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Abstract The practical value of a criterion based on sta-
tistical information theory is demonstrated for the selection
of optimal wavelength and bandwidth of low-cost light-
ing systems in plant imaging applications. Kullback–Leibler
divergence is applied to the problem of spectral band reduc-
tion from hyperspectral imaging. The results are illustrated
on various plant imaging problems and show similar results
to the one obtained with state-of-the-art criteria. A specific
interest of the proposed approach is to offer the possibility
to integrate technological constraints in the optimization of
the spectral bands selected.

Keywords Spectral imaging · Information theory · Plant
imaging

1 Introduction

Hyperspectral imaging is an important tool in agriculture and
plant sciences to measure, identify, or classify plant tissues
[1]. This imaging technique which can produce images of
reflectance spectra is commonly used over large geometric
scales in remote sensing. It is also gaining more and more
interest for observation at smaller geometric scales, in prox-
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imal detection [2], especially with its ability to enrich the
scalar information produced by single-probe spectrometers
with the spatial distribution inherent to images. This trend
opens new imaging problems not present in remote sensing
nor with single probe spectrometry [3]. Embedding hyper-
spectral imaging in field requires the development of specific
imaging setups [4], also there is a need to couple hyperspec-
tral imagingwith 3D imaging systems to take into account the
3D structures of plants [5] in the quantitative interpretation of
the acquired spectral informations. In addition, hyperspectral
images deliver huge amounts of data, typically some giga-
bytes per image. This induces challenges on the handling
of such big data, especially in the perspective of continu-
ous monitoring or imaging of populations of plants [6]. In a
translational research perspective with application to agron-
omy or high-throughput phenotyping with multiple imaging
systems, it is important to promote the use of low-cost setups
[7]. Hyperspectral imaging, although not low-cost, can serve
to the design of low-cost imaging setups based on a small
number of spectral bands which are judged as themost useful
part of the spectrum for a given application. This corresponds
to a spectral band selection problem. There are multiple cri-
teria in the literature of machine vision for spectral selection
based on analysis of high-resolution spectra [8–16] recently
reviewed in [17]. The most common in plant sciences (see
for a typical example [18]) are transformations of the spectral
information contained in every pixel into one or more com-
ponents that relate directly to sample properties of interest.
This includes vegetation indices (see [19,20] for reviews) or
linear combination of all the components based on statistical
criteria such as done in partial least square analysis PLS (see
[21,22] for the statistical principle) or canonical discriminant
analysis (CDA) for classification purposes. Both approaches
have some intrinsic limitations. Vegetation indices, among
which the normalized difference vegetation index (NDVI),
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are mainly computed with differences and ratios. Such veg-
etation indices are known to show some saturation noise
with pixels randomly giving extreme values although none
of the native acquired images are actually saturated. The
PLS and CDA methods produce a linear filter combination
of all the hyperspectral spectral bands into a single mono-
component image. The method requires that all the spectral
components are first individually measured by a sophisti-
cated hyperspectral camera, and then optimally combined in
a digital computer to form a single monocomponent image.
As a result, the approach is difficult to implement physically
when coefficients of the combination are negative or vary
very sharply along the spectrum. As a useful alternative, one
could wish to directly measure one or a few efficient spec-
tral combinations, with specifically designed and physically
fast implementable sensors. Such an approach would sub-
stitute the use of a general-purpose sophisticated yet slow
hyperspectral camera, by low-cost dedicated sensors opti-
mized for specific imaging tasks. In this article, we propose
such an approach to perform dimensionality reduction of
broadband spectra in the presence of physical constraints. A
comparable concern of selecting physically implementable
optical filters is addressed in [17]. Filter selection in [17]
is addressed as a feature selection problem and tackled by
machine learning approaches, with a binary feature produced
by thresholding each filter output to implement a classi-
fication based on various similarity measures. By contrast
here, we test another informational criterion based on the
Kullback–Leibler divergence, which does not use threshold
binarization for the spectral representation and offers some-
how a generic low-level contrast measure free of higher-level
assumptions required in machine learning. Our approach is
illustrated in several imaging situations, involving different
samples of biological interest raising difficult informational
tasks to the human eye, and showing the benefit of the opti-
mal spectral band selection from our information–theoretic
criterion.

2 Information criterion

In this section, we briefly present the statistical information
model of light spectrum recently introduced in [23] that we
extend to another informational metric adapted to the imag-
ing situations addressed in the following sections.

Let the light be collected by a sensor incorporating a set
of photodetectors of M distinct types labeled by index i .
Photodetector i integrates the energy contained in the inci-
dent light spectrum S(λ) weighted by the spectral sensitivity
fi (λ) of the photodetector to output a scalar measurement.
We consider that each photon with wavelength λ falling on
the sensor has a probability fi (λ) of being detected by a pho-
todetector i . The probability fi (λ) is wavelength-dependent

to account for awavelength-dependent spectral sensitivity for
each photodetector i .When a very large number N of photons
are radiated by the source and fall on the sensor, a fraction
NS(λ)dλ is radiated atwavelengthλ, amongwhich a fraction
fi (λ)NS(λ)dλ is detected by a photodetector i . By integra-
tion over the whole wavelength range [λmin, λmax]where the
input spectrum S(λ) contains energy, the total number Ni of
photons collected by photodetector i comes out as:

Ni =
∫ λmax

λmin

fi (λ)NS(λ)dλ , i = 1, . . . M, (1)

which matches the macroscopic picture of a weighted inte-
gration of the incident light to construct the global response
of the photodetector.

A given sensor with spectral resolution capabilities incor-
porates M distinct photodetector types with M distinct
probabilistic spectral sensitivities fi (λ). Consistency of the
probabilistic description imposes

Pdet(λ) =
M∑
i=1

fi (λ) ≤ 1 (2)

for each λ, where Pdet(λ) in Eq. (2) is the global probability
for an incident photon at λ to be detected by the sensor, alto-
gether by absorption by one of its M internal photodetectors.
In addition,

Plost(λ) = 1 − Pdet(λ) = 1 −
M∑
i=1

fi (λ) (3)

is the probability that an incident photon at λ is missed by
the sensor.

For each photon, we denote by Y the random variable
describing the photodetection event occurring in the sensor.A
photon emitted by the source is emitted at wavelength λwith
the probability S(λ)dλ, and a photon at λ is absorbed by pho-
todetector i with the (conditional) probability P(Y = i |λ) =
fi (λ). By integration over the whole wavelength range, we
obtain the overall probability that a photon emitted by the
source is detected by photodetector i as:

P(Y = i) =
∫ λmax

λmin

fi (λ)S(λ)dλ, i = 1, . . . M, (4)

consistent with the global count Ni of Eq. (1). There is also
a possibility that the photon at λ is missed that we denote
Y = 0, occurring according to Eq. (3) with (conditional)
probability P(Y = 0|λ) = Plost(λ), leading to the overall
probability of a lost photon as:

P(Y = 0) =
∫ λmax

λmin

Plost(λ)S(λ)dλ. (5)
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In this way, the detection of a photon falling on the sensor
is modeled as a random event Y, with M + 1 possible out-
comes, consisting in a detection by photodetector i with the
probability P(Y = i) of Eq. (4) for i = 1 to M , or in a
lost photon with the probability P(Y = 0) of Eq. (5). In a
similar way, the emission of a photon by the light source can
be modeled as a random event X which describes the wave-
length λ at which this photon is emitted, with the outcome
X ∈ [λ, λ + dλ[, or more concisely X = λ, occurring with
probability

Pr{X ∈ [λ, λ + dλ[ } = S(λ)dλ. (6)

In [23], the statistical framework of Eqs. (1)–(6) was used
to compute the Shannonmutual information I (X; Y ), a mea-
sure of similarity between the input and output data. In this
work, we propose to tackle classification tasks from the out-
put data obtained after spectral reduction into M spectral
bands. We will, therefore, consider situations where we want
to maximize the dissimilarity of spectra of different classes
after the spectral selection. To this end, let YA and YB be the
random variable describing the photodetection event occur-
ring in the sensor for two different classes to be separated.
We consider the Kullback–Leibler divergence

K L(P(YA)‖P(YB)) =
M∑
i=0

P(YA(i)) log2

(P(YA(i))/P(YB(i))), (7)

as measure of dissimilarity between YA and YB . The rele-
vance of Kullback–Leibler divergence, which minimizes the
maximum likelihood estimation between an empirical YA

and a reference distribution YB , has been identified for a
long time [24] in problems in statistics. In the following, we
investigate the relevance of this divergence in the statistical
framework of [23] specifically designed for hyperspectral
imaging.

3 Biological samples and information task

We present in this section three informational problems
of biological interest which are hard to solve with non-
optimized approach, i.e., with broad band gray level imaging
or RGB imaging and that we will tackle with low-cost imag-
ing systems designed after spectral selection based on the
information criterion of the previous section.

Thefirst informational problemconsidered is the detection
of the presence/absence of apple scab at the surface of apple
tree leaves. This disease seen as the most serious disease
for apple [25] is caused by the fungus Venturia inaequalis
and requires more than 10 fungicides treatments per year to

Fig. 1 Biological samples considered and informational task associ-
ated. Left is a leaf of apple tree inoculated on four known areas. The
information task consists in the automatic detection of the pixels repre-
senting scab-infected leaf tissue. Middle represents 64 common wheat
grains (top) and 64 durum wheat grains (bottom). The information task
consists in automatically classifying the grains in durum and common.
Right are three seedlings of fodder beet at a stage of development where
there exists a distinction between hypocotyl and radicle. The informa-
tion task consists in segmenting the two organs

be controlled. The importance of early detection of apple
scab has thus triggered the interest for the development of
automatic detection from machine vision. Figure 1 shows an
apple tree leaf which has been inoculated with scab on four
known areas. As illustrated in Fig. 1 (left) and Fig. 2, the scab
infection is difficult to perceive from the contrast in an RGB
image. Therefore, researchers have turned to other imaging
technologies. Thermography [26–28], chlorophyll fluores-
cence and hyperspectral imaging [29] have been shown to be
useful for early detection and quantification of apple scab.

As second informational problem, we considered the
binary classification between durum and common wheat
grains. The durum wheat grains contain the largest amount
of gluten. Their discrimination, possibly fast and automated,
is important especially for control and certification purposes.
Here again, as shown in Fig. 1 (middle) and Fig. 2, the dif-
ference between durum and common wheat is difficult to
perceive from the contrast in an RGB image. This classifica-
tion task has, therefore, also been addressed in the literature
with imaging systems including hyperspectral imaging and
thermal imaging [30–32].

To further illustrate the interest of our approach, we con-
sidered, as third informational problem, the segmentation
of organs in seedling. It is important for plant phenotyp-
ing to identify hypocotyl radicle and cotyledon early after
their formation in the seedlings, and to follow their devel-
opment during seedling elongation. Such observations carry
useful relevance for the better understanding of variations in
plant emergence and for prognosis concerning the adult plant
[33]. This segmentation task, as shown in Fig. 1 (right) and
Fig. 2, is uneasy from RGB images specially the separation
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between radicle and hypocotyl. From Fig. 3, we can see that
the reflectance intensity of the radicle is systematically lower
throughout the spectrum,with a typical difference of 0.2, than
the reflectance intensity of the hypocotyl. This is due to the
long cells (up to 100 µm) present only in the radicle which
increase the absorbing surface for light. The separation of
radicle and hypocotyl has, therefore, been investigated from
thermal contrasts established in [34] and specific inactinic
green light [35] which requires continuous monitoring.

In these three tasks, apple scab detection, durum versus
commonwheat classification and radicle-hypocotyl segmen-
tation, the imaging modalities used in the literature are rather
costly. Given the practical agronomical interest of these
informational tasks, it is important to search for lower-cost
imaging systems and these, therefore, constitute good can-
didates to test the information–theoretic approach presented
in this study.

For each of the three classification problems, a ground
truth is accessible based on prior knowledge. This ground
truth is used to construct the ground-truth images shown in
Fig. 2, and will serve to assess the automated classification
obtained by our information-based image processing proto-
col.

We demonstrate in the following how the informational
criterion of the previous section can efficiently contribute to
solve the three informational problems of Fig. 1. To this end,
we started with the measurement of high-resolution spectra
of the samples presented in Fig. 3. We used an NEO HySpex
hyperspectral camera (http://www.hyspex.no/) capable of
measuring spectrawith 160 equal-width bands over thewave-
length range λ ∈ [λmin = 400 nm, λmax = 1000 nm]
corresponding to a spectral resolution �λ = 3.75 nm, with
a 12-bit quantization. With these hyperspectral images, we
computed, as shown in line 3 of Fig. 3, the average high-

Fig. 2 Ground truth for the information task considered on the biolog-
ical samples of Fig. 1. Left is for the detection of apple scab. Middle
is for the classification of common versus durum wheat. Right is for
the segmentation between radicle and hypocotyl organs in seedlings of
fodder beet

resolution spectra of each class of pixels to be separated in
the three problems of Fig. 1.

The average of this high-resolution spectra is then used to
compute a representation through linear integrationweighted
by a set of spectral sensitivity functions fi (λ) chosen for the
M types of photodetectors. We used a common model of
spectral sensitivity [36–38] according to the Gaussian

fi (λ) = Ai exp

[
−

(
λ − λi

wi

)2
]

, (8)

where λi is the central wavelength and wi the character-
istic bandwidth. This Gaussian sensitivity corresponds for

Fig. 3 Reflectance average spectrum, normalized with a white stan-
dard, for each class of the information task considered on the biological
samples of Fig. 1. Top is for the leaf of apple tree with scab. The gray
levels of the curve in the reflectance spectrum correspond to the gray
levels of the ground truth masks of Fig. 2.Middle is for the durum and
common wheat grains. Bottom is for the seedlings of fodder beet
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Fig. 4 Optimization landscape of the Kullback–Leibler divergence of
Eq. (7) for the apple scab detection problem of Fig. 1 as a function of
the parameters (λ1) center of the spectral Gaussian sensitivity of Eq. 8
and w1 its bandwidth

instance to a good model for the spectral sensitivity of a
broad band photodetector illuminated under large flux of
photons (i.e., not in the Poisson regime) by an LED or illumi-
nated by a flat broad band light source filtered by an optical
bandpass filter. Spectral selection can then be performed by
fixing the number M of allowed photodetectors types and
selecting the Gaussian sensitivities (λi , wi )which maximize
the Kullback–Leibler divergence of Eq. (7). For the three
informational tasks of Fig. 1, we considered without loss
of generality, the reference YB in Eq. (7), respectively, as
the spectrum of the leaf, the spectrum of the durum wheat
and the spectrum of the radicle. The optimization landscape
obtained for a single photodetector (M = 1) in the case
of the apple scab detection problem is given for illustration
in Fig. 4. By selecting the optimal (λi , wi ), we ensure to
maximize the dissimilarity, in the Kullback–Leibler sense,
between each class of pixel at the output of the M photode-
tectors. A key point is that since the spectral sensitivities
adhere to the Gaussian model of Eq. (8), their optimized
versions selected by the informational criterion will usually
represent solutions physically realisable (or closely approxi-
mated) with current optoelectronic technologies. In the same
way, all the results presented in the next section correspond
to solutions ready for real-world transfer.

4 Results

We are now in position to present the results of optimal spec-
tral selection based on our information criterion applied to
the spectra measured from the three biological samples of
Fig. 1.

Table 1 gives, for the apple scab leaf various configura-
tions of spectral reduction including standard references like
the red green blue (RGB) sensitivity of the human eye trichro-
matic response as defined by the International Commission

on Illumination (CIE) [39], the standard RGB to gray con-
version of the human eye response according to the linear
relation of CIE 1931

Gray = 0.2126R + 0.7152G + 0.0722B, (9)

from the human trichromatic RGB responses of CIE, the
normalized difference vegetation index

NDVI = NIR − R

NIR + R
, (10)

with NIR a near infrared spectral band and R a red spec-
tral band, both taken here with the Gaussian sensitivity of
Eq. (8). We also processed the partial least square approach
(PLS), a well-known linear regression adapted to classifica-
tion tasks. PLS acts as a linear filter on the input data, with
coefficients which reflect the covariance between the input
data and the classification results. Similarly, we processed
the normalized canonical discriminant analysis (CDA)which
is also a linear regression adapted to classifications tasks.
CDA acts as a linear filter on the input data, with coefficients
obtained by maximizing the ratio of the dispersion among
classes out of the dispersion within classes. These standard
references are compared to the spectral reduction with one,
two, three or four spectral bandwidths optimized according
to the Kullback–Leibler divergence K–L of Eq. (7). For
an identical number of spectral bands, Table 1 expresses
the information gain in shannons (Sh) obtained with our
approach by comparison with the standard references. Table
1 also quantifies the information gain brought by the increase
of the number of spectral bands. The quantitative records
in shannons, obtained for the configuration with a single
channel, are also found to be in good accordance with the
subjective visual inspection of Fig. 5 by comparison to the
ground truth of Fig. 2. The visual contrast obtained from
the spectral band optimized with the informational criterion
clearly outperforms the contrast from CIE 1931 and NDVI
while it gives similar results to the PLS and CDA filters.
As visible in Fig. 5, the NDVI criterion enhances a small
dark region in the leaf which corresponds to only a part
of the tissue with pathogen. This is the part with a necro-
sis which is known to give an important drop in the near
infrared reflectance spectrum while we identified that the
other areas with the presence of pathogen were not necrotic.
We have realized similar analysis on the other samples of Fig.
1 as shown in Table 2 for the durum versus common wheat
classification task and in Table 3 for the seedling organs seg-
mentation task. Again the quantitative results expressed in
shannons are in accordance with the visual inspection given
in Figs. 6, 7 and the ground truth of Fig. 2. Interestingly, one
can notice that the single band solution for the segmentation
of radicle-hypocotyl in seedling has a larger bandwidth than
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Table 1 ComparisonofKullback–Leibler divergenceK–Lexpressed in
shannons (Sh) for various configurations of spectral reduction computed
from the spectra of the image of apple scab of Fig. 1

λ (nm) w (nm) K–L 10−4

Human eye X X 6

RGB to gray X X 6

PLS X X 0.4

CDA X X 0.1

1 with K–L 760 55 92

2 with K–L 750; 950 50; 50 105

NDVI 750; 975 25; 25 89

3 with K–L 750; 850; 950 50; 50; 25 106

4 with K–L 650; 750; 800 ; 950 25; 25; 25; 50 129

Optimization search is made with a step of 5 nm

for the two other classification problems. This is in accor-
dance with the fact that, in the case of the radicle-hypocotyl
segmentation, the spectral difference between the reflectance
spectrum of the two classes to separate is very broad and
almost constant on all the spectrum considered for the
study.

This is in accordance with the fact that for the spectral dif-
ference between the reflectance spectrum of the two classes
to separate in the case of the radicle-hypocotyl segmenta-
tion is very broad and almost constant on all the spectrum
considered for the study.

To further demonstrate the interest of our information–
theoretic approach, we jointly analyze the coefficient of the
PLS and CDA filters and the coefficients of the optimal
spectral sensitivity f1(λ) for a single bandwidth with the
Kullback–Leibler (K–L) divergence. These are plotted in
Fig. 8 and it appears that the position of the bandwidth giv-
ing the best K–L is positioned in areas where the PLS and
CDA filters have rather large positive coefficients. This is
consistent with the fact that the visual inspection of the gray
level images of Figs. 5, 6 and 7 produced by the K–L cri-
terion, PLS and CDA criteria is visually similar. One can
note that for the apple scab problem the spectrum of the two
classes spectrum are very close at 700 µm but with con-
trasted slopes around this wavelength. The coefficient of the
K–L method is rather small at this wavelength, since there
is no reflectance contrast. Comparatively, the filter coeffi-
cient is rather large with positive and negative values for the
PLS and CDA methods. The fact that PLS and CDA can
use positive and negative coefficients allows to take benefit
of the local contrast in the slope of the spectrum between
the two classes to be separated. Such contrast cannot be
enhanced with the filter obtained from the K–L. However,
this points to a specific interest of our approach, since the
smooth Gaussian bandwidth given by the K–L criterion is
physically implementable while the PLS and CDA filters,

Fig. 5 Visualization for the apple scab problem. First line left RGB to
gray from CIE 1931, right NDVI. Second line single, left bandwidth
optimized with Kullback–Leibler divergence, and right output of the
partial least square filter.Third line, output of the canonical discriminant
analysis

Table 2 ComparisonofKullback–Leibler divergenceK–Lexpressed in
shannons (Sh) for various configurations of spectral reduction computed
from the spectra of the image of durum and common wheat of Fig. 1

λ (nm) w (nm) K–L 10−5

Human eye X X 6

RGB to gray X X 5

PLS X X 0.3

CDA X X 0.1

1 band with K–L 540 50 6

2 bands with K–L 520; 570 25; 25 7

3 bands with K–L 520; 570; 670 25; 25; 25 7

Optimization search is made with a step of 5 nm
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Table 3 ComparisonofKullback–Leibler divergenceK–Lexpressed in
shannons (Sh) for various configurations of spectral reduction computed
from the spectra of the image of seedlings of Fig. 1

λ (nm) w (nm) K–L 10−2

Human eye X X 1.87

RGB to gray X X 1.11

PLS X X 9.7 10−4

CDA X X 2.4 10−4

1 band with K–L 470 75 2.35

2 bands with K–L 470; 620 75; 75 2.89

3 bands with K–L 450; 570; 670 75; 75; 50 3.15

Optimization search is made with a step of 5 nm

Fig. 6 Visualization for the durum and common wheat grain problem.
First line, left RGB to gray from CIE 1931, right single bandwidth
optimized with Kullback–Leibler divergence. Second line, left output
of the partial least square, right output of the canonical discriminant
analysis

with negative coefficients and sharp variations, are very hard
to implement physically. In this perspective, the optimal cou-
ple (wavelength, bandwidth) maximizing K–L is not the only

Fig. 7 Visualization for the segmentation of organs of seedlings prob-
lem. First line left RGB to gray from CIE 1931, right single bandwidth
optimized with Kullback–Leibler divergence, second line left output of
the partial least square and right output of the canonical discriminant
analysis

value of practical interest. It is also possible to search for
the optimal wavelength for a fixed value of bandwidth cor-
responding to a technological choice. This is illustrated in
Table 4 for the apple scab detection problem with a compari-
son between (i) the absolute optimal solution,(ii) the optimal
solution with a band of 30 nm corresponding to the light-
photodetector association of a broad band camera and LED
panel and (iii) the optimal solution with a band of 5 nm cor-
responding to the association of a broad band light with an
interferometric filter mounted on a broad band camera. It
is, therefore, possible to quantitatively assess the informa-
tional gain of a given technological solution here expressed
in shannons. The LED panel and interferometric filter solu-
tions appear in shannons, respectively, with a reduction by a
factor 0.85 and 1/3 by comparison with the absolute optimal
solution which could be implemented by a large band spec-
trum and a detector mounted with a specifically designed
bandpass filter of 55 nm of bandwidth.
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Fig. 8 Comparison of optimal spectral sensitivities selected for a sin-
gle photodetector by the Kullback–Leibler divergence (red line), the
coefficients of the PLS filter (green line) and the coefficient of the CDA
filter (blue line). Top for the apple scab detection problem, middle for
the durum and common wheat grain classification and bottom with the
seedling organs segmentation problem (color figure online)

To quantitatively assess the informational content of the
imaged produce after spectral selection according to theKull-
back–Leibler divergence, we now demonstrate that it is very
easy to address the informational problems of Fig. 1 with
simple hard thresholding detectors. We consider the case of
single band selection and we apply a threshold with the auto-
mated Otsu method [40]. The detection of apple scab pixels
by comparison with the ground truth gives 99.7% of correct
detection in the healthy tissue and 99.8% in the infected tis-
sue. The classification task of durum versus common wheat
grains gives a rate of 98% of correct classification. The seg-
mentation of radicle and hypocotyl is realized with a rate
of 99.2% of correct classification in the radicle and 98.9%

Table 4 Comparison of informational performance with the Kullback–
Leibler divergence of different optimal solutions with a single Gaussian
band selection with different technological solutions

1 band with K–L λ (nm) w (nm) K–L 10−3

Optimal 760 55 9.2

LED 750 30 7.9

Interfometric filter 750 10 3.7

Fig. 9 Results of anOtsu threshold applied on the image acquiredwith
a single spectral band optimized with the Kullback–Leibler divergence.
This is to be compared with the ground truth of Fig. 2. Left detected
apple-scab in dark gray, middle classified durum wheat in dark gray
and right segmented radicle in dark gray

in the hypocotyl. Similar results are found when the same
Otsu automated thresholdmethod is applied on the gray level
images produced by the PLS and CDA method. But, again,
the superiority of our waveband selection criterion is in the
simplicity of its physical implementationwith low-cost opto-
electronic devices. The quality of the results, visible in Fig. 9,
obtained with a single spectral band low-cost system based
on the K–L criterion, has to be appreciated with the fact that
these three informational tasks are hardly feasible from a
human visual inspection and have previously been tackled in
literature with high-cost imaging systems.

5 Conclusion

We presented a general informational methodology based on
the Kullback–Leibler divergence for the selection of wave-
bands used in spectral imaging of plants. We illustrated the
value of our approach with three plant imaging problems
hard to solve with standard color or gray level imaging. The
experimental results are shown to be in agreement with state-
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of-the-art spectral reduction approaches like the PLS or the
CDA filters. The specific interest of our approach is that the
proposed solutions are implementable physically with low-
cost LEDpanels, or filterswhile thePLSfilter requires the use
of high-cost hyperspectral imaging systems. Also, the band
selection is realized with adjustable bandwidth while usual
band selections are realized with fixed bandwidth [41]. This
constitutes an extension of the statistical approach recently
initiated in [23] with another informational criterion max-
imizing the information transfer in the sense of Shannon’s
information theory and which is demonstrated to be efficient
also for information detection (Fig. 9).

This opens multiple perspectives. The results obtained
produce an interesting practical solution for the design of
machine vision applied in proximal detection for plant sci-
ences. The three classification problems addressed here were
realized on a small cohort of samples and it would be
important to increase the amount of data for the design of
a robust waveband selection and include independent val-
idation between training and test samples. However, the
principle illustrated in this article remains the same for larger
data set. We focused here on binary classification tasks for
which a single snapshot with an optimized waveband based
on an informational criterion can enhance the contrast and
make the classification trivial. This is an important configu-
ration since this corresponds to the lowest possible cost for
an imaging system.Also this enabled us to draw comparisons
with other generic approacheswhich also end upwith a single
component gray level image. Our informational approach is,
however, not restricted to a single wavelength selection and
can address any spectral reduction problem. In this study,
we considered spectra assumed to be fixed with time. When
monitoring plants along the development of pathogens, or
during the growth process, it is very likely that the spectra
of pathogens and healthy tissue or the spectra of different
organs of plants will evolve during time. It would, therefore,
be interesting to consider the problem of selecting optimal
wavelengths to follow a spectral evolution process with a
limited number of wavelengths. Also, it would be interesting
to specify the wavelengths that would enable to date a spec-
tral evolution signature in time. In this work, we established
the best bands from experimental data; it would also be pos-
sible to work on simulated hyperspectral reflectance. Such
a numerical model has recently been made available online
with the website [42] for leaves with possibility to simulate
a drop in the major pigments.
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