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Abstract A low-cost depth camera recently introduced is
synchronized with a specially devised low-cost motorized
turntable. This results in a low-cost motorized depth sensor,
able to provide a large number of registered side views,which
is exploited here for the quantitative characterization of the
shoots of entire plants. A set of four new shape descriptors
of the shoots, constructed from the depth images on multi-
ple side views of the shoots of plants, is proposed. The four
descriptors quantify effective volume, multiscale organiza-
tion, spatial symmetries and lacunarity of the plants. The four
descriptors are here defined, validated on synthetic scenes
with known properties, and then applied on nine different-
looking real plants to illustrate their abilities for quantitative
characterization and comparison. The resulting motorized
depth sensor and associated image processing open new
perspectives to various plant science applications including
plant growth and architecture monitoring, plant response to
stresses or the assessment of aesthetic parameters for orna-
mental plants.
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1 Introduction

At different observation scales, plants (seedling, roots, entire
plant) are formed of complex spatial structures. The non-
destructive and noninvasive analysis of these structures and
monitoring of their spatio-temporal evolutions is a topic of
current interest for computer vision specially when applied
to the domain of high-throughput phenotyping (see [1] for a
recent review and see [2–4], for recent issues in this journal)
where large populations of plants are to be characterized in
relation to their environment and genotype. The shape analy-
sis of the structures in the shoots of plants (leaflets, leaves,
branches togetherwith other organs) is challenging fromcon-
ventional RGB imaging since in most cases the shoots of
plants are globally homogenous in color. However, gazing at
plants with other imaging sensors can help to overcome this
challenge.Because of the discrete location of the leaves along
the branching structure of the plants, contrast between leaves
is likely to exist in their distinct relative distances to a cam-
era. Following this idea, it has recently been shown that depth
sensors, providing distance maps between the forefront of a
scene and the imaging sensor, can be useful to the characteri-
zation of the structure of the shoots of entire plants [1,5–17].
Various observation scales, including small plants [1], more
structured shoots of entire plants [6,7,11–14] and canopy [5,
8–10,15], have been analysed with depth cameras. Different
technologies of depth sensors have been used: a laser scanner
in [9,10], time of flight cameras in [5,11,12], the stereovision
in [6,8,16] or the structured lighting in [7,13–15,17]. Simi-
larly to what has been undertaken in other fields of engineer-
ing [18], a comparison of some of these three-dimensional
(3D) imaging technologies has recently been undertaken on
the same plants [14]. Interestingly, it appears that the sensor
used in [7,13], the Microsoft Kinect sensor, although of very
low cost is competitively applicable for the characterization

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00138-016-0762-x&domain=pdf
http://orcid.org/0000-0003-4351-3116


448 Y. Chéné et al.

of a large variety of shoots of plants. In [13,14], the segmenta-
tion of each individual leaf was performedwith theMicrosoft
Kinect from indoor single top views of rosebushes or apple
trees. In [7], such single top views of outdoor acquisitions
with the same low-cost sensor were shown also valuable for
the characterization of the ensemble of the shoots of arti-
choke and rubber trees. Although a top view already carries
relevant information on the shoot structure, there are much
more to be gained for a full characterization of the structure of
the shoots if additional views can be acquired. In this article,
we propose to extend the work of [7,13,14] in the direction
of the characterization of the ensemble of the shoots from
multiple acquisitions with a low-cost depth sensor coupled
with a motorized turntable. As 3D full reconstruction of the
shoots is sometimes a hard task owing to complexity of shoot
spatial structures, we propose using depth images around the
plant to characterize depth of the shoots of the plant.

The article is organized as follows: We first describe
the acquisition system. Then, we propose shape descriptors
devised to quantify traits of the shoots of entire plants from
depth images. Such traits are specifically used by botanists
to describe plants by sensorial attribute scores of ornamental
plants assessed in 3D as recently published in [19]. For cali-
bration purposes, we test our descriptors on synthetic scenes.
We finally illustrate our new sensor on nine different-looking
plants and discuss its relevance for different plant science
applications.

2 Motorized depth sensor

The depth sensor of the Microsoft Kinect uses active trian-
gulation to compute the depth of the forefront objects in a
scene. This sensor measures 27.9 cm × 6.3 cm × 3.8 cm,
weighs 1.36 kg and includes a motor to control its posi-
tion. It is composed of an infrared (IR) light source and a
CMOS sensor equipped with a bandpass IR filter. The IR
light source is projected through a diffraction grid resulting
in a pseudo-random speckle pattern of binary light dots. The
neighbourhood of each light dot is unique. The depth image is
then computed from differences between a reference speckle
pattern obtained at a given distance and the speckle pattern
viewed by the IR sensor. Each light dot is retrieved in the
reference speckle pattern by an image correlation of a 9 × 9
window around the point due to its unique neighbourhood.
Finally, the depth in each pixel is computed with a trian-
gulation method. Use of the active triangulation results in a
very low-cost depth sensor. Depth images are delivered with
a resolution of 640 × 480 pixels at 30 frames per second
with a field of view of 57◦ × 43◦. Depth is coded on 11 bits
with a precision of 1 cm at a distance of 2 m. The precision
decreases quadratically with depth [20]. From our practical
use of this depth sensor, the range of depth is 0.5–6 m. The

Fig. 1 Amotorized depth sensor to characterize the depth of the shoots
of entire plants. a Global view of the motorized depth sensor. b A
LabJack system triggers the rotation by sending an electrical impulse to
the rotating plate. cAn optical switch detects the passing of the threaded
stems and stops the rotation

synchronization of the Microsoft Kinect depth sensor with
the rotation of a motorized turntable results in a motorized
depth sensor displayed by Fig. 1a.

The turntable has been specifically devised and assembled
with constraints of low cost and transportability. Synchro-
nized with the depth sensor, it results in a motorized depth
sensorwhich can acquire depth images of plantsweightingup
to 15 kg. Depth images are acquired every 5◦ for a total of 72
poses all around the plant. The rotation system has been real-
ized so as to transform a continuous mode into a step-by-step
mode every 5◦ at a low cost. A LabJack system [21], con-
nected to a computer, triggers the rotation by sending an elec-
trical impulse to the rotative system (see Fig. 1b). Threaded
stems are placed at periodic intervals along the border of the
rotating plate (see Fig. 1c). At each rotation, an optical switch
detects the passing of a threaded stem and stops the rotation,
the depth image acquisition is performed after a delay to
avoid perturbing the image acquisitionwithmovements from
the shoots of the plant that would be induced by rotation. The
motorized depth sensor is managed with an homemade Qt
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Fig. 2 Example of a plant characterized in its depth from acquisitions
with the motorized depth sensor. a The RGB image of the plant (the
given scale bar corresponds to the spatial resolution in themedian plane
of the pot). b Corresponding depth image (depth values are in cm). c
Corresponding point cloud

[22] interface written in C++ language and based on OpenNI
[23] drivers to acquire depth images of the Kinect Microsoft
depth sensor. Figure 2 gives an example of a plant character-
ized in its depth with our motorized depth sensor.

3 Shape descriptors

A depth image provides in each pixel the depth of forefront
points of the shoots of the plant (see Fig. 2b). From a known

formula [20], each pixel can be converted to a point, with
3D coordinates (X,Y, Z ) expressed in metres, in a given 3D
reference. The conversion of all points of the shoots of the
plant results in a 2.5D representation of the shoots of the
plant, called the point cloud (see Fig. 2c). Limits of this
point cloud are the rectangular box with faces orthogonal
to the coordinate axes (X,Y, Z) and passing through the two
extreme coordinates found for the points in the cloud along
each of the three axes (X,Y, Z). In pratice, the pot was with-
drawn by a threshold on height because the plant tested was
elongated enough so that extremely few pixels of the plant
were found to be located at an altitude below the pot height.
It would be possible to improve this procedure by detecting
the conical shape of the pot in the point cloud for example
using the RANSAC algorithm for conical shape present in
the PCL library of C++ [24].

In this article, we introduce four new descriptors specially
built for depth characterization of the shoots of the plant:
the effective volume, the multiscale analysis (box counting
and number of neighbours methods), the 3D symmetry (lon-
gitudinal, transverse and parallel symmetries) and the hole
ratios. Independently extracted from each view of the plant,
these descriptors are computed either from the depth map
(hole ratios), from the point cloud (multiscale analysis and
3D symmetry), or from both representations (effective vol-
ume). In the sequel, we first describe the computation of the
four new shape descriptors, and then we use synthetic scene
with a known depth image and point cloud to validate the
computation of each descriptor.

3.1 Effective volume

The real volume of a plant is the sum of volumes of all its sin-
gle elements (stem and organs) and it can only be computed
from the total 3D reconstruction of the plant. In this study, we
do not reconstruct the plant. So we propose a new descriptor
describing the space filled by the plant: the effective volume.
In physics, an effective surface is the visible surface from a
certain point of view. By analogy, the effective volume is the
volume viewed from the depth sensor point of view.

This effective volume could be estimated, as in [7], from
the volumeof the convex hull that contains all the point cloud.
However, this measurement is only based on coordinates of
the convex hull vertices, so it is a global estimation of the
effective volume.Here, to improve the effective volumemea-
surement, we propose a new algorithm which compute the
effective volume as the sum of local effective volumes. For
each point i of the point cloud, the distance Di is the differ-
ence between the maximum depth value in the point cloud
and the depth value Zi of the point i . So, we define the local
effective volume of each point i of the point cloud as the
product between the area of a local polygon around the point
i with Di . Figure 3 depicts the steps followed to find the local
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Fig. 3 Main steps used to compute the local effective volume. aA local
depth image. The red cross is the current point i and black crosses are its
neighbours. b The corresponding local point cloud. The red cross is the
current point i with a depth value Zi , green crosses are its neighbours
with Z less than Zi and blue crosses are its neighbours with Z more
than Zi . c Neighbours of the current point i are projected in the plane
(X , Y , Zi ). d Vertices of the local polygon are fixed at mid-distance
between the current point and projections of its neighbours (green line)

polygon around a point. First, the local depth image is used
to determine neighbours of the point i (see Fig. 3a). Then, in
the local point cloud (see Fig. 3b), neighbours of the point i
are projected onto the plane (X,Y, Zi ) (see Fig. 3c). To avoid
redundancy, local polygon vertices are fixed at mid-distance
between point i and the projections of its neighbours (see
Fig. 3d). Knowing the local polygon vertices, the area of the
local polygon can be computed and then the local effective
volume. The global effective volume of the point cloud is the
sum of all local effective volumes of the point cloud.

For methodological purposes, we test our algorithm of
effective volume on a calibrated object composed of differ-

Fig. 4 The calibration object with a known effective volume. a RGB
image of a lateral view (H0 = 31 cm, H1 = 27 cm and H2 = 21.5 cm).
b RGB image from a top view (L = 10 cm, l = 6 cm et c = 4 cm).
c Depth image from a top view. Colorbar values gives the difference
between the maximum depth and the local depth (values are in cm).
The theoretical effective volume is H0 × c × c + 2 × L × l × (H1 +
H2) − 4 × H2 × 1 × 1 = 6230 cm3. The theoretical real volume is
4× L × l × e+ c× c× H0 = 640 cm3 with e = 0.6 cm, the thickness
of all planes. The convex hull volume, computed on the point cloud of
the calibrated object [7], is 11,247 cm3

ent planes as visible in Fig. 4. To estimate its theoretical
effective volume, we have considered a top view (90◦ from
planes) andwe havemeasured its dimensions with amillime-
tre precision ruler. Then, we applied the geometric formula
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given in Fig. 4. We obtained an effective volume equal to
6230 cm3 which is, given the uncertainty of both methods
(manual and computed), in agreement with the effective vol-
ume 6847 cm3 computed from the depth image of Fig. 4c.
For this calibrated object, the effective volume is larger than
the real volume but smaller than the convex hull volume (see
Fig. 4).

3.2 Multiscale analysis

In recent publications, [25–27] performed multiscale analy-
ses on the colour images from natural scenes. Reference [15]
extended these studies to depth images from natural wood
scenes. Multiscale analysis can be done using several statis-
tical tools. In this article, we propose to apply the number of
neighbours method [25] and the box counting method [27]
for depth characterization of the shoots of plants through 3D
spatial scales.

In a point cloud, for each point i , the number of neighbours
Ni (r) lyingwithin a spherical neighbourhoodwith radius r is
calculated. For each radius r , the average N (r) of the Ni (r)
is computed over all points i of the point cloud serving as a
centre of sphere of radius r . Only spheres that are completely
in the point cloud limits are considered [25].

We also compute another multiscale analysis tool, the box
counting. In a point cloud, the box counting N B(r) is found
in terms of r with r the side length of given boxes. For each
side length, N B(r) is the number of boxes with side length
r which are needed to cover all the point cloud [27].

For methodological purposes, we propose to perform the
multiscale analyses of a uniformly distributed random 3D
point cloud shown in Fig. 5a. Its multiscale analysis by the
number of neighbours method is given in Fig. 5b, where a
power law with a slope of +3 in a log–log scale is found
as predicted by theory: since the points are uniformly dis-
tributed in 3D, the average number N (r) of neighbours in a
sphere of radius r grows as the volume ∼r3 of the sphere.
The multiscale analysis by the box counting method is given
in Fig. 5c, where a power law with a slope of−3 in a log–log
scale is found as predicted by theory: since the points are
uniformly distributed in 3D, the average number N B(r) of
boxes of side r needed to cover the point cloud decreases as
the volume r3 of each box increases.

3.3 3D symmetry

To quantify 3D symmetry, we define three planes along each
of the three axes (X,Y, Z) of the point cloud (see Fig. 6).
These three planes can be used to compute three different
symmetries : longitudinal, transversal and parallel. For each
of these symmetries, we count the number of points with a
symmetricmatching. To remain insensitive to the observation

Fig. 5 Multiscale analyses of a uniformly distributed random point
cloud. a The 3D point cloud . b The corresponding average number of
neighbours N (r) following a power law with a slope of+3 in a log–log
scale. c The corresponding average number of covering boxes N B(r)
following a power law with a slope of −3 in a log–log scale. In b and
c the dashed line materializes respectively the slope +3 and −3.

Fig. 6 Three planes defined in three different space directions. The
plane (X0, Y, Z), with X0 a constant, defines the longitudinal plane,
the plane (X, Y0, Z), with Y0 a constant, defines the transversal plane
and the plane (X, Y, Z0), with Z0 a constant, defines the parallel plane

scale of the plant, we always use a ratio between this number
of points and the total number of points in the current point
cloud. Finally, the 3D symmetry is defined by the mean of
the three defined ratios of symmetry.

Computations of longitudinal and transversal symmetries
are computed on the point cloud follow the same princi-
ple and can be done from only one point cloud provided
by a depth sensor. In this part of the article, we focus the
explanations on the algorithm of longitudinal symmetry, the
symmetry in terms of the plane (X0,Y, Z) (see Fig. 6). For
a given point cloud, we fix X0 as the middle value between
minimum and maximum values of the X coordinate. In this
point cloud, a point (Xi , Yi , Zi ) with Xi < X0 has a sym-
metric matching if there exists a point (X j , Y j , Z j ) with
X j = −Xi (relative to X0), Y j = Yi and Z j = Zi . The
value range of the longitudinal symmetry ratio is {0 . . .

0.5}. For methodological purposes, we propose to check the
computation of longitudinal symmetry on the synthetic point
cloud associated with the depth image of Fig. 7. Its theoreti-
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Fig. 7 The depth image of a synthetic point cloud with a known lon-
gitudinal symmetry. Left values indicate the evolution of X coordinates
in the point cloud and bottom values the evolution of Y coordinates.
Red and green pixels have different depth values and blue pixels have
a zero value. The size of the depth image is 100 × 100 pixels. Due to
pixels with a zero value (2 lines around X0 to show the symmetry axis),
the associated point cloud contains 9800 points. X0 is equal to zero.
Three squares of size 10× 10 pixels have nonsymmetric matching. So,
there are 4900 − 3 × 10 × 10 = 4600 pixels belonging to the top part
of the point cloud (X < X0) with a symmetric matching in the bottom
part. So, the longitudinal symmetry ratio of this synthetic point cloud
is 4600

9800 = 0.47

cal longitudinal symmetry ratio is known and equal to 0.47.
The application of the longitudinal symmetry algorithm on
this point cloud gives a result in accordance with theoretical
expectations.

In a point cloud provided by the depth sensor, two points
cannot have the same X and Y coordinates. So, the compu-
tation of the parallel symmetry, the symmetry in terms of
the plane (X,Y, Z0) (see Fig. 6), cannot be done, like previ-
ously, with only one point cloud. To solve this constraint, we
compute the parallel symmetry from two point clouds of the
shoots of plants: the point cloud of the current view (view 1
in Fig. 8a) and the point cloud of the view acquired after a
rotation of 180◦ (from the current position) by the motorized
depth sensor (view 2 in Fig. 8a). In this case, the number of
symmetric matchings for the parallel symmetry is the num-
ber of points with the same coordinates (X , Y , Z ) in the two
point clouds. The value range of the parallel symmetry ratio
is {0 . . . 1}. For methodological purposes, we set a synthetic
point cloud (associated with the depth image of Fig. 8b), cor-
responding to view 1 in Fig. 8a, and also a synthetic opposite
point cloud (associated to the depth image of Fig. 8c), cor-
responding to view 2 in Fig. 8a. The parallel symmetry ratio
between these two synthetic point clouds is known and equal
to 0.89. The computation of the parallel symmetry algorithm
on these point clouds gives a parallel symmetry ratio equal
to the theoretical prediction.

Fig. 8 Two different point clouds are used to compute the parallel
symmetry. a The parallel symmetry is computed from two point clouds:
the current point cloud (view 1 in this picture) and the opposite point
cloud acquired after a rotation of 180◦ of the motorized depth sensor
(view 2 in this picture). b The depth image of a synthetic point cloud.
Green pixels correspond to nonzero depthwhile red pixels to zero depth.
The size of the depth image is 100 × 100 pixels and the size of the
nonzero depth square is 60×60 pixels (3600 points in the point cloud).
c The depth image of the corresponding opposite point cloud. It is the
clone of the previous depth image except that there is a square of size
20 × 20 pixels (400 points in the point cloud) with depth equal to zero
inside the square of nonzero depth. So, the expected parallel symmetry
ratio is 3600−400

3600 = 0.89

To illustrate the 3D symmetry, we compute it on the
point cloud of the three objects of Fig. 9. The first one is
a sphere (see Fig. 9a), an object perfectly symmetric in terms
of each symmetry plane of this study. So, Its longitudinal
and transversal ratios are 0.5 and its parallel ratio is 1. The
second one is a pyramid with a square base, an object per-
fectly symmetric in terms of transversal and parallel planes
but totally asymmetric in the longitudinal direction. Thus, its
transversal ratio is 0.5, its parallel ratio is 1 and its longitudi-
nal ratio is 0. The last one is a well-known Venus head whose
point cloud can be found in [28]. This object is not totally
symmetric or asymmetric in each direction, so its longitu-
dinal ratio is 0.3, its transversal ratio is 0.2 and its parallel
ratio is 0.1.

In this study, we use three particular planes but the sym-
metry can be computed from an infinite number of others
planes. In addition, principal component analysis approaches
(encompassing ellipsoid, fractional anisotropy, . . .) could be
used to extract a global information of the point cloud sym-
metry. All these symmetry methods are complementary to
the proposed 3D symmetry and they could be useful for the
depth characterization of the shoots.
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Fig. 9 Three different objects with three different 3D symmetries: a
Sphere with longitudinal ratio = 0.5, transversal ratio = 0.5 and parallel
ratio = 1. b Pyramid with longitudinal ratio = 0, transversal ratio =
0.5 and parallel ratio = 1. c Venus head with longitudinal ratio = 0.3,
transversal ratio = 0.2 and parallel ratio = 0.1 (the right image is extract
from [28])

3.4 Hole ratios

Multiple reflections of light in the shoots, diffusions, absorp-
tions and shading result in the creation of zones of non-
defined depth (depth set to zero) in the depth image. These
zones can be considered as lacunarity holes and indicate that
light has been trapped in the plant. In addition, light may also
pass through the shoots resulting in transmission holes in the
depth image (nonzero pixels not belonging to the plant). We
propose to use lacunarity and transmission surfaces for the
depth characterization of the shoots of plants.

Practically, to find lacunarity and transmission surfaces,
the depth image must be acquired in a closed room, whose
dimensions belong to the depth interval accessible with the
depth sensor. In these conditions, as shown in Fig. 10, depth
images were always composed of three distinct populations:
the plant, the background and the non-defined zones. With
such high contrast, the well-known automatic thresholding
method of Otsu [29] efficiently segments the plant in the
depth images. Then, to remain insensitive to the observation
scale of the plant, we always use a ratio between the surface
area (lacunarity or transmission) and the total surface of the
plant. Only surfaces in the convex hull of the plant are taken
into account.

Fig. 10 An example of depth image composed of three different popu-
lations: the plant (depth around 150 cm), the background (depth around
280 cm) and the non-defined zones (depth equal to zero). a The depth
image. b The corresponding histogram of depth

For methodological purposes, we illustrate the computa-
tion of the hole ratios on a synthetic depth image. Figure 11
shows this depth image (a) and different binary images (b,
c, d) used to find hole surfaces. Background and lacunar-
ity holes are studied into the convex hull of the plant (see
Fig. 11b). Background holes correspond to pixels with a
background value in this convex hull (see Fig. 11c), while
lacunarity holes are pixels with a zero value (see Fig. 11d).
The computation of our algorithm on this synthetic depth
image gives hole ratios equal to the theoretical prediction :
0.54 for the transmission ratio and 0.17 for the lacunarity
ratio.

4 Application to plants

We are now ready to use the motorized depth sensor of Sect.
1 to compute the four new shape descriptors of the previous
section all around real plants. We acquired with the motor-
ized depth sensor 72 depth images all around two real plants
shown in Fig. 12. The plant A is a rosebush (Rosa hybrida)
and the plant B is a snake plant (Sansevieria trifasciata).
These plants are specially chosen to present very different
shoots. The shoots of plant A occupy a larger range of space
thanplant B and it is composedof leaves (assemblingof small
leaflets) with different orientations. By contrast to plant A,
the shoots of plant B are composed of large, flat and regular
leaves. In the sequel, we compare the application of our four
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Fig. 11 The hole ratio computation based on three binary images
obtained from the depth image. a A synthetic depth image. Green pix-
els correspond to plant, red pixels to background and blue pixels to
lacunarity. b The corresponding binary image of the convex hull. c
The corresponding binary image of background holes in the convex
hull. d The corresponding binary image of lacunarity holes in the con-
vex hull. The plant is composed of two rectangles of size 80 × 20
pixels which cover themselves on 20× 20 pixels. There are four trans-
mission triangles (rectangle and isoscele) with side length equals to
24 pixels and a transmission square of size 10 × 10 pixels. There
are four lacunarity squares of size 10 × 10 pixels. The transmission

ratio is
10×10+4× 24×24

2
2×80×20−20×20−5×10×10 = 0.54 and the lacunarity ratio is
4×10×10

2×80×20−20×20−5×10×10 = 0.17

new shape descriptors on the 72 depth images acquired all
around these two different plants.

4.1 Effective volume

The computation of the effective volume on the point cloud
of the shoots of plants gives access to the metric volume, in
m3, of its visible part from the depth sensor point of view.
In this study, the shoots of plant A occupy a larger range of
space than plant B, but the depth images of these two plants
have been acquired with two different observation scales.
Following these setting up changes, the shoots of plants A
and B have roughly the same number of pixels (i.e. the same
apparent surface) in the depth images of the Fig. 13a, b. So,
from these images, the two plants cannot be distinguished
from the computation of their apparent surface. However, the
shoots of plant A show a larger range of depth than plant B
(70 cm for plant A versus 30 cm for plant B). This difference
in the range of depth results in a larger computed effective
volume for the shoots of plant A. Thus, beyond the apparent
surface, the effective volume computed from the shoot point
clouds allows obtaining a relative difference between plants
A and B in terms of space filled by the shoots.

Fig. 12 a, c RGB view of the plants A and B. b, d Corresponding
depth images (depth values are in cm)
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Fig. 13 The computation of the effective volume all around real plants.
a, b Depth images of the shoots of plants A and B from Fig. 12 at an
observation angle of 75◦. Colorbar values give the difference between
the maximum depth and local depth values (values are in cm). c Polar
plot of the effective volume in m3 as a function of the angle of obser-
vation. Solid line is for plant A, dotted line for plant B

In this study, for all the point clouds at all angles of view
acquired with the motorized depth sensor, the range of depth
of plant A is always larger than that of plant B. So, as shown
by Fig. 13c, the effective volume of the shoots of plant A
computed all around the rotation stays larger than that of plant
B. For both plants in the used setting up, this effective volume
is relatively constant all around the plant. For other settings or
other plants, larger variationsmay occur in the range of depth
around the plant according to the angle of view. A single
evaluation of the effective volume, from a single angle of
view, could, therefore, lead to misinterpretation of the actual
3D space filled by the plant. By contrast, the computation of

the effective volume from data acquired frommultiple angles
of view with the motorized depth sensor allows to accurately
describe the space filled by the shoots.

4.2 Multiscale analysis

The multiscale analysis of the point cloud of the shoots of
plants is realized by means of the number of neighbours
method and of the box counting method. We especially want
to test for the average number of neighbours N (r) and for the
average number of covering boxes N B(r), the possibility of
power laws of the forms N (r) ∼ ra and N B(r) ∼ r−b. The
presence of such power-law evolutions identifies regularity
or self-similarity across scales for the spatial organization of
the point cloud. They can be interpreted in relation to the
following references [25–27]: When the points in the cloud
distribute in a volume with three-dimensional organization,
then one has the evolutions N (r) ∼ r3 and N B(r) ∼ r−3,
as in the example of Fig. 5. When the points distribute in
a surface-like organization with two dimensions, one has
N (r) ∼ r2 and N B(r) ∼ r−2. When the points distrib-
ute with a curvilinear organization with one dimension, one
has N (r) ∼ r1 and N B(r) ∼ r−1. Power laws of the form
N (r) ∼ ra and N B(r) ∼ r−b with noninteger exponents a
and b, identify fractal organizations that interpolate between
these regular shapes.

Figure 14a, b gives the average number of neighbours
N (r) computed on one point cloud, respectively, for plants A
and B from Fig. 12. Both numbers of neighbours evolutions
followpower laws N (r) � ra with exponenta �= 0. Slopes in

Fig. 14 Multiscale analysis by the number of neighbours method. a,
b Number of neighbours N (r) of plants A and B from Fig. 12 at the
observation angle of 355◦. The dashed linematerializes the slope of the
followed power law in the log–log scale. c Polar plot of the exponent
a of the power law followed by the number of neighbours N (r) as a
function of the angle of observation. Solid line is for plant A, dotted
line for plant B
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Fig. 15 Multiscale analysis by the box counting method. a, b Num-
ber of neighbours evolutions of plants A and B from Fig. 12 at the
observation angle of 150◦. The dashed linematerializes the slope of the
followed power law in the log–log scale. c Polar plot of the exponent b
of the power law followed by the box counting N B(r) as a function of
the angle of observation. Solid line is for plant A, dotted line for plant B

a log–log scale of these power laws are different (a = +1.66
for plant A and a = +1.88 for plant B). As shown in Fig. 15a,
b, the box counting evolutions for the same two plants follow
power laws N B(r) � r−b with exponent b �= 0 over a large
range of box sizes. Like number of neighbour evolutions,
slopes in a log–log scale of these power laws are different
(b = 1.62 for plant A and b = 1.78 for plant B). Exponents
a and b of power laws followed during multiscale analyses
depend on the complexity of the shoots of the observed plant.
For all point clouds around a plant, multiscale analyses fol-
low power laws. So, we use evolutions of exponents a and
b during the rotation of the motorized depth sensor to char-
acterize the depth of the shoots all around the plant. Figures
14c, and 15c, respectively, give evolutions of exponents a and
b obtained by computing the number of neighbours and box
counting on point clouds all around plants A and B. Shoots
of these two plants keep their structure unchanged for all
rotation steps of the motorized depth sensor. So, exponents
a and b of multiscale analyses stay globally constant during
the rotation. The multiscale analysis (number of neighbours
and box counting) characterizes the complexity of the shoots
of the observed plant. Its computation all around the plant
characterizes changes in this complexity. Moreover, regular
power laws with non-integers exponents a and b, as consis-
tently observed for the plants tested here, suggest a fractal
organization of the shoots of plants, exhibiting self-similarity
across scales in their spatial structure.

The non-integer exponents a and b observed between 1
and 2 identify the plant foliages as irregular fractal shapes
with a space-filling geometry which is less dense than a
uniform surface, but more dense than a regular line. At a

qualitative level, this global structural property is consistently
observed for the two plants A and B here; yet at a finer quan-
titative level, differences are measured in the specific values
of the fractal exponents a and b providing a differential char-
acterization of the foliages of the two plants A and B. Larger
exponents a, b closer to 2 are consistent for plant B with
relatively flat and more regular leaves coming closer to a flat
surface. Meanwhile, smaller exponents a, b are consistent
for plant A with higher lacunarity and irregular leaves fur-
ther away from a flat surface. Fractal organizations have been
reported for plants from various quantitative measurements
[30]. They are confirmed here from the new measurement
derived from depth images as presented here.

4.3 3D symmetry

The 3D symmetry of the shoots of plants is computed from
three different symmetries: longitudinal, transversal and par-
allel. Generally, the shoots have a non regular architecture
and the probability to have any exact symmetric matchings
is very low. So ratios of symmetry with depth in millimetre,
as provided by the depth sensor, would be close to zero. In
this study, to compare the symmetry of plants, plant 3D coor-
dinates (X,Y, Z ) are rounded in decimetre. Figure 16 gives

Fig. 16 Illustrations of the computation of 3D symmetry on the point
clouds of plants A and B from Fig. 12. a Longitudinal symmetry. b
Transversal symmetry. c Parallel symmetry. The observation angle is
210◦.Red pixels correspond to pointswith a symmetricmatching, green
pixels to points of plant without symmetric matching and blue pixels to
lacunarity pixels
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Fig. 17 The computation of the 3D symmetry all around real plants.
a–d Polar plot of the considered symmetry as a function of the angle of
observation. Solid line is for plant A and dotted line for plant B

illustrations of longitudinal, transversal and parallel symme-
try computations on point clouds of plants A and B from Fig.
12. In these illustrations, for all types of computed symme-
try, plant B has more symmetric matchings and relatively the
same number of points in the point cloud than plant A, result-
ing in a larger computed 3D symmetry for plant B (mean of
the longitudinal, transversal and parallel symmetries). This
result is in accordance with both shapes of studied plants.
Indeed, the large and vertical leaves positioned following a
circle of plant B give a shape globally symmetric, while the
complex structure with different axes of plant A results in a
less symmetric shape.

As shown in Fig. 17a, the computed 3D symmetry evolves
with the rotation of the motorized depth sensor thus express-
ing the anisotropy of the global symmetry of the shoots of
plants. The computed 3D symmetry around both plants is not
constant but it globally follows the expected evolutions: 3D
symmetry of plant B stays larger than plant A. So, the pro-
posed 3D symmetry coupledwith themotorized depth sensor
provides a good descriptor of the real shape of the plant,
allowing to describe the symmetry anisotropy of the shoots.
The same behaviour is globally obtained for longitudinal and
parallel symmetries (see Fig. 17b, c). However, the transver-
sal symmetry of both plants is different and some observation
angles give plantAamore symmetrical appearence thanplant
B. It is in accordance with the shape of plant B because this
plant has few leaves tilted on side which shift the centre of
symmetry and decrease the value of transversal symmetry.
So, while the 3D symmetry provides a global information of
symmetry, each individual symmetry (longitudinal, transver-

sal or parallel) gives a finer information about the shape of
the plant because it is focused in only one direction of space.

4.4 Hole ratios

The transmission and lacunarity ratios are, respectively,
based on the surface of background and lacunarity holes
inside the convex hull of the shoots of the observed plant.
Figure 18a, b gives illustrations of the hole ratios computa-
tions on depth images, respectively, for plants A and B of
Fig. 12. In these illustrations, the computed hole ratios are
smaller for plant A than for plant B. In a depth image, the
computed transmission ratio quantifies the proportion of leaf-
less zones in the shoots (red pixels in Fig. 18a, b). Since the

Fig. 18 The computation of the hole ratios all around real plants. a,
b Illustrations of computations of the hole ratios on depth images at
the observation angle of 355◦ for plants A and B from Fig. 12. Red
pixels correspond to background, green pixels to plant and blue pixels
to lacunarity. c, d Polar plot of the lacunarity and transmission ratios as
a function of the angle of observation. Solid line is for plant A, dotted
line for plant B
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shoots of plant A are less concentrated and more scattered
than those of plant B, its depth image has a larger proportion
of background in its convex hull, around and in the shoots.
This results in a computed transmission ratio larger for plant
A than for plant B. So, the transmission ratio quantifies the
shape of the shoots such as the higher transmission ratio,
the higher the shape complexity of the plant. The computed
lacunarity ratio estimates the proportion of zones where the
sensor is unable to return a depth measurement because of
shading and constitution of the shoots (blue pixels in Fig.
18a, b). Since the shape of plant A is less regular, shading is
accentuated. In addition, contrary to vertical and large leaves
of plant B, the small leaves with different orientations of
plant A lead to a high probability of light trapping. Con-
sequently, the computed lacunarity ratio is larger for plant
A than for plant B. Summarizing, the lacunarity ratio esti-
mates the global constitution, association of the number, the
size, the shape, the orientation and the spatial organisation of
leaves, of the shoots such as the higher lacunarity ratio, the
higher the constitution complexity of the plant.

As shown by Fig. 18c, d, the hole ratios computed on
the depth images of the motorized depth sensor stay globally
larger for plant A than for plant B. This result is in accordance
with the global complexities of shape and constitution of both
plants. However, for few angles of view, values of plant B are
equal or larger than that of plant A. So, to accurately describe
the global complexity (shape or constitution) of shoots of
plants, hole ratios must be computed on different angles of
view as proposed in this study.

For a complementary appreciation of the behaviours and
capabilities of the new descriptors, we have also applied the
approach systematically on a set of nine more plants, chosen
to cover a wider range of possible shapes, as presented in Fig.
19. The computation of the four proposed shape descriptors
has been carried out, and the complete results for the nine
plants of Fig. 19 are made accessible in [34]. For illustration,
we show in Fig. 20, one among those descriptors, the trans-
mission ratio of the shoots, computed for the nine plants of
Fig. 19, and displayed as a function of the angle of rotation
around each plant. As defined in Sect. 4.4, the transmission
ratio quantifies the proportion of leafless or open zones in
the convex hull of the shoots. On the illustration of Fig. 20,
it is notable that the isotropic aspect of transmission ratio
and the average value of the transmission ratio display capa-
bilities for discrimination between plants. Considering two
plants of different species (for instance Plant1 and Plant2 in
Fig. 19), having different shape, size and spatial organization
of leaves and shoots, the average ratio differs by a factor of
2 between them. Average transmission ratio is of 0.25 for
Plant1 and of 0.5 for Plant2. This is in good agreement with
a visual appreciation as Plant1 has big leaves with different
orientationswith a high probability of light interception lead-
ing to a smaller transmission ratio than Plant2, which owns

Fig. 19 Panel of RGB views of nine other plants

Fig. 20 Polar plot of the transmission ratio as a function of the angle
of observation computed for the nine plants of Fig. 19

smaller leaves with orientation in extension of shoots. Con-
sidering two plants of the same species (for instance rosebush
as Plant6 and Plant7 in Fig. 19), having different spatial orga-
nization of shoots, the average transmission ratio is of 0.5 for
both but the isotropic aspect is clearly not equal according to
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angle of observation. This is again in a relatively good agree-
ment with a visual appreciation of both plants as Plant6 is
bushy according to some specific direction, whereas Plant7
is relatively sparse in its central part.

Further analysis could be developed by confronting the
whole set of descriptors given in [34], especially to ques-
tion what would be the best descriptors and the tolerated
error. The answer would depend on the plant science ques-
tion raised. For instance, in the study [19] on rosebushes, we
demonstrated that all the ten incorporated botanistic descrip-
tors were important to discriminate the ornamental value of
the different phenotypes of plants tested. For breeders, who
are seeking the highest production, the descriptors attached
to the volume would take a greater importance with a higher
sensitivity on errors. Also more systematic studies could be
undertaken on more instances and plants, especially for an
appreciation of the robustness and sensitivity of the proposed
descriptors in relation to the variability in the plants involved
in the analysis. Such extensive studies, however, lie beyond
the scope of the present paper, which concentrates on the def-
inition of a newmethodology for plant shape characterization
from depth data with some illustrations.

5 Conclusion

Depth data are becoming more and more widely accessi-
ble by means of new low-cost sensors as reported in the
paper. We have described here an integrated solution using
a depth sensor coupled to a motorized turntable devised for
a quantitative characterization of the spatial 3D structure of
plants. We have introduced four new shape descriptors to
characterize the shoot of an entire plant from multiple side
views acquired from the depth camera: the effective volume
(volume inm3 seen by the depth sensor point of view) charac-
terizes plants in terms of their size. Multiscale analysis tools
(number of neighbours and the box counting methods) deter-
mine the complexity and possible fractality of the shoots of
the observed plant. The 3D symmetry (longitudinal, transver-
sal and parallel symmetries) quantifies the anisotropy of the
shoots of plants. The hole ratio composed with the trans-
mission ratio and the lacunarity ratio, respectively, capture
the fragmented aspect of the shoot and the lacunarity of the
shoots in its depth. We have systematically validated these
shape descriptors on numerical ground truth and have then
tested them on nine real plants contrasted in terms of size,
scales, symmetry and lacunarity. To this purpose, we have
specially coupled the low-cost depth sensor of the Microsoft
Kinect with a low-cost turntable. With such a multiple view
depth sensor, a full 3D reconstruction of the shoot of the
plant is possible for simple shoot as recently demonstrated
[31–33]. However, for more complex shoots, like the ones
tested in the report, a full 3D reconstruction from multiple

side viewswith depth cameras is expected to be a difficult task
and only an appreciation of the overall shape of the plant is
accessible. This is now possible quantitatively in depth with
the shape descriptors introduced in this work.

We believe the evolutions of these shape descriptors all
around the plants can be exploited to quantitatively char-
acterize and discriminate a large number of plants. To go
further, although the scope of study is more the definition
of a new methodology for plant shape characterization from
depth data, we have extended the application of our shape
descriptors to nine other plants. These nine plants have been
chosen to cover a wide range of shapes that may describe, in
some extent, the variability of plants in terms of their vari-
eties, ages or visual aspect. The computation of the four
proposed shape descriptors has been done and results are
accessible online [34]. Considering a reproducible science
approach, the dataset of the associated depth images is also
downloadable [34]. With such dataset, further studies could
focus on classification problems to better appreciate robust-
ness and sensitivity of the proposed descriptors. New shape
descriptors could also be introduced and validated on this
dataset.

Also, the depth characterization could be interestingly
complemented with more classical descriptors based on
colour or grey level images. This is easily feasible again
with the Microsoft Kinect since the depth sensor is asso-
ciated with a spatially coregistered RGB camera. Therefore,
acquisition coupled with a turntable to produce multiple side
views and analysis of the anisotropy of the plant shoots in
RGB and depth is another interesting perspective accessible
with the motorized depth sensor presented here. The sensor
used in this study could itself receive attention for improve-
ment. In this study we used 72 images around the plants
because our motorized depth sensor provides this number.
With this resulting 5◦ step redundancies are often present
between different successive images. The good-enough num-
ber of images, although depending on the shoot shape, is
probably less than 72, and further investigation to define it
quantitatively would be an interesting perspective.

Adomain of specific interest for the characterization of the
ensemble of shoots from depth imaging as proposed in this
manuscript is for the aestethic rating of ornamental plants.
In this context, recent studies [19,35,36] have demonstrated
the possibility to classify rosebushes from sensory profiles
preference based on visual inspection. In these works, the
description is qualitative, performed on RGB images of
real [19,35] or virtual [36] rosebushes. This establishes the
importance of subjective descriptors such as symmetry, com-
pactness and shape, in the aesthetic assessment of ornamental
rosebush. By contrast here, we used a depth camera and the
3D descriptors introduced in this manuscript include such
traits and, therefore, naturally appear as good candidates for
automatic quantitative and objective classification of orna-
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mental rosebushes based on depth imaging. Confronting our
automated 3D shape descriptors with a sensorial rating by
human experts would correspond to a further investigation.
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6. Bellasio, C., Olejníčková, J., Tesař, R., Šebela, D., Nedbal, L.:
Computer reconstruction of plant growth and chlorophyll fluores-
cence emission in three spatial dimensions. Sensors 12, 1052–1071
(2012)

7. Azzary, G., Goulden, M.L., Rusu, R.B.: Rapid characterization of
vegetation structure with a Microsoft Kinect sensor. Sensors 13,
2384–2398 (2013)

8. Biskup, B., Scharr, H., Schurr, U., Rascher, U.: A stereo imaging
system formeasuring structural parameters of plant canopies. Plant
Cell Environ. 10, 1299–1308 (2007)

9. Omasa, K., Hosoi, F., Konishi, A.: 3D lidar imaging for detecting
and understanding plant responses and canopy structure. J. Exp.
Bot. 158, 881–898 (2007)

10. Bucksch, A., Fleck, S.: Automated detection of branch dimen-
sions in woody skeletons of fruit tree canopies. Photogramm. Eng.
Remote Sens. 77, 229–240 (2011)

11. Klose, R., Penlington, J., Ruckelshausen, A.: Usability study of 3D
time-of-flight cameras for automatic plant phenotyping. Bornimer
Agrartechnische Berichte 69, 93–105 (2009)

12. Kraft, M., Saloma De Freitag, N., Munack, A.: Test of a 3D time of
flight camera for shape measurements of plants. In: CIGR Work-
shop on Image Analysis in Agriculture, Budapest, Hungary, 26–27
Aug 2010 (2010)

13. Chéné, Y., Rousseau, D., Lucidarme, P., Bertheloot, J., Caffier, V.,
Morel, P., Belin, E., Chapeau-Blondeau, F.: On the use of depth
camera for 3D phenotyping of entire plants. Comput. Electron.
Agric. 82, 122–127 (2012)

14. Chéné, Y., Belin, E., Chapeau-Blondeau, F, Boureau, T., Caffier,
V.,Rousseau,D.:Anatomo-functional bimodality imaging for plant
phenotyping: An insight through depth imaging coupled to thermal
imaging. Chap. 9, in Dutta Gupta, S., Ibaraki, Y., (eds.) Plant Image
Analysis: Fundamentals and Applications. CRC Press, Boca Raton
(2015)

15. Chéné, Y., Belin, E., Rousseau, D., Chapeau-Blondeau, F.: Multi-
scale analysis of depth images from natural scenes: scaling in the
depth of the woods. Chaos Solitons Fractals 54, 135–149 (2013)

16. Golbach, F., Kootstra, G., Damjanovic, S., Otten, G., van de Zedde,
R.:Validation of plant partmeasurements using a 3D reconstruction
method suitable for high-throughput seedling phenotyping. Mach.
Vis. Appl. 1–18 (2015)

17. Nguyen, T.T., Slaughter, D.C., Max, N., Maloof, J.N., Sinha, N.:
Structured light-based 3D reconstruction system for plants. Sensors
15(8), 18587–18612 (2015)

18. Sansoni, G., Trebeschi, M., Docchio, F.: State-of-the-art and appli-
cations of 3D imaging sensors in industry, cultural heritage,
medicine, and criminal investigation. Sensors 9, 568–601 (2009)

19. Garbez, M., Chéné, Y., Belin, É., Sigogne, M., Labatte, J.L.,
Hunault, G., Rousseau, D., Galopin, G.: Predicting sensorial
attribute scores of ornamental plants assessed in 3D through rota-
tion on video by image analysis: a study on the morphology of
virtual rose bushes. Comput. Electron. Agric. 121, 331–346 (2016)

20. Khoshelham,K., Elberink, S.O.:Accuracy and resolution ofKinect
depth data for indoormapping applications. Sensors12, 1437–1454
(2012)

21. http://labjack.com/u3
22. http://qt.digia.com/
23. http://www.openni.org/
24. Schnabel, R., Wahl, R., Klein, R.: Efficient RANSAC for point

cloud shape detection. Comput. Graph. Forum 26, 214–226 (2007).
(Blackwell Publishing Ltd)

25. Chauveau, J., Rousseau, D., Richard, P., Chapeau-Blondeau, F.:
Fractal structure in the color distribution of natural images. Chaos
Solitons Fractals 42, 472–482 (2009)

26. Chauveau, J., Rousseau, D., Richard, P., Chapeau-Blondeau, F.:
Multifractal analysis of three-dimensional histogram from color
images. Chaos Solitons Fractals 43, 57–67 (2010)

27. Chauveau, J., Rousseau, D., Chapeau-Blondeau, F.: Fractal capac-
ity dimension of three-dimensional histogram from color images.
Multidimens. Syst. Signal Process. 21, 197–211 (2010)

28. Venus head point cloud. http://www.dirdim.com (2014)
29. Otsu, N.: A threshold selectionmethod fromgray-level histograms.

Automatica 11, 23–27 (1975)
30. Da Silva, D., Boudon, F., Godin, C., Sinoquet, H.: Multiscale

framework for modeling and analyzing light interception by trees.
Multiscale Model. Simul. 7, 910–933 (2008)

31. Paulus, S., Dupuis, J., Mahlein, A.K., Kuhlmann, H.: Surface fea-
ture based classification of plant organs from3D laserscanned point
clouds for plant phenotyping.BMCBioinform. 14, 238–249 (2013)

32. Paulus, S., Schumann, H., Kuhlmann, H., Léon, J.: High-precision
laser scanning system for capturing 3D plant architecture and
analysing growth of cereal plants. Biosyst. Eng. 121, 1–11 (2014)

33. Paulus, S., Dupuis, J., Riedel, S., Kuhlmann, H.: Automated analy-
sis of barley organs using 3D laser scanning: an approach for high
throughput phenotyping. Sensors 14, 12670–12686 (2014)

34. http://lisabiblio.univ-angers.fr/PHENOTIC/Shape_descriptors.
zip

35. Boumaza, R., Huché-Thélier, L., Demotes-Mainard, S., Coz, E.L.,
Leduc, N., Pelleschi-Travier, S., Qannari, E.M., Sakr, S., Santagos-
tini, P., Symoneaux, R., Gurin, V.: Sensory profiles and preference
analysis in ornamental horticulture: the case of the rosebush. Food
Qual. Prefer. 21, 987–997 (2010)

36. Garbez,M.,Galopin,G., Sigogne,M., Favre, P.,Demotes-Mainard,
S., Symoneaux, R.: Assessing the visual aspect of rotating virtual
rose bushes by a labeled sorting task. Food Qual. Prefer. 40, 287–
295 (2015)

123

http://labjack.com/u3
http://qt.digia.com/
http://www.openni.org/
http://www.dirdim.com
http://lisabiblio.univ-angers.fr/PHENOTIC/Shape_descriptors.zip
http://lisabiblio.univ-angers.fr/PHENOTIC/Shape_descriptors.zip


Shape descriptors to characterize the shoot of entire. . . 461

Yann Chéné is a research engi-
neer working on vision systems
for agriculture at IMAG PRECI-
SION, Angers, France. He con-
tributed to this work during his
Ph.D. research on 3D imaging
in plant sciences at Université
d’Angers (2011–2014).

David Rousseau is a Professor
at Université Lyon 1, France,
since 2011, with broad interest
and skills in imaging and image
processing with applications to
life sciences including biology
and plant sciences. He headed
from 2008 to 2012 the PHE-
NOTIC platform project with
Université d’Angers.

Étienne Belin is an Assistant
Professor at Université d’Ang-
ers, France. His research activi-
ties are at the interface between
information (signal and images)
processing and physics, with
applications in instrumentation
and imaging for plant sciences,
via the platform PHENOTIC.

Morgan Garbez is a Ph.D. stu-
dent in biology and agronomy
at Agrocampus Ouest, Angers,
France. His thesis aims to assess
visual characterization tools for
ornamental plants with sensory
and image analysis methods,
together with plant 3D architec-
ture construction over time using
the rosebush as model.

Gilles Galopin is an Assistant
Professor at Agrocampus Ouest
in Angers, France. His research
activity is about ornamental hor-
ticulture and mainly focuses on
the analysis and exploitation of
phenotypic plasticity in woody
shrubs with ornamental rosebush
model.

François Chapeau-Blondeau
received a Ph.D. in electrical
engineering from the University
Pierre et Marie Curie, Paris 6,
France. He is currently a pro-
fessor of electronic and informa-
tion sciences at the University
of Angers, France. His research
interests include signal process-
ing and imaging, and the interac-
tions between physics and infor-
mation sciences.

123


	Shape descriptors to characterize the shoot of entire plant  from multiple side views of a motorized depth sensor
	Abstract
	1 Introduction
	2 Motorized depth sensor
	3 Shape descriptors
	3.1 Effective volume
	3.2 Multiscale analysis
	3.3 3D symmetry
	3.4 Hole ratios

	4 Application to plants
	4.1 Effective volume
	4.2 Multiscale analysis
	4.3 3D symmetry
	4.4 Hole ratios

	5 Conclusion
	Acknowledgments
	References




