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Abstract. The Steiner problem is an NP-hard optimization problem which consists of finding
the minimal-length tree connecting a set of N points in the Euclidean plane. Exact methods of
resolution currently available are exponential in N , making exact minimal trees accessible for only
small size problems (up to N ≈ 100). An acceptable suboptimal solution is provided by the mini-
mum spanning tree (MST) which has been shown computable in an O(N logN) step. We propose
here an O(N) process that is able to relax a given initial Steiner tree into a local minimum of its
length. This process, based on a physical analogy, simulates the dynamics of a fluid film which re-
laxes under surface tension forces and stabilizes in an equilibrium configuration minimizing its total
length, through purely local interactions. To improve the solution to the Steiner problem, this O(N)
relaxation scheme is applied to reduce the length of the MST. This results in a heuristic of a very low
O(N logN) complexity for the Steiner problem, whose performance is shown to compare quite favor-
ably with that of the best available heuristics. Large problem sizes up to N = 10000 were successfully
tackled. A characterization of the asymptotic behavior of the solution of the Steiner problem shows
a stabilization to a nonvanishing positive value of the average length reduction achieved over the
MST and predicts an average length for the minimal Steiner tree of about 3% below 0.65N1/2 for
large N .
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1. Introduction. The Steiner problem is an optimization problem which con-
sists of finding the shortest possible tree connecting a given finite set of N points
in the Euclidean plane [1], [2]. A concrete embodiment of this problem is to devise
the shortest road network connecting a given set of cities. For this reason, we shall
call here cities the points that have to be connected in the Steiner problem. The
expression of the solution requires one, in general, to introduce additional points, the
Steiner points. The solution of the problem is the minimal Steiner tree, and it is
given as a set of linear edges connecting the cities through the medium of the Steiner
points. Although very simple to state, the Steiner problem has been proven NP-hard
when defined on the usual continuous Euclidean metric. It becomes NP-complete if
the Euclidean metric is discretized. The Euclidean Steiner problem is thus at least
as difficult as any NP-complete problem [3]. Available algorithms yielding the exact
minimal Steiner tree are exponential in N and are now limited to problem sizes of
about N = 100 cities [4]. In order to tackle larger size problems, heuristic algorithms,
leading only to suboptimal Steiner trees, have been developed for the Steiner problem.
An acceptable suboptimal solution is provided by the MST of the set of cities, which
can be computed in an O(N logN) procedure [41], [31]. The MST also serves as a
basis for many heuristics that implement further improvements upon it [26].

In another area of optimization, new algorithms have recently appeared that
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mimic the evolution of physical systems in order to solve optimization problems. Ex-
amples are offered by simulated annealing [5], Brownian motion or diffusion [6], neural
network models [7], [8], elastic net methods [9], and genetic algorithms [10]. These
new approaches have been applied mainly to combinatorial optimization problems,
the prototype being the traveling salesman problem [11]. The Steiner problem is not,
strictly, a combinatorial optimization problem because the Steiner points that need
be introduced for its resolution have positions which, a priori, can vary continuously
in the Euclidean plane. This mixed character of the Steiner problem, which exhibits
both combinatorial and continuous optimization aspects, adds a special difficulty to its
treatment. From an applied standpoint, many practical applications are faced with
the Steiner minimal tree problem, as for instance the definition of communication
networks or the wiring of electric devices; these can benefit greatly from an efficient
resolution of the Steiner problem. In addition, minimal trees can serve as tools for
the quantitative characterization of complex sets, branching architectures, or frac-
tally growing structures [12]–[15]. They can also play a role in the representation and
processing of data for pattern recognition tasks [16], [17].

In this paper, we propose an O(N) relaxation scheme, inspired from the evolution
of a physical system, which is able to relax a given initial Steiner tree into a local
minimum of its length. The approach consists of the simulation, in an adapted way,
of the dynamics of a fluid film (a soap film) which relaxes under forces due to surface
tension, to a configuration that minimizes its total length. When associated with an
explicit procedure to construct an initial Steiner tree, the relaxation scheme offers a
complete heuristic for the Steiner problem. The relaxation scheme is applied here
to an initial tree derived from the MST. The performance of the resulting heuristic
is then analyzed and compared for the resolution of Steiner problems with up to
N = 10000 cities.

2. The Steiner problem. For the Steiner problem as stated in section 1, the
lengths are evaluated by means of the usual Euclidean distance. We shall use here the
term node to indifferently designate a city or a Steiner point as defined in section 1.
We define a Steiner tree as a network of linear edges, which forms a connected graph
without a cycle, and connects the given set of nodes. The solution of the Steiner
problem is given by the Steiner tree of minimal length or minimal Steiner tree. General
properties can be established for the minimal Steiner tree of an N -city set in the
Euclidean plane [1]:

(a) Any angle between two edges has to be at least 120◦; consequently every node
is connected to the minimal tree by at most three edges.

(b) A Steiner point is connected to the minimal tree by exactly three edges, which
together form three 120◦ angles.

(c) The number of Steiner points is at most N − 2.
Exact algorithms have been proposed that determine the minimal Steiner tree

for a set of N cities [18]–[25] and [4]. See [26], [27], and [4] for recent surveys. All
these exact algorithms have exponential complexity in N , making them usable only
for small size problems. To date, an upper limit is set in [4] where problems of size
up to N = 100 are exactly solved.

For larger size problems, heuristics have been proposed [28]–[40] that yield only
suboptimal Steiner trees with lengths slightly larger than that of the minimal Steiner
tree. See also [26] and [27] for a recent survey.

To evaluate the quality of the solution tree produced by a given algorithm it is
useful to compare its length with the length of the MST of the corresponding set of
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cities. The MST of a set of N cities is the shortest possible tree formed by connecting
the cities with N − 1 linear edges with no addition of Steiner points. An algorithm
is available (see [41] and [31]), which relies on the Delaunay triangulation and the
Voronoi diagram of the N -city set, to yield its MST in an O(N logN) procedure.
The length reduction R achieved by a given suboptimal Steiner tree over the MST is
defined as the ratio

R =
length of MST− length of suboptimal Steiner tree

length of MST
.

Different upper bounds have been conjectured and tested for the length reduction
R [1], [42]. Recently, a general proof has been given [43] that no tree can be found
that achieves a length reduction R larger than 1−√3/2 (roughly 13.398%). However,
for actual Steiner problems that were exactly solved, the length reductions obtained
were significantly smaller than this theoretical upper bound. In the exact resolution
of [22], the maximum reduction reported is 7.55% for an N = 5 city problem, and it
drops to 5.77% for an N = 15 city problem; the average reduction is 3.08% for N = 5
and 3.24% for N = 15. In view of these results, it seems that for large values of N the
average length reduction R of the exact minimal Steiner tree cannot be expected to
be larger than about 3.5%. We shall show in the following that the relaxation scheme
we propose, when applied to the MST, achieves length reductions that come close to
this value.

3. Description of the relaxation scheme.

3.1. Physical analogy. The relaxation scheme we propose is based on a physical
analogy, which is also presented in [44], and which refers to the following phenomenon.
A fluid film with high surface tension (typically a soap film) is hooked between pins
(the cities of a Steiner problem) and its width is kept constant. Forces due to surface
tension are unit forces exerted along the film. Under these forces the film relaxes to an
equilibrium configuration that minimizes the potential energy associated with surface
tension (gravity is neglected). In the presence of a constant width for the film, this
minimum of energy corresponds to a minimum of the length of the film between the
pins.

3.2. Initialization. For application to the Steiner problem, the relaxation scheme
we propose has to be provided with an initial Steiner tree that will be relaxed into
a local minimum of its length. A Steiner tree, in general, incorporates the set of N
cities connected through a certain number of Steiner points. The relaxation scheme
operates on a special class of initial Steiner trees that conform with a general property
of the minimal Steiner tree. In this condition, the final Steiner tree obtained after
relaxation of such an initial Steiner tree will generally provide a good approximate
solution to the Steiner problem. This special class is defined by the property that
each Steiner point in an initial Steiner tree is endowed with exactly three incoming
edges connecting it to other nodes of the initial Steiner tree and possibly to itself in
some situations.

When provided with such an initial Steiner tree, the relaxation scheme then con-
sists of the iterative implementation of two basic processes: an evolution process and
an interaction process.

3.3. Evolution process. Each Steiner point S in the Steiner tree is allowed to

move under the resultant
−→
F (as defined in Fig. 3) of the three surface tension forces
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exerted by the three edges incoming on S. The displacement of S is proportional to
−→
F , with a proportionality coefficient λ. To improve the stabilization in a suboptimal

Steiner tree when
−→
F decreases while the algorithm converges, the parameter λ is

gradually reduced to zero with iterations. This prevents the oscillation of a Steiner
point S about its equilibrium position in the event that an edge of S with one of its

three neighbors has a length approaching zero. The resultant force
−→
F on S represents

the opposite of the gradient (relative to the coordinates of S) of the sum of the lengths
between S and its three neighbors and consequently the opposite of the gradient
relative to S of the total length of the tree. The evolution process can thus be viewed
as a gradient descent displacing the Steiner point S in the direction yielding, locally,
the maximum length reduction to the tree. This gradient descend operates with a
fixed topology for the connections between the nodes of the tree. In general, it would
terminate early in a poor local minimum of the length of the tree since the topology of
connections is not optimized. We shall now introduce the interaction process, which
aims at reorganizing the topology of connections to give access to trees with small
total length.

3.4. Interaction process. This process consists of the possibility of a reorga-
nization of the connections between two neighboring Steiner points. The interaction
process is illustrated in Fig. 1 and takes place as follows. Let us consider a Steiner
point S approaching, in the evolution process, another Steiner point S′ to which
it is connected. Before interaction each one of these two Steiner points possesses
three connections, among which is the connection SS′ which will remain untouched
in the interaction process. The triplet of connections for S are with the set of nodes
{A1, A2, S

′} and for S′ with the nodes {A3, A4, S}. If, in its approach, S comes within
a distance of T from S′, then an interaction will be allowed. In the interaction process,
S considers the eventuality of exchanging one of its neighbors {A1, A2} for one of the
neighbors {A3, A4} of S′. For S, to decide this exchange three possible triplets of
connections are examined, the current one {A1S,A2S, S

′S} and two potential ones,
{A3S,A2S, S

′S} and {A1S,A4S, S
′S}. The configuration {A3S,A4S, S

′S} is not in-
teresting since it represents a simple permutation of the situations of S and S′ in the
tree with no change to its topology of connections. For each of the three possible
triplets of connections for S, the resultant force on S is computed (as defined in the
evolution process of section 3.3). These three forces are compared based on their mag-
nitudes, and the triplet of connections that produced the maximum resultant force, be
it the current configuration, is retained for S. The resulting, complementary, change
of node in the exchange is applied to S′. This completes the interaction process.

For the relaxation of a fluid film under surface tension forces, a minimal energy at
equilibrium is equivalent to a minimal total length. In such a situation where length
is energy, the interaction distance T can be interpreted as a physical temperature
for the Steiner tree. One can consider that the Steiner points, around their actual
positions in the tree, experience a permanent random thermal motion of magnitude T .
Interaction then takes place when the two clouds of diameter T associated with two
Steiner points collide. The temperature T of the Steiner tree is gradually decreased to
zero during operation in order to gradually reduce the possibility of interaction and
to freeze the tree in a minimum of energy.

Within the physical analogy of the relaxation of a fluid film, both the evolution
and interaction processes seek to imitate different aspects of the deformation which
minimizes the potential energy or total length of the film. The evolution process alone
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Fig. 1. Interaction process: reorganization of the two triplets of connections of two neighboring
Steiner points S and S′ coming within a distance of T and showing the topology before and after
interaction.

displaces the Steiner points along the resultant force, which represents a displacement
of the Steiner points in the direction of the maximum length reduction, in the presence
of a fixed topology of connections. The interaction process changes the topology of
connections to induce locally the maximum resultant force, which represents a change
of topology in the direction of the maximum length reduction.

It can be noted that our algorithm bears some similarity with cellular automata
[45]. A Steiner point can be considered as an automaton whose state is made up with
both the position and the 3-connectivity of the Steiner point. These automata are
organized in a network, and they change their state through local interactions with
neighbors in the net. The usefulness lies in the collective behavior of the system, which
leads, through “microscopic” interactions, to a “macroscopic” configuration realizing
a global performance or condition.

4. Application of the relaxation scheme to the MST. When the relaxation
scheme is complemented by an explicit procedure to construct an initial Steiner tree,
the resulting algorithm offers a complete heuristic for the Steiner problem. We show
in the following that a heuristic leading to good suboptimal trees can be obtained
when the relaxation scheme is applied to an initial Steiner tree derived from the MST
as we now explain.

4.1. An initial Steiner tree derived from the MST. In the MST of the set
of N cities, Steiner points are added in order to transform it into the initial Steiner
tree that will undergo the relaxation. Figure 2 illustrates how this creation of the
Steiner points is performed. In the MST, every city is considered once and processed
as follows. For a city with only one incoming edge, no Steiner point is created. For a
city with two incoming edges (thus with two neighboring nodes), one Steiner point is
created and connected to the city (Fig. 2a). The two neighboring nodes of this city are
disconnected from the city and reconnected to the newly created Steiner point. The
original city ends up connected to the same pair of neighboring nodes but through the
medium of a Steiner point receiving a total of three edges. In a similar way, for a city
connected to n neighboring nodes, n− 1 Steiner points are created. The connections
are redistributed between these 1 + n + (n − 1) nodes in order for the original city
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to end up connected to the same n original nodes but through the medium of the
n − 1 Steiner points, each of them receiving a total of three edges. For illustration,
this redistribution of the connections is depicted in Fig. 2a for n = 2, in Fig. 2b for
n = 3, and in Fig. 2c for n = 4. A simple geometric argument shows that n cannot
be larger than 6, and in practice cities with n = 5 or 6 incoming edges are very rare
in the MST. In practice, the newly created Steiner points are not stacked on top of
one another at the location of the original city, but they are distributed around the
original city, a very small distance (in comparison with the length scale set by λ)
apart from one another and from the city, much like the way they appear in Fig. 2,

this in order to avoid a temporary singularity of the type
−→
0 /0 when computing the

resultant force on them for the first time. When every city of the initial MST has
been processed once as explained, the MST has become the initial Steiner tree, which
serves as the starting tree for the relaxation scheme. For an N -city problem, this
initialization process creates a total of N − 2 Steiner points.

Fig. 2. Initialization process which transforms the MST into an initial Steiner tree: creation
of the Steiner points (solid circles) for a city (solid square) of the MST, with n = 2 in (a), n = 3 in
(b), and n = 4 in (c), incoming edges.

4.2. Operation of the complete heuristic formed by the relaxation of
the MST. The relaxation scheme applied to the initial Steiner tree leads to the
algorithm described in Fig. 3.

We want to show that the algorithm of Fig. 3, when applied to the initial Steiner
tree derived from the MST, provides a good solution tree to the Steiner problem.
In the N -city Steiner problems that are considered, the cartesian coordinates of the
cities in the Euclidean plane are randomly drawn, with uniform probability, in the
unit square [0, 1] × [0, 1]. In an N -city problem, a natural unit of length is provided
by σN = N−1/2. Such a σN gives an image of the average separation between a
city and its nearest neighboring city in the unit square for an N -city problem. The
definition of σN allows one to express the parameters λ and T as used in Fig. 3
with numerical values (in units of σN ) that keep the same meaning whatever the size
N of the problem. An initial value for λ that we found satisfactory and that we
retained for operation of the algorithm is 0.02σN . A larger initial value for λ could
make the Steiner tree relax more rapidly to equilibrium, but at the same time useful
interactions between Steiner points coming close enough could be missed, leading to
an equilibrium Steiner tree of lower quality (of greater length). The initial value for
T was selected as 0.15σN . Larger values would tend to disorganize the Steiner tree
too much, while lower values do not allow enough useful interactions between Steiner
points (see Table 1 and its explanation given below).

The schedule that has been used to decrease parameters T and λ is a simple one,
consisting of a succession of plateaus of descending values. T is first reduced to zero,
at constant λ, in five steps of the same magnitude (equal to one-fifth of the initial
value of T ): the first step is taken at iteration k = 100, the four last steps at iterations
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Fig. 3. Complete algorithm for the N-city Steiner problem, which results from the application
of the relaxation scheme to an initial Steiner tree.

k = 120, 140, 160, and 180, respectively. Then, λ is allowed to decay. Starting at
iteration k = 200, the value of λ is divided by two each time 20 new iterations have
been performed. Such a process is applied until iteration k = 400 is reached. At
this point λ has been reduced below 10−5σN . This sets the criterion of convergence,
marking the end of the algorithm. The overall convergence for an N -city problem
can thus be obtained after an absolute number of iterations of 400, whatever the size
N of the city set. We did not address the question of optimizing the schedule for
decreasing T and λ. The value of 400 iterations for convergence can probably be
reduced without degrading the quality of the solution tree. What we aimed at with
the presented schedule was to have a simple procedure leading to good equilibrium
Steiner trees while preserving a complexity of O(N) for the relaxation scheme when
performed until convergence.

The importance of allowing, by means of a nonzero temperature T , interactions
between Steiner points is demonstrated in Table 1. We show in Table 1, for problems
of various sizes N , the length reduction R (in percents) achieved by the solution tree
obtained with different initial values for the temperature T . For each condition, the
value of R given in Table 1 has been averaged over 100 different problems of size N .
With a zero initial value for T , no interaction is allowed and the length reduction R
remains small; as already mentioned R passes through a maximum for an initial T
around 0.15σN . The role of the interaction process can be interpreted as the ability
to select, among the various Steiner tree topologies that are accessible in the vicinity
of the initial tree, topologies that can induce local length reductions to the tree.

The relaxation scheme is devised to produce local length reductions to the initial
tree through displacements of Steiner points (evolution process) and changes in the
topology of connections (interaction process). It can thus be reasonably expected
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Table 1
Influence of the initial temperature T (leftmost column) for various problem sizes N , and

showing the average length reduction R in percents. The initial value of 0.15σN is the one we
retained for T in the application of the relaxation scheme to the MST.

N = 50 N = 100 N = 500
T = 0 1.762 1.665 1.663
T = 0.01σN 2.530 2.598 2.621
T = 0.15σN 2.754 2.824 2.812
T = 0.25σN 1.894 2.003 1.913

(prior to the experimental verification that will follow) that the scheme will converge
to a good solution tree with reduced length relative to the initial tree. We empha-
size that an important property, which justifies that a fixed number of iterations is
appropriate for good convergence, is that the parameters T and λ, which control the
local transformations of the tree, scale as O(N−1/2). With this property, what our
algorithm basically does is to apply, to the MST in which neighboring nodes are sep-
arated by distances of O(N−1/2), a fixed number of local length reductions at the
O(N−1/2) scale. This appears to be a reasonable strategy to converge to a solution
tree with reduced length relative to the initial MST, without the need to resort to a
number of local length reductions that would scale with N instead of being constant.
We shall see that this reasonable a priori expectation concerning the convergence is
totally confirmed by the experimental evaluation of the algorithm that will follow.

4.3. Algorithmic complexity. The relaxation scheme, formed by the evolution
and interaction processes described in section 3, involves only local calculations in the
tree at the level of each Steiner point and its three neighbors. For the relaxation
of the MST, the initial Steiner tree that is constructed in section 4.1 incorporates a
number of Steiner points that is no larger than N . It follows then that the relaxation
scheme alone, when performed until the convergence obtained after a fixed number of
iterations, has a complexity of O(N).

The transformation of the MST into the initial Steiner tree as described in sec-
tion 4.1 is also O(N).

Now if we turn to the complete heuristic for the Steiner problem that results from
the O(N) relaxation of the MST, the overall complexity obviously will depend on the
complexity of the determination of the MST.

An algorithm exists (see [41], [31]) that uses the Delaunay triangulation and the
Voronoi diagram of the N -city set to construct its MST in an O(N logN) procedure.

In this work, to test the quality of the solution trees provided by our O(N) relax-
ation of the MST, we constructed the MST with the very simple algorithm consisting
of growing the MST by incorporating to it at each step the unconnected point that
has the shortest distance with the points already connected in the MST. This method
is O(N3); at the same time it is straightforward to implement, and it allowed us to
concentrate our effort on the relaxation scheme which forms the original contribu-
tion of this work. However, the MST determined for every N -city set is the same,
whether computed with the straightforward O(N3) method we use or the more elab-
orate O(N logN) procedure. In the following, we evaluate and compare the quality
of the suboptimal trees resulting from the O(N) relaxation of the MST. The associ-
ation of our O(N) relaxation scheme to the O(N logN) determination which exists
for the MST offers an O(N logN) heuristic for the Steiner problem that shares the
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Fig. 4. The MST, with length 6.485, for a typical N = 100 city problem. The small black
squares represent the 100 cities randomly distributed in the unit square [0, 1]× [0, 1].

Fig. 5. The suboptimal Steiner tree, with length 6.294, obtained after application of the re-
laxation scheme to the problem of Fig. 4 and achieving a length reduction of R = 2.945% over the
MST. A Steiner point is located in every place where three edges meet at 120◦.

performance we report in the following.

We experimentally verified that the relaxation procedure we propose, by itself,
requires a computer time which is, as expected, linear in N . When run on an Intel 486
processor with 33 MHz clock, typical computer times for the complete relaxation pro-
cedure alone up to convergence (not including the initialization process that computes
the MST) are 4 seconds for N = 100, 20 seconds for N = 500, 40 seconds for N = 1000,
200 seconds for N = 5000, 400 seconds for N = 10000, and with a dispersion among
different runs being less than 2%.
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4.4. Experimental conditions. For illustration of the method, Fig. 4 shows,
for a typical Steiner problem with N = 100 cities, the MST (of length 6.485) which
serves both as a starting point to construct the initial Steiner tree and as a reference
to evaluate the reduction in length reached by the suboptimal Steiner tree.

Fig. 6. Mean length of the MST as a function of the size N of the city set, and fitted to a law
of the form 0.65N1/2 (solid line) with a correlation coefficient better than 0.99.

We then show, in Fig. 5, the suboptimal Steiner tree (of length 6.294) obtained
after convergence of the relaxation scheme and achieving here a length reduction of
R = 2.945%.

With this method that relaxes the MST, we have performed resolution of Steiner
problems with sizes up to N = 10000 cities. For each tested size N , many different
problems were generated by random selection of the N cities as explained in section
4.2, and in order to form a statistical ensemble ΩN of problems with a given size of N
cities. Statistics were then performed over ΩN which yielded the following quantities:

i) for the MSTs constructed over the N -city problems of ΩN : the mean and
standard deviation for their length distribution;

ii) for the suboptimal Steiner trees obtained after application of the relaxation
scheme for the N -city problems of ΩN : the mean, standard deviation, and minimum
and maximum values of the length reduction R.

The evolution of these quantities was then studied as a function of the number of
cities N in the Steiner problems. For the statistics, card(ΩN ), the cardinality of ΩN

(the number of problems in ΩN ), was chosen as card(ΩN ) = 104N−1/2 for N ≤ 300,
card(ΩN ) = 103N−1/2 for 300 < N ≤ 1000, and card(ΩN ) = 5 for N > 1000.

In these conditions for performing the statistics, Fig. 6 shows the mean of the
length of the MST as a function of N . Table 2 displays typical values evaluated for
the mean and standard deviation of this length. The data of Fig. 6 and Table 2 give
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Table 2
Mean and standard deviation for the length of the MST for various problem sizes N .

N 10 50 100 500 1000 5000 10000
mean 2.092 4.825 6.736 14.826 20.776 46.174 65.028
st. dev. 0.281 0.225 0.217 0.210 0.199 0.145 0.138

an image of the (low) dispersion of the results in the averaging procedure over the
statistical ensembles ΩN . We were able to fit the variation of the mean length of the
MST to a law of the form 0.65N1/2 with a correlation coefficient better than 0.99.

The quality of the solution trees we obtained for the Steiner problems of the
statistical ensembles ΩN is illustrated by the data in the last row of Tables 3 and 4
and in Fig. 7.

5. Evaluation and comparison. In Table 3, the quality of the suboptimal
Steiner trees resulting from the relaxation of the MST is compared with that of the
solution trees yielded by other resolution methods for the Steiner problem.

As a basis for comparison, we selected
– the exact method of [22], which offers results up to N = 15, knowing that for

the exact resolutions extended up to N = 100 in [4] quantitative data that would fit
into our comparison were not available;

– the O(N logN) heuristic of [31], which represents, among the efficient heuristics,
the one with the smallest algorithmic complexity;

– two heuristics of [36] and [37], which represent, among the efficient heuristics,
the ones that generally yield the shortest suboptimal trees. No exact algorithmic
complexities are derived in [36] or [37] for these two methods, but estimations are
proposed, O(N1.317) and O(N2.19), that result from the average computation time on
a Cray X-MP/28.

Table 3 gives, for all these different methods, the maximum value, the mean and
the standard deviation of the length reduction R, and the number of problems of size
N that were considered for the statistics.

For the maximum length reduction R in Table 3, it can be noticed that, in every
condition, the best maximum was always found by our relaxation of the MST. This
is certainly because we explored much larger populations of problems. Over the more
than 20000 problem instances that we solved in this study, the maximum R that we
report come close (11.909% for N = 5) but always conform with the theoretical upper
bound of 13.398% established in [43].

When compared with the O(N logN) heuristic of [31], our approach leads in
general to solution trees of better quality. This applies except for the mean R in the
case N = 30 and in the limit case N = 10. However, in this last condition the mean
length reduction of [31] is found larger than that of the exact method of [22], and it
is also the case with the heuristics of [36] and [37]. As there is no possibility that a
heuristic yields better results than an exact method, we suggest that the mean value
of R for N = 10 in [31], as well as in [36] and [37], obtained by averaging over a small
population of problems and associated with a relatively high standard deviation, is
marked with statistical fluctuations. The heuristic proposed in [31] is tested therein
up to N = 50. For increasing N approaching N = 50, this heuristic of [31] seems to
entail a steady decay for the mean R, while our resolution (and that of [36] and [37])
maintain a mean R constantly above 2.710%. This saturation to a constant value as
N increases, rather than a steady decay of the mean R, is a trend that will appear
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Table 3
Maximum value, mean and standard deviation of the length reduction R (in percents) achieved

over the MST, and the number of problems tested with different algorithms for the resolution of the
N-city Steiner problem.

N 5 10 15 20 30 40 50 60
max. R 7.55 5.89 5.77

Exponential mean R 3.08 3.00 3.24
exact method of [22] st. dev.

nb. pb. 25 25 25
max. R 6.847 4.227 4.554 4.014 3.443

O(N logN) mean R 3.173 2.333 2.769 2.663 2.568
heuristic of [31] st. dev. 2.09 0.70 0.89 0.64 0.57

nb. pb. 15 15 15 15 15
max. R 6.168 4.737 4.752 4.174 3.620 3.576

O(N1.317) mean R 3.138 3.015 2.868 3.024 2.841 2.946
heuristic of [36] st. dev. 1.863 1.008 0.721 0.631 0.400 0.404

nb. pb. 15 15 15 15 15 15
max. R 6.168 4.758 4.838 4.127 3.703 3.666

O(N2.19) mean R 3.223 3.123 2.948 2.972 2.921 3.178
heuristic of [37] st. dev. 1.875 0.972 0.754 0.633 0.423 0.371

nb. pb. 15 15 15 15 15 15
max. R 11.909 9.082 8.026 6.088 5.694 5.497 5.531 5.207

Our relaxation scheme mean R 2.727 2.711 2.744 2.732 2.715 2.712 2.729 2.723
applied to the MST: st. dev. 2.211 1.515 1.190 1.013 0.827 0.738 0.629 0.600
O(N logN) nb. pb. 4472 3162 2581 2236 1825 1581 1414 1290

Table 4
Minimum, maximum, mean and standard deviation of the length reduction R (in percents)

achieved over the MST, and number of problems tested with two different approaches for the reso-
lution of the N-city Steiner problem.

N 100 300 500 700 1000 3000 5000 7000 10000
min. R 2.286 2.668 2.807

O(N1.317) max. R 3.467 3.316 3.283
heuristic mean R 2.952 3.052 3.017 3.000
of [36] st. dev. 0.370 0.169 0.128

nb. pb. 15 15 15 1
min. R 1.162 2.025 2.348 2.459 2.504 2.799 2.772 2.717 2.738

Our relaxation max. R 4.604 3.622 3.368 3.242 3.052 2.885 2.822 2.787 2.832
scheme applied mean R 2.755 2.757 2.815 2.803 2.779 2.842 2.791 2.762 2.786
to the MST: st. dev. 0.468 0.266 0.178 0.180 0.135 0.036 0.022 0.024 0.031
O(N logN) nb. pb. 1000 577 44 37 31 5 5 5 5

largely confirmed in the following when much larger N ’s are considered.

When compared with the O(N1.317) and O(N2.19) heuristics of [36] and [37],
it appears that our relaxation of the MST yields slightly longer suboptimal trees.
Nevertheless, since our relaxation of the MST represents an O(N logN) heuristic for
the Steiner problem, our approach can still trade off favorably.

The heuristic of [36] offers results that allow us to carry on the comparison above
N = 50, up to N = 10000, as reported in Table 4. In addition, Fig. 7 represents
the evolution of the maximum and mean length reduction, that we obtained with our
relaxation of the MST, as a function of N .

The data of Table 4 and Fig. 7 show that our relaxation of the MST leads to
suboptimal solution trees that keep good positive length reduction over the whole
range tested, up to N = 10000 cities. For large N , our results confirm over many
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Fig. 7. Maximum (open circles) and mean (solid circles) of the length reduction R (in percents)
achieved by the suboptimal Steiner tree over the MST as a function of the size N of the city set.

examples, after one first incursion up to N = 10000 by [36], that trees can be found
that achieve, on average, a nonvanishing length reduction over the MST. These results,
as well as those of [36], further indicate that, for large N , the exact minimal trees of
Steiner problems also achieve, on average, a nonvanishing length reduction over the
MST.

With increasing N , our mean length reduction R in Table 4 and Fig. 7 seems
to stabilize to a constant value around 2.8%. This is confirmed both by a maximum
value of R which tends to the mean of R and by a standard deviation for R which
goes to zero with increasing N . In the same conditions, the heuristic of [36], although
much less data are available for it, seems to display the same type of saturation for the
mean R but to a higher value around 3.0%. This confirms the fact already observed
in Table 3 that the heuristic of [36] yields shorter suboptimal trees on average but
still with an algorithmic complexity higher than O(N logN).

Furthermore, the data of Table 3 reveal that the exact minimal trees (when ac-
cessible) and the suboptimal trees found by good heuristics exhibit close values for
the mean length reduction. In view of this proximity of behavior, the results of Table
4, although characterizing properties of the suboptimal trees, can serve as a basis to
conjecture properties of the minimal trees of Steiner problems with large N . If we
use our extended results of Table 4 to support the possibility of saturation of the
mean length reduction R for large N , together with the less numerous results of [36]
for a better estimation of the value of this saturation, we can thus propose that the
exact minimal trees for Steiner problems with large N will display an average length
reduction in the vicinity of 3%. After the analysis of the mean length of the MST,
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as performed in Fig. 6, we can conjecture that, for large N , the average length of the
minimal Steiner tree will be approximately 3% below 0.65N1/2.

6. Discussion. The heuristic of [36] essentially considers all connected subgraphs
of the MST which contain four cities, determines the minimal Steiner tree for each
subgraph, which is then incorporated, through some of its Steiner points specially
selected, onto the solution tree under construction. This heuristic thus performs a
systematic local search for every four-city subgraph of the MST in order to discover
the length reduction that is locally optimal (maximal). This heuristic is more of a
classic style of combinatorics in graphs. In contrast, our relaxation algorithm closely
adheres to a physical analogy that we prove fruitful. It performs length reductions in
a uniform and fast way, under the sole control of surface tension forces, in a purely
local manner at the level of each Steiner point and its three neighbors. This produces
deformations to the tree that are fast with no systematic search of local optimality
but with a global convergence to good solution trees as expected from the analogy
under test. This simple and uniform procedure results in a heuristic with a low and
provable complexity of O(N logN). The heuristic of [36], relatively more complicated
with its systematic local search, shows a higher complexity that is only empirically
estimated and, at the same time, slightly shorter solution trees.

Another interesting heuristic has been proposed for the Euclidean Steiner problem
[32], [33] which is based on a simulated annealing approach [5]. Works in [35], [46],
and [37] also rely, in part, on simulated annealing techniques for the resolution of
various versions of the Steiner problem. The heuristic of [32] starts with a random
Steiner tree. Tree transformations are implemented which consist in snipping off
a randomly selected branch and, after patching the broken branch, attach this to
another randomly selected branch. This results in the possibility of constructing any
given tree from any other, while permanently preserving the full connectivity of the
tree. These tree transformations are then accepted or rejected, depending on the
change of length they entail, within the usual probabilistic scheme under the control
of a temperature parameter which is gradually reduced [5]. The heuristic is tested in
[32] up to N = 70 cities. The results in [32] are presented in a way that does not allow
them to fit into the comparison of Tables 3 and 4. The quality of the solution trees in
[32] is not evaluated against the MST. The scaling of the method with size N of the
problem is not addressed in a way that makes possible the precise determination of
its algorithmic complexity. When run on an IBM 3081 computer, the best computing
times reported are 17 seconds for N = 20 and 160 seconds for N = 50. With cities
chosen uniformly at random in the square [−10, 10]×[−10, 10], reference [32, page 196]
reports for N = 50 a typical solution tree of length 1808.54. When rescaled to the unit
square [0, 1] × [0, 1] this gives a length of 90.43, which appears well above the 4.825
mean length of the MST for N = 50 as estimated in Table 2 and Fig. 6. Compared
with our relaxation scheme that implements only local transformations to the tree
at a length scale O(N−1/2), the heuristic of [32] realizes random transformations at
a length scale O(1) that are unable to keep the complexity below or at O(N logN)
while obtaining performances comparable with ours. This is because a performant
solution tree requires length adjustments at the scale O(N−1/2), and a total of at least
O(N3/2) transformations involving O(1)-length changes are required for this goal.

Recently, another interesting approach, based on a neural network algorithm, has
been proposed for the Steiner problem [38]. This neural method can be described as
using a piecewise-linear curve which self-organizes to find a suboptimal tree. In the
report of [38] the method, tested up to N = 100, never performs better than Beasley’s
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[36], and its solution trees have lengths that remain, on average, 1.56% above those of
[36]. The complexity of the algorithm is not given explicitly in [38], and it is at least
O(N2) since each iteration involves the calculation of a matrix of distances relative
to O(N) points.

Another recent heuristic for the Steiner problem is described in [39], then refined
and experimentally evaluated in [40]. An interesting characteristic of this heuristic
that is shared by very few of the algorithms evoked here is that it can solve Steiner
problems in a space of arbitrary dimension, while our approach in its present form, as
well as those, for instance, in [22, 4, 31, 36, 37], is limited to the plane. The complexity
of this heuristic is not explicitly established, but it is certainly above O(N logN). For
Steiner problems in the plane, the evaluation in [40] is limited to N = 25, and the
best performance leads to solution trees whose average length is 2.342% below the
length of the MST. With our solution trees, in the same conditions, the mean length
reduction is always found above 2.710%.

For the Steiner problem in the Euclidean plane, a performance guarantee is proved
in [47] which states the existence of a polynomial-time heuristic that will display a
performance ratio (the minimum ratio of lengths between the minimal Steiner tree
and the approximation solution for the same set of cities) strictly larger than the
Steiner ratio

√
3/2. Reference [47], relying on the recent work of [48], also suggests

a polynomial-time greedy algorithm that does not use the MST and that has the
performance guarantee mentioned above. Although polynomial, the complexity of
this heuristic in the plane is not given explicitly in [47], and it may be large and is
certainly larger than quadratic. Also, the property that is proved in [47] does not
exclude the possibility of obtaining a suboptimal tree longer than the MST for given
problems. A performance guarantee with our O(N logN) heuristic relaxing the MST
is the obtainment of a solution which can, at least, be made as good as this tree.
Furthermore, the experimental results of Table 4 show that our algorithm was always
found to converge to a solution tree strictly shorter than the initial MST.

7. Conclusion. We have presented a heuristic for the Steiner problem which is
based on a physical analogy with the relaxation of a fluid film under surface tension
forces. A uniform and purely local evolution scheme results for the Steiner tree,
which translates into a low and provable complexity of O(N logN) for the heuristic,
and allows us to tackle very large problems. The performance of this heuristic was
compared with that of the best available heuristics with low complexity. Compared
with [31], which represents the heuristic with the smallest complexity, our method
generally leads, with the same low complexity of O(N logN), to shorter solution
trees. In turn, the heuristics of [36] and [37] lead in general to solution trees slightly
shorter than ours but with complexities higher than our O(N logN).

Beyond these quantitative performances we want to emphasize a specific charac-
ter of our method, which is to put the Steiner problem in the more novel framework of
analog relaxation of a physical type, establishing a connection with energy minimiza-
tion in physical systems that revealed a fruitful analogy in other areas of optimization.
In contrast, the other known algorithms with comparable performance are more of a
classic style of combinatorics in graphs.

In particular, our relaxation scheme can be applied to any initial Steiner tree
instead of that derived from the MST. With an initial Steiner tree randomly con-
structed in an O(N) step, we were able to obtain solution trees achieving a positive
length reduction R for problem sizes up to N ≈ 100. This type of approach can lead,
for the Steiner problem, to low-complexity heuristics that do not use the MST. More
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elaborate schedules for the evolution of T , inspired by thermodynamic analogies and
incorporating slow cooling and possibly heating phases, may also bring improvement
to the performance of the fluid-film relaxation heuristic as introduced here.
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