (linear detector), which is optimal when the noise is Gaussian. The

other detector is obtained by applying the same correlation receiver to the output of a nonlinear preprocessor formed by a

summing parallel array of two-state quantizers. We show that the performance of the collective detection realized by the

array can benefit from an injection of independent noises purposely added on each individual quantizer. We show that this

nonlinear detector can achieve better performance compared to the linear detector for various situations of non-Gaussian

noise. This occurs for both Bayesian and Neyman–Pearson detection strategies with periodic and aperiodic signals.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In presence of non-Gaussian noise, optimal
detectors (in the standard Bayesian or Neyman–
Pearson sense) are often nonlinear. Techniques,
based on Hilbert space formalism, like in [1], can be
used to derive optimal detectors in non-Gaussian
noise. Yet, since optimal nonlinearities are rarely
standard devices, these optimal detectors can be
difficult to implement or time consuming to
compute. In a context where simple processes are
required to maintain fast real-time processing, one
e front matter r 2006 Elsevier B.V. All rights reserved
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can seek a tradeoff between simplicity and efficacy
by designing some suboptimal detectors. These
suboptimal detectors are expected to be almost as
simple to compute as the linear detector used in
Gaussian noise with performances that should at
least overcome the performances of the linear
detector and hopefully come as close as possible to
the optimal detector performances when the noise is
non-Gaussian. In this suboptimal detection context,
a classical approach [2,3] is to implement a non-
linear scheme composed of a nonlinear preprocessor
followed by the linear scheme that would be used in
a Gaussian noise.

In this article, following the approach of [2,3], we
study a specific nonlinear preprocessor. We propose
to design a simple suboptimal detector in non-
Gaussian noise with a parallel array of two-state
.
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quantizers. Classically, the design of the input–out-
put characteristic of such arrays is done by
optimizing the distribution of the threshold of the
quantizers among the array [4–8]. Here, we propose
another strategy to design the input–output char-
acteristic of our parallel array of two-state quanti-
zers. Instead of considering a distribution of
threshold, a single threshold value is shared by all
the two-state quantizers of the array. Then, some
independent noises are purposely injected at the
input of each two-state quantizer. These noises
injected onto the two-state quantizers, induce more
variability and a richer representation capability in
the individual responses collected over the array.
We give a theoretical analysis which allows one to
determine the optimal amount of the quantizer
noises, this with arbitrary choices concerning the
probability densities of the input and quantizer
noises, the shape of the signals to be detected, and
the configuration and size of the array of quantizers.

This non-standard strategy to design suboptimal
detectors based on two-state quantizers benefits
from recent studies on the use of stochastic
resonance and the constructive role of noise in
nonlinear processes [9–14]. This paradoxical non-
linear phenomenon, has been intensively studied
during the last two decades. Stochastic resonance
has been reported with nonlinear systems under the
form of isolated two-state quantizers [15,16]. In
these circumstances, the mechanism of improve-
ment, qualitatively, is that the noise assists small
signals in overcoming the threshold of the two-state
quantizer. Recently, another form of stochastic
resonance was proposed in [9,10], with parallel
arrays of two-state quantizers, under the name of
suprathreshold stochastic resonance. This form in
[9–14] applies to signals of arbitrary amplitude,
which do not need to be small and subthreshold,
whence the name. Different measures of perfor-
mance have been studied to quantify the supra-
threshold stochastic resonance: general information
measures like the input–output Shannon mutual
information [9], the input–output correlation coeffi-
cient [11], signal-to-noise ratios [11,13], in an
estimation context with the Fisher information
contained in the array output [12] or in a detection
context with a probability of error [14].

The first occurrence of the suprathreshold sto-
chastic resonance effect in a detection context has
been reported in [14]. The nonlinear detector under
study in [14] is a Bayesian optimal detector based on
the data set obtained at the output of the same
nonlinear array of two-state quantizers considered
here. As stated in [14], this detector is highly time
consuming to compute and was more given as a first
proof of feasibility of the suprathreshold stochastic
resonance effect in the context of detection. By
contrast, the present study proposes a more
practical use of the suprathreshold stochastic
resonance effect since the nonlinear detector de-
tailed here is almost as fast as a linear detector to
compute.

2. Two detection procedures

We consider the classical problem of detecting the
presence of a known deterministic signal sðtÞ buried
in an additive input noise xðtÞ. One is to decide
whether the signal sðtÞ is present in noise (hypothesis
H1) or not (hypothesis H0):

hypothesis H1: xðtÞ ¼ sðtÞ þ xðtÞ, ð1Þ

hypothesis H0: xðtÞ ¼ xðtÞ. ð2Þ

The observable signal xðtÞ ¼ sðtÞ þ xðtÞ is uniformly
sampled to provide N data points xðtjÞ ¼ xðjtÞ with
j ¼ 0; 1; . . . ;N � 1 and t the sampling step. The
noise samples xðtjÞ ¼ xðjtÞ are assumed independent
and identically distributed with cumulative distribu-
tion F xðuÞ, probability density function (pdf)
f xðuÞ ¼ dFx=du and rms amplitude sx. We first
consider a Bayesian detection strategy where the
probabilities (P0, P1 ¼ 1� P0) of both hypotheses
(respectively, H0, H1) are known. We tackle this
detection problem with two distinct procedures
presented in Fig. 1 that we shall describe in detail
in this section.

2.1. A linear detector

In the procedure of Fig. 1a, the decision between
(hypothesis H1) and (hypothesis H0) is directly
based on the linear signal–noise mixture, the
observable data set x ¼ ðxðt0Þ;xðt1Þ; . . . ;xðtN ÞÞ. The
minimum probability of error detection procedure
based on x leads to the maximum a posteriori
probability (MAP) test

PrfH1jxg

PrfH0jxg
_

H1

H0

1. (3)

When the input noise xðtÞ is Gaussian, the MAP test
of Eq. (3) takes the form of the detection procedure
described in Fig. 1a [2]: a correlation receiver which
computes the statistic TðxÞ ¼

PN�1
j¼0 xðtjÞsðtjÞ is
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Fig. 1. Two detectors that we shall compare in terms of performance. The linear detector (a) is a standard procedure optimal for Gaussian

noise. The nonlinear detector (b) is a new procedure keeping the same architecture of (a) with the introduction of a nonlinear preprocessor

detailed in Fig. 2.
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followed by the MAP test based on this statistic
TðxÞ:

TðxÞ_
H1

H0

1

2

XN�1
j¼0

sðtjÞ
2
þ s2x logðP0=P1Þ ¼ xT . (4)

The performance of the detection procedure of
Fig. 1a can be assessed by the overall probability of
error minimized by Eq. (4) which is expressed as

Per ¼
1

2
1þ P1 erf

xT �m1ffiffiffi
2
p

s1

� �
� P0 erf

xT �m0ffiffiffi
2
p

s0

� �� �
,

(5)

with erfðuÞ ¼
R u

�1
ð1=

ffiffiffiffiffiffi
2p
p
Þ expð�v2=2Þdv, means

m0 ¼ E½TðxÞjH0�, m1 ¼ E½TðxÞjH1� and variances
s20 ¼ var½TðxÞjH0�, s21 ¼ var½TðxÞjH1�.

1 When the
input noise xðtÞ is non-Gaussian, the optimal
detector minimizing the probability of error, in
general, is more difficult to design and the MAP test
of Eq. (3) does not lead to a simple test as simple
as in Eq. (4). However, the detection procedure of
Eq. (4) although suboptimal when the input noise is
non- Gaussian is often chosen for its simplicity. By
the central limit theorem, the statistic TðxÞ is
approximately Gaussian for large data set length
N. Therefore, when the input noise xðtÞ is non-
Gaussian, the performance of the detector of Eq. (4)
and Fig. 1a given in Eq. (5) remains valid.
1Note that, in this context of additive signal–noise mixture of

Eqs. (1) and (2) s0 ¼ s1 ¼ sx, m0 ¼
PN�1

j¼0 sðtjÞE½xðtjÞ� and

m1 ¼
PN�1

j¼0 sðtjÞ
2.
2.2. A nonlinear detector

The detection procedure of Fig. 1b is similar to
the procedure of Fig. 1a except that the data set x
obtained from the linear signal–noise mixture xðtÞ ¼

sðtÞ þ xðtÞ is not directly observable. The data set
x ¼ ðxðt1Þ; . . . ;xðtNÞÞ is first applied at the input of a
nonlinear preprocessor which produces a vector
Y ¼ ðY ðt1Þ; . . . ;Y ðtN ÞÞ on which we shall base the
decision between (hypothesis H1) and (hypothesis
H0). The detection procedure of Fig. 1b is then
composed of a correlation receiver which computes
the statistic TðYÞ ¼

PN�1
j¼0 Y ðtjÞsðtjÞ followed by the

MAP test based on this statistic TðYÞ,

PrfH1jTðYÞg

PrfH0jTðYÞg
_

H1

H0

1. (6)

The nonlinear preprocessor involved in the detec-
tion procedure of Fig. 1b is a parallel array of M

identical two-state quantizers which has an architec-
ture similar to the one also considered in [9,17,18]. In
this array of Fig. 2, we choose to fix all the quantizer
threshold yi to a common value yi ¼ y for any i.
Then, a noise ZiðtÞ, independent of xðtÞ, is added to
xðtÞ at each two-state quantizer i. Whereas the input
noise xðtÞ is considered as a noise imposed by the
external environment, the quantizer noises ZiðtÞ are
considered as purposely added noises applied to
influence the operation of the array. Accordingly,
each quantizer i produces the output signal,

yiðtjÞ ¼ sign½xðtjÞ þ ZiðtjÞ � yi�

¼ � 1; i ¼ 1; 2; . . .M. ð7Þ
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Fig. 2. Nonlinear array used as preprocessor in the detection

scheme of Fig. 1b.
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The M quantizer noises ZiðtÞ are white, mutually
independent and identically distributed with cumu-
lative distribution function F ZðuÞ and pdf f ZðuÞ ¼

dF ZðuÞ=du. The response Y ðtjÞ of the array is
obtained by averaging the outputs of all the
quantizers as

Y ðtjÞ ¼
1

M

XM
i¼1

yiðtjÞ. (8)

At the scale of the individual quantizer, the
presence of the quantizer noises ZiðtÞ can be
interpreted as a source of variability which enable a
richer representation capability when individual
responses are collected over the array. Another
complementary interpretation is possible with a
collective point of view. Consider the array as a
single device with input–output characteristic gð:Þ.
Within this perspective, the quantizer noises ZiðtÞ are
modifying the input–output characteristic of the
array gð:Þ. Naturally, the M quantizers noises ZiðtÞ

also bring fluctuations. But, for sufficiently large
values of M these fluctuations will tend to zero. In
these asymptotic conditions where M tends to
infinity, the parallel array of noisy quantizers given
in Eq. (8) becomes a deterministic equivalent device
with input–output characteristic given by
gðxÞ ¼ E½Y ðtÞjx�. Therefore, the purposely added
noises ZiðtÞ can be seen as a mean to shape the
input–output characteristic gð:Þ of the array of
comparators without having to change any physical
parameter of the comparators.
In the following, we are going to compare the two
detection procedures presented in Fig. 1 and show
the specific interest of the nonlinear array of Fig. 2
for detection purposes. Owing to the presence, in
Eq. (4), of the linear correlation receiver acting on
the linear signal–noise mixture in the detection
procedure of Fig. 1a, we decide to call linear
detector this detection procedure. By comparison,
the detection procedure of Fig. 1b, which involves
the nonlinear preprocessor described in Fig. 2, will
be called the nonlinear detector.

3. Assessing performances of the nonlinear detector

In this section, we give the expression of the
performance (in terms of probability of error)
of the nonlinear detector of Fig. 1b and Eq. (6).
By Bayes’ rule, the MAP test of Eq. (6) is equivalent
to

PrfTðYÞjH1g

PrfTðYÞjH0g
_

H1

H0

P0

P1
, (9)

with the conditional probabilities PrfTðYÞjH1g and
PrfTðYÞjH0g that we shall now address. The statistic
TðYÞ, defined through Eqs. (7) and (8) has mean

mk ¼ E½TðYÞjHk�

¼
XN�1
j¼0

sðtjÞE½Y ðtjÞjHk�; k 2 f0; 1g, ð10Þ

with

E½Y ðtjÞjHk� ¼

Z þ1
�1

E½Y ðtjÞjx;Hk�f xðx� sðtjÞÞdx,

(11)

and, since the quantizer noises ZiðtÞ are i.i.d.,

E½Y ðtjÞjx;Hk� ¼ E½yiðtjÞjx;Hk� ¼ 1� 2F Zðy� xÞ.

(12)

Similarly, the variance of TðYÞ under hypothesis k 2

f0; 1g can be expressed as

s2k ¼ var½TðYÞjHk�

¼
XN�1
j¼0

sðtjÞ
2
ðE½Y 2ðtjÞjHk� � E½Y ðtjÞjHk�

2Þ ð13Þ

with

E½Y 2ðtjÞjHk�

¼

Z þ1
�1

E½Y 2ðtjÞjx;Hk�f xðx� sðtjÞÞdx ð14Þ
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and

E½Y 2ðtjÞjx;Hk� ¼
1

M
E½y2

i ðtjÞjx;Hk�

þ
M � 1

M
E2½yiðtjÞjx;Hk� ð15Þ

and, because of Eq. (7), one has for any i

E½y2
i ðtjÞjx;Hk� ¼ 1. (16)

When N is large, thanks to the central limit
theorem, TðYÞ gets normally distributed. The
Fig. 3. Detection algorithm to compute and assess the perfor-

mance of the nonlinear detector which is the MAP test based on

the statistic TðYÞ. The algorithm takes as input the set of

quantities fTðYÞ, m0 ¼ E½TðYÞjH0�, m1 ¼ E½TðYÞjH1�, s20 ¼
var½TðYÞjH0�, s21 ¼ var½TðYÞjH1�g and gives as output the

theoretical performance Per and the result of the decision for a

given numerical trial for the nonlinear detector of Fig. 1b.
conditional probabilities in Eq. (9) are then given by

PrfTðYÞjHkg ¼
1

sk

ffiffiffiffiffiffi
2p
p exp �

ðTðYÞ �mkÞ
2

2s2k

� �
, (17)

and the loglikelihood-ratio test derived from Eq. (6)
follows as

log
s0P1

s1P0

� �
þ
ðTðYÞ �m0Þ

2

2s20
�
ðTðYÞ �m1Þ

2

2s21
_

H1

H0

0.

(18)

With the only condition of a large data set (i.e. when
N is large2), the performance of the nonlinear
detector of Fig. 1b can be calculated with the
algorithm of Fig. 3. This algorithm has already been
described in [19] for specific conditions (constant
signal sðtÞ � s0 or s1 and a statistic performed on a
1-bit representation of the input signal x). Although
not highlighted in [19], the algorithm of Fig. 3 can,
in fact, be applied generically to any situation of
detection, with no restriction on the signal to be
detected.
4. Comparing performances of the linear and

nonlinear detector

We now come to compare the probability of
detection error Per of the nonlinear detector of
Fig. 1b (given in Fig. 3) and the linear detector of
Fig. 1a (given in Eq. (5)) for various conditions
concerning the input noise xðtÞ and the type of
signals to be detected.

We first consider the case where the input noise
xðtÞ is zero-mean Gaussian. Fig. 4 shows the
evolution of the probability of error Per of Fig. 3,
as a function of the rms amplitude sZ of the
quantizer noises ZiðtÞ, for various sizes M of the
array. In these conditions, where xðtÞ is Gaussian,
the linear detector represents the optimal detector
(in terms of lowest probability of error Per) based on
the data set x. Therefore, in Fig. 4, the nonlinear
detector cannot produce a lower Per. Nevertheless,
the performance of the nonlinear detector comes
close to that of the best detector. As demonstrated
at the origin of Fig. 4, this is already the case when
no noise is present in the array sZ ¼ 0 although
requiring only a parsimonious 1-bit representation
of each data sample xi. This observation is
consistent with the one given in [19]. The new
2We will discuss in the next section what is the order of

magnitude required to have this large data set condition fulfilled.
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Fig. 4. Probability of detection error Per, as a function of the rms

amplitude sZ of the uniform zero-mean white noises ZiðtÞ

purposely added to the quantizer input. The solid lines are the

theoretical Per of the nonlinear detector of Fig. 1b calculated

from the algorithm in Fig. 3, for various size M of the array of

two-state quantizer, when the input noise xðtÞ is chosen Gaussian.

The dashed line is the performance of the linear detector of

Fig. 1a given in Eq. (4). The other parameters are sðtÞ ¼ A with

A=sx ¼ 1, P0 ¼ 0:5 and N ¼ 100.
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Fig. 5. Influence of the density f xðuÞ of the input noise xðtÞ. Panel
A: same as Fig. 4 but the input noise xðtÞ is zero-mean Laplacian,

i.e. xðtÞ is generalized Gaussian with exponent a ¼ 1. Panel B:

same as panel A but the input noise xðtÞ is a zero-mean mixture of

Gaussian with parameters a ¼ 0:8 and b ¼ 4. In both panels

(A,B), the dashed lines stand for the performance of the linear

detector given by Eq. (5).
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feature here is that it is possible to improve the
performance of the nonlinear detector for a single
two-state quantizer. This improvement is obtained
by simply replicating the two-state quantizer and
then by injecting a certain amount of independent
noises in the array of quantizers. At M41,
application of the quantizer noises ZiðtÞ allows the
quantizers to respond differently. For the nonlinear
detector, this translates into a possibility of mini-
mizing Per with a non-zero optimal amount of the
quantizer noises. The benefit from noise is especially
visible in Fig. 4, when the size of the array M

increases. The explicit computation of the asympto-
tic behavior in large arrays is available from
Eq. (15) by considering M tending to 1. If the
array size M tends to1, and if the optimal amount
of noise is added in the array, the performance of
the nonlinear detector asymptotically reaches the
overall minimum probability of error Per of
the linear detector. This last statement, concerning
the convergence of the nonlinear detector toward
the linear detector, can be proved explicitly in the
case of Fig. 4. As previously explained, when M

tends to1, the array of noisy quantizers acts like a
deterministic single device with input–output char-
acteristic gðxÞ ¼ E½Y jx� ¼ 1� 2FZðy� xÞ according
to Eq. (12). In Fig. 4, the quantizer noises ZiðtÞ,
chosen uniform, linearize the input–output char-
acteristic gð:Þ of the array.

When the input noise xðtÞ is non-Gaussian, the
linear detector is suboptimal and represents the best
detection when basing the detection on TðxÞ only.
In this case, the nonlinear detector can produce
lower Per as shown in Fig. 5. This is the case when
xðtÞ is non-Gaussian and belongs to the generalized
Gaussian noise family or the mixture of Gaussian
noise family. The generalized Gaussian noise family
is expressed as f xðuÞ ¼ f ggðu=sxÞ=sx, using the
standardized density

f ggðuÞ ¼ A expð�jbujaÞ, (19)
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context of Fig. 6, the input signal-to-noise ratio in dB is

10 log10ððA
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where b ¼ ½Gð3=aÞ=Gð1=aÞ�1=2, A ¼ ða=2Þ½Gð3=aÞ�1=2=
½Gð1=aÞ�3=2 are parameterized by the positive ex-
ponent a. This family includes the Gaussian case
ða ¼ 2Þ but also enables leptokurtic noise densities
whose tails are either heavier ðao2Þ or lighter ða42Þ
than that of the Gaussian noise. The mixture of
Gaussian pdf is expressed as f xðuÞ ¼ f mgðu=sxÞ=sx,
using the standardized density

f mgðuÞ ¼
cffiffiffiffiffiffi
2p
p a exp �

c2u2

2

� ��

þ
1� a
b

exp �
c2u2

2b2

� ��
, ð20Þ

where c ¼ ½aþ ð1� aÞðb2Þ�1=2; a 2 ½0; 1� is the mixing
parameter and b40 is the ratio of the standard
deviations of the individual contributions. All the
pdf of the mixture of Gaussian noise family have
Gaussian tails. This family of pdf’s has practical
implication since it is a subclass of Middleton’s class
which is widely used to model ocean acoustic noise
[20]. As illustrated in Fig. 5, our analysis establishes
that the superiority of the nonlinear detector over
the linear detector especially occurs for various
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Fig. 6. Probability of detection error Per, as a function of the rms

amplitude sZ of the Gaussian zero-mean white noise ZiðtÞ

purposely added to the quantizer input. The solid lines are the

theoretical Per of the nonlinear detector of Fig. 1b calculated

from the algorithm in Fig. 3, with a quantizer array of fixed size

M ¼ 63, for various probability densities of the input noise

xðtÞ according to Eq. (19). The discrete data points are the

corresponding numerical estimations of Per over 10
4 trials with:

ð}Þ a ¼ 1 (x uniform), ð�Þ a ¼ 2 (x Gaussian), ð�Þ a ¼ 1

(x Laplacian), ð&Þ a ¼ 1
2
. The dashed line is the performance of

the linear detector scheme based on the linear statistic TðxÞ of

Eq. (4) given by the same algorithm in Fig. 3. The other

parameters are sðtÞ ¼ A cosð2pt=TsÞ, A=sx ¼ 1, P0 ¼ 0:5, t ¼
Ts=10 and N ¼ 10.
situations of non-Gaussian noises xðtÞ having
Gaussian or heavy tails.

Fig. 6 offers a validation of the nonlinear
detection algorithm of Fig. 3 through the numerical
evaluation of Per. The results of Fig. 3 are obtained
on data sets of size N ¼ 10. They show that the
algorithm of Fig. 3 and the associated expressions of
Per although valid in principle in the large N limit,
also constitute a very good approximation for small
N. Therefore, the superiority observed for the
nonlinear detector over the linear detector (due to
the presence of the nonlinear array used as
preprocessor) and the performance gain brought
by the injection of independent noises in the array
are robustly preserved for small data sets N. Fig. 7
demonstrates that this superiority of the nonlinear
detector over the linear detector is available over a
large range of input signal-to-noise ratio.

5. Enlarging to a Neyman–Pearson detection

strategy

In this section, we show that the usefulness of the
nonlinear array of Fig. 2, when the input noise xðtÞ
is non-Gaussian, can easily be extended to another
detection strategy. Until now, we have compared
the detection performance of the linear detector and
the nonlinear detector of Fig. 1 assessed by the
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the quantizer input. The solid lines are the theoretical PD of the

Neyman–Pearson nonlinear detector of Eq. (25) calculated from

Eq. (24), with a quantizer array of fixed size M ¼ 63, for various

probability densities of the input noise xðtÞ according to Eq. (20).

From up to bottom, the input noise xðtÞ is a mixture of Gaussian

with parameters a ¼ 0:8 and b ¼ 8; 7; 6; 5; 4; 3; 2; 1. The dashed

line is the performance of the Neyman–Pearson linear detector of

Eq. (25) given by Eq. (24). The other parameters are

sðtÞ ¼ A expð�ntÞ cosð2pt=TsÞ, A=sx ¼ 1, n ¼ 100=Ts, t ¼ Ts=20
and N ¼ 100.
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probability of error (expected as small as possible).
This Bayesian detection strategy requires that
probabilities (P0, P1 ¼ 1� P0) of both hypotheses
(respectively, H0, H1) of Eq. (2) are known. This
assumption, typically valid in the domain of
telecommunication, is not possible in other applica-
tions such as sonar or radar [2]. When P0 and P1 are
unknown, if the decision between (hypothesis H1)
and (hypothesis H0) is directly based on the linear
signal–noise mixture, the observable data set x, a
strategy to implement an optimal detection is to
seek to maximize the probability of detection

PD ¼

Z
R1

pðxjH1Þdx, (21)

while keeping the probability of false alarm

PF ¼

Z
R1

pðxjH0Þdx (22)

no larger than a prescribed level PF;sup. This
constrained maximization is achieved by the opti-
mal Neyman–Pearson detector, which also imple-
ments a likelihood-ratio test. When the input noise
xðtÞ is Gaussian the best detector in the Neyman–
Pearson sense takes a form very similar to the linear
detector described in Fig. 1a [2]: a correlation
receiver which computes the statistic TðxÞ ¼PN�1

j¼0 xðtjÞsðtjÞ is followed by the Neyman–Pearson
likelihood-ratio test based on this statistic TðxÞ,

LðTðxÞÞ_
H1

H0

mðPF;supÞ, (23)

with a threshold mðPF;supÞ, a function of PF;sup,
which is found from Eq. (22) by imposing
PFpPF;sup. The probability of detection of this
Neyman–Pearson linear detector is given by

PD ¼ erfc erfc�1ðPF;supÞ
s0
s1
�

m1 �m0

s0

� �
(24)

with, for k 2 f0; 1g, means mk ¼ E½TðxÞjHk�,

variance s2k ¼ var½TðxÞjHk� and erfcðuÞ ¼
Rþ1

u
ð1=ffiffiffiffiffiffi

2p
p
Þ expð�v2=2Þdv. When the input noise xðtÞ is

non-Gaussian, the optimal detector in the Neyman–
Pearson, in general, is difficult to design. The same
nonlinear array of Fig. 2 can be used again as
preprocessor to design a simple suboptimal non-
linear detector capable of outperforming the
Neyman–Pearson linear detector when the input
noise xðtÞ is non-Gaussian. Therefore, this
Neyman–Pearson nonlinear detector first applies
the observable data set x ¼ ðxðt1Þ; . . . ; xðtN ÞÞ at the
input of the nonlinear array of Fig. 2 which pro-
duces a vector Y ¼ ðY ðt1Þ; . . . ;Y ðtNÞÞ. The Neyman–
Pearson nonlinear detector is then composed of a
correlation receiver which computes the statistic

TðYÞ ¼
PN�1

j¼0 Y ðtjÞsðtjÞ followed by the likelihood-

ratio test based on this statistic TðYÞ,

LðTðYÞÞ_
H1

H0

mðPF;supÞ. (25)

The performance of the Neyman–Pearson nonlinear
detector of Eq. (23) is given by Eq. (24) with,

for k 2 f0; 1g, mk ¼ E½TðYÞjHk�, variance s2k ¼
var½TðYÞjHk�, which have been given in Section 3.
Fig. 8 shows that the Neyman–Pearson nonlinear
detector can produce larger PD than the one
produced by the Neyman–Pearson linear detector
when the noise is non-Gaussian. This observation,
consistent with the result presented in Figs. 5 and 6
for another detection strategy, enlarges the
usefulness of the nonlinear array of Fig. 2 as
preprocessor for detection purposes.
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6. Discussion

We have studied the usefulness of a specific
nonlinear preprocessor, a parallel array of two-state
quantizers, to design simple suboptimal detectors in
non-Gaussian noise. To do so, we have considered a
standard two hypotheses detection problem and we
have assessed the performance of two kinds of
detectors:
(i)
 Standard linear detectors, optimal in Gaussian
noise, composed of a correlation receiver
followed by a binary test.
(ii)
 Nonlinear detectors, composed of the nonlinear
preprocessor under study followed by a struc-
ture identical to the one of the linear detectors.
The performance of these linear and nonlinear
detectors have been compared in a Bayesian and in
a Neyman–Pearson detection strategy when the
signal to be detected and the native non-Gaussian
noise are known a priori. This comparison is
meaningful since the linear detectors are often used
even when the noise is a priori known to be non-
Gaussian. This suboptimal choice is specially made
for fast real-time hard processing, to maintain a
simple test statistic on which to base the detection.
The nonlinear detector considered here is almost as
fast to compute as the linear detector. In addition of
being compatible with a fast real-time hard imple-
mentation, we have shown that this nonlinear detector
can achieve better performance compared to the linear
detector for various non-Gaussian noise of practical
interest. As illustrated in this article, this occurs for
both Bayesian and Neyman–Pearson detection strat-
egy with a large range of input signal sðtÞ amplitude
with various types including constant signals (in
Figs. 4 and 5), periodic signals (in Fig. 6) and
aperiodic signals (in Fig. 8).

These results have been obtained with a non-
standard configuration of the parallel array quanti-
zers. Instead of adopting a classical distributed-
threshold configuration, we have used a simpler
common-threshold configuration in which some
noise have purposely been injected in order to
shape the input–output characteristic of the array
seen as a single device. The resulting input–output
characteristic of the array depends on the choice of
the injected noises and quantizer characteristics. In
this article, we have chosen to study an array of
two-state quantizers associated with noises in the
array that were uniform or Gaussian. Many other
associations could be investigated with variations
concerning the type of noises injected in the array or
the characteristic of the quantizers. It is remarkable
to note that the simple associations tested in this
study can be useful to design suboptimal detectors
for the variety of non-Gaussian noise pdf that we
have explored here. Such simple associations of
standard noises and existing electronic devices
which can easily be replicated, at a micro- or
nano-scale, to constitute large arrays, could also
exist for other detection problem in non-Gaussian
noises of practical interest (like speckle noise in
coherent imaging). These research could benefit
from the theoretical framework of this study since it
allows to consider any kind of static nonlinearity.
Another possible interesting extension would be to
draw the design of adaptive procedures, which
would extend those introduced for conventional
stochastic resonance [21] and which would let the
array automatically increase the array noises above
zero until an optimal efficacy is reached.

At a general level, this report contributes to
extend our understanding of noise enhanced signal
processing. The idea that an addition of a certain
controlled amount of noise can be useful in the
processing of information carrying signals by static
quantizers is not new in itself. All occurrences of
this phenomenon in static quantizers are often
thought to illustrate the dithering effect [22]. In this
well-known dithering effect, a noise induces thresh-
old crossing and linearizes on average the quantizer
characteristic. This is clearly not the case here since
when the input noise has a non-Gaussian pdf,
averaging the individual independent response of
the two-state quantizers leads to a collective
detection performance that outperforms the linear
detector applied to the original analog data. This
proves that the noise-enhanced detection perfor-
mance reported here cannot be interpreted as a
noise-induced linearization of a nonlinear system.
Many counter-intuitive contributions of noise in
nonlinear signal processing may still be uncovered
and ought to be analyzed in detail.
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