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Quantum information,

quantum computation :

An introduction.

François CHAPEAU-BLONDEAU

LARIS, Université d’Angers, France.

“I believe that science is not simply a matter of exploring new horizons. One must also make the new

knowledge readily available, and we have in this work a beautiful example of such a pedagogical effort.”
Claude Cohen-Tannoudji, in foreword to the book “Introduction to Quantum Optics”
by G. Grynberg, A. Aspect, C. Fabre ; Cambridge University Press 2010.
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A definition (at large)

To exploit quantum properties and phenomena

for information processing and computation.

Motivations for the quantic

for information and computation :

1) When using elementary systems (photons, electrons, atoms, ions,

nanodevices, . . . ).

2) To benefit from purely quantum effects (parallelism, entanglement, . . . ).

3) Recent field of research, rich of large potentialities (science & technology).
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Some basic textbooks

M. Nielsen & I. Chuang E. Desurvire M. Wilde

2000, 676 pages 2009, 691 pages 2017, 757 pages

arXiv:1106.1445v8 [quant-ph] M. Wilde, “From classical to quantum Shannon theory”, 774 pages.
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Quantum system
Represented by a state vector |ψ〉
in a complex Hilbert spaceH ,

with unit norm 〈ψ|ψ〉 = ‖ψ‖2 = 1.

In dimension 2 : the qubit (photon, electron, atom, . . . )

State |ψ〉 = α |0〉 + β |1〉
in some orthonormal basis {|0〉 , |1〉} ofH2,

with complex α, β ∈  such that |α|2 + |β|2 = 〈ψ|ψ〉 = ‖ψ‖2 = 1.

|ψ〉 =
[
α

β

]
, |ψ〉† = 〈ψ| = [α∗, β∗] =⇒ 〈ψ|ψ〉 = ‖ψ‖2 = |α|2 + |β|2 scalar.

|ψ〉 〈ψ| =
[
α

β

]
[α∗, β∗] =

[
αα∗ αβ∗

α∗β ββ∗

]
= Πψ orthogonal projector on |ψ〉.
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Measurement of the qubit

When a qubit in state |ψ〉 = α |0〉 + β |1〉
is measured in the orthonormal basis {|0〉 , |1〉},

=⇒ only 2 possible outcomes (Born rule) :

state |0〉 with probability |α|2 = | 〈0|ψ〉 |2 = 〈ψ|0〉〈0|ψ〉 = 〈ψ|Π0|ψ〉, or

state |1〉 with probability |β|2 = | 〈1|ψ〉 |2 = 〈ψ|1〉〈1|ψ〉 = 〈ψ|Π1|ψ〉.

Quantum measurement : usually :

• a probabilistic process,

• as a destructive projection of the state |ψ〉 in an orthonormal basis,

• with statistics evaluable over repeated experiments with same preparation |ψ〉.
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Hadamard basis

Another orthonormal basis ofH2
{
|+〉 = 1

√
2

(
|0〉 + |1〉

)
; |−〉 = 1

√
2

(
|0〉 − |1〉

) }
.

⇐⇒ Computational orthonormal basis
{
|0〉 = 1

√
2

(
|+〉 + |−〉

)
; |1〉 = 1

√
2

(
|+〉 − |−〉

) }
.

|0〉

|1〉

|+〉

|−〉

π/4
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Experiments

Stern-Gerlach apparatus for particles with two states of spin (electron, atom).

Two states of polarization of a photon :

(Nicol prism, Glan-Thompson,

polarizing beam splitter, . . . )
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Bloch sphere representation of the qubit

Qubit in state

|ψ〉 = α |0〉 + β |1〉 with |α|2 + |β|2 = 1.

⇐⇒ |ψ〉 = cos(θ/2) |0〉 + eiϕ sin(θ/2) |1〉

with θ ∈ [0, π] ,

ϕ ∈ [0, 2π[ .

Two states ⊥ inH2 are antipodal on sphere.

As a quantum object,

the qubit has infinitely many accessible values

in its two continuous degrees of freedom (θ, ϕ),

yet when it is measured it can only be found in one of two states.
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In dimension N (finite) (extensible to infinite dimension)

State |ψ〉 =
N∑

n=1

αn |n〉 , in some orthonormal basis
{
|1〉 , |2〉 , . . . |N〉

}
ofHN ,

with αn ∈  , and

N∑

n=1

|αn|2 = 〈ψ|ψ〉 = 1.

Proba. Pr{|n〉} = |αn|2 in a projective measurement of |ψ〉 in basis
{
|n〉

}
.

Inner product 〈k|ψ〉 =
N∑

n=1

αn

δkn︷︸︸︷
〈k|n〉 = αk coordinate.

S =

N∑

n=1

|n〉 〈n| = IN identity ofHN (closure or completeness relation),

since, ∀ |ψ〉 : S |ψ〉 =
N∑

n=1

|n〉
αn︷︸︸︷
〈n|ψ〉 =

N∑

n=1

αn |n〉 = |ψ〉 =⇒ S = IN .



10/111

Multiple qubits

A system (a word) of N qubits has a state inH⊗N
2

,

a tensor-product vector space with dimension 2N ,

and orthonormal basis {|x1x2 · · · xN〉}
~x ∈ {0, 1}N

.

Example N = 2 :

Generally |ψ〉 = α00 |00〉 + α01 |01〉 + α10 |10〉 + α11 |11〉 (2N coord.).

Or, as a special separable state (2N coord.)

|φ〉 =
(
α1 |0〉 + β1 |1〉

)
⊗

(
α2 |0〉 + β2 |1〉

)

= α1α2 |00〉 + α1β2 |01〉 + β1α2 |10〉 + β1β2 |11〉 .

A multipartite state which is not separable is entangled.

An entangled state behaves as a nonlocal whole : what is done on one part may

influence the other part instantly, no matter how distant they are.
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Entangled states

• Example of a separable state of two qubits AB :

|AB〉 = |+〉 ⊗ |+〉 = 1
√

2

(
|0〉 + |1〉

)
⊗ 1
√

2

(
|0〉 + |1〉

)
=

1

2

(
|00〉 + |01〉 + |10〉 + |11〉

)
.

When measured in the basis {|0〉 , |1〉}, each qubit A and B can be found in state |0〉 or |1〉
independently with probability 1/2.

Pr{A in |0〉} = Pr{|AB〉 = |00〉} + Pr{|AB〉 = |01〉} = 1/4 + 1/4 = 1/2.

• Example of an entangled state of two qubits AB :

|AB〉 = 1
√

2

(
|00〉 + |11〉

)
. Pr{A in |0〉} = Pr{|AB〉 = |00〉} = 1/2.

When measured in the basis {|0〉 , |1〉}, each qubit A and B can be found in state |0〉 or |1〉
with probability 1/2 (randomly, no predetermination before measurement).

But if A is found in |0〉 necessarily B is found in |0〉,
and if A is found in |1〉 necessarily B is found in |1〉,
no matter how distant the two qubits are before measurement.

12/111

Bell basis

A pair of qubits inH⊗2
2

is a quantum system with dimension 22
= 4,

with original (computational) orthonormal basis
{
|00〉 , |01〉 , |10〉 , |11〉

}
.

Another orthonormal basis ofH⊗2
2

is the Bell basis
{
|β00〉 , |β01〉 , |β10〉 , |β11〉

}
:



|β00〉 =
1
√

2

(
|00〉 + |11〉

)

|β01〉 =
1
√

2

(
|01〉 + |10〉

)

|β10〉 =
1√
2

(
|00〉 − |11〉

)

|β11〉 =
1
√

2

(
|01〉 − |10〉

)

⇐⇒



|00〉 =
1
√

2

(
|β00〉 + |β10〉

)

|01〉 =
1
√

2

(
|β01〉 + |β11〉

)

|10〉 =
1√
2

(
|β01〉 − |β11〉

)

|11〉 =
1
√

2

(
|β00〉 − |β10〉

)

13/111

Observables
For a quantum system in spaceHN with dimension N,

a projective measurement is defined by an orthonormal basis {|1〉 , . . . |N〉} ofHN ,

and the N orthogonal projectors |n〉 〈n|, for n = 1 to N.

Also, any Hermitian (i.e. Ω = Ω†) operator Ω onHN ,

has its eigenstates forming an orthonormal basis {|ω1〉 , . . . |ωN〉} ofHN .

Therefore, any Hermitian operator Ω onHN defines a valid measurement,

and has a spectral decomposition Ω =

N∑

n=1

ωn |ωn〉 〈ωn| , with the real eigenvalues ωn.

Also, any physical quantity measurable on a quantum system is represented in quantum

theory by a Hermitian operator (an observable) Ω.

When system in state |ψ〉, measuring observable Ω is equivalent to performing a projec-

tive measurement in eigenbasis {|ωn〉}, with projectors |ωn〉 〈ωn| = Πn, and yields the

eigenvalue ωn with probability Pr{ωn} = | 〈ωn|ψ〉 |2 = 〈ψ|ωn〉 〈ωn |ψ〉 = 〈ψ|Πn|ψ〉.

The average is 〈Ω〉 = ∑
n ωn Pr{ωn} = 〈ψ|Ω|ψ〉 .
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Heisenberg uncertainty relation (1/2)

For two operators A and B : commutator [A,B] = AB − BA ,

anticommutator {A,B} = AB + BA ,

so that AB =
1

2
[A,B] +

1

2
{A,B} .

When A and B Hermitian : [A,B] is antiHermitian and {A,B} is Hermitian,

and for any |ψ〉 then 〈ψ|[A,B]|ψ〉 ∈ i and 〈ψ|{A,B}|ψ〉 ∈  ; then

〈ψ|AB|ψ〉 = 1

2
〈ψ|[A,B]|ψ〉︸        ︷︷        ︸
imaginary (part)

+
1

2
〈ψ|{A,B}|ψ〉︸        ︷︷        ︸

real (part)

=⇒
∣∣∣〈ψ|AB|ψ〉

∣∣∣2 ≥ 1

4

∣∣∣〈ψ|[A,B]|ψ〉
∣∣∣2 ;

and for two vectors A |ψ〉 and B |ψ〉, the Cauchy-Schwarz inequality is∣∣∣〈ψ|AB|ψ〉
∣∣∣2 ≤ 〈ψ|A2|ψ〉 〈ψ|B2|ψ〉 ,

so that 〈ψ|A2|ψ〉 〈ψ|B2|ψ〉 ≥ 1

4

∣∣∣〈ψ|[A,B]|ψ〉
∣∣∣2 .
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Heisenberg uncertainty relation (2/2)

For two observables A and B measured in state |ψ〉 :

the average (scalar) : 〈A〉 = 〈ψ|A|ψ〉 ,

the centered or dispersion operator : Ã = A − 〈A〉 I ,

=⇒
〈
Ã2

〉
= 〈A2〉 − 〈A〉2 scalar variance,

also [Ã, B̃] = [A,B] .

Whence
〈
Ã2

〉 〈
B̃2

〉
≥ 1

4

∣∣∣〈[A,B]〉
∣∣∣2 Heisenberg uncertainty relation ;

or with the scalar dispersions ∆A =
(
〈Ã2〉

)1/2
and ∆B =

(
〈B̃2〉

)1/2
,

then ∆A∆B ≥ 1

2

∣∣∣〈[A,B]〉
∣∣∣ Heisenberg uncertainty relation.
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Computation on a qubit

Through a unitary (linear) operator U onH2 (a 2 × 2 matrix) : (i.e. U−1
= U† )

normalized vector |ψ〉 ∈ H2 −→ U |ψ〉 normalized vector ∈ H2 .

≡ quantum gate

(always reversible)

input

|ψ〉 U

output

U|ψ〉

Hadamard gate H =
1
√

2

[
1 1

1 −1

]
. Identity gate I2 =

[
1 0

0 1

]
.

H2
= I2 ⇐⇒ H−1

= H = H† Hermitian unitary.

H |0〉 = |+〉 and H |1〉 = |−〉

=⇒ H |x〉 = 1
√

2

(
|0〉 + (−1)x |1〉

)
=

1
√

2

∑

z∈{0,1}
(−1)xz |z〉 , ∀ x ∈ {0, 1}.
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Pauli gates

X = σx =

[
0 1

1 0

]
, Y = σy =

[
0 −i

i 0

]
, Z = σz =

[
1 0

0 −1

]
.

X2
= Y2

= Z2
= I2 . Hermitian unitary. XY = −YX = iZ, ZX = iY, etc.

{
I2,X,Y,Z

}
a basis for operators onH2.

Hadamard gate H =
1
√

2

(
X + Z

)
.

X = σx the inversion or Not quantum gate. X |0〉 = |1〉, X |1〉 = |0〉.

W =
√

X =
√
σx =

1

2

[
1 + i 1 − i

1 − i 1 + i

]
=

1
√

2

[
eiπ/4 e−iπ/4

e−iπ/4 eiπ/4

]
=⇒ W2

= X ,

square-root of Not, (or W†), typically quantum gate (no classical analogue).
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In general, the gates U and eiφU give the same measurement statistics at the

output, and are thus physically equivalent, in this respect.

Any single-qubit gate can always be expressed as eiφUξ with

Uξ = exp

(
−i
ξ

2
~n · ~σ

)
= cos

(
ξ

2

)
I2 − i sin

(
ξ

2

)
~n · ~σ ∈ SU(2) ,

with a formal “vector” of 2 × 2 matrices ~σ = [σx, σy, σz],

and ~n = [nx, ny, nz]
⊤ a real unit vector of 3

=⇒ det(Uξ) = 1,

implementing in the Bloch sphere representation

a rotation of the qubit state of an angle ξ around the axis ~n in 3 ∈ SO(3).

Example : W =
√
σx = eiπ/4

[
cos(π/4) I2 − i sin(π/4)σx

]
, (ξ = π/2, ~n = ~ex).
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An optical implementation

A one-qubit phase gate Uξ =


1 0

0 eiξ

 = eiξ/2 exp(−iξσz/2)

optically implemented by a Mach-Zehnder interferometer

phase shift ξ

in

out

|0〉

|1〉

acting on individual photons with two states of polarization |0〉 and |1〉
which are selectively shifted in phase,

to operate as well on any superposition α |0〉 + β |1〉 −→ α |0〉 + βeiξ |1〉 .
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Computation on a pair of qubits

Through a unitary operator U onH⊗2
2

(a 4 × 4 matrix) :

normalized vector |ψ〉 ∈ H⊗2
2
−→ U |ψ〉 normalized vector ∈ H⊗2

2
.

≡ quantum gate

(always reversible)

input

|ψ〉 U

output

U|ψ〉

Completely defined for instance by the transformation of the four state vectors

of the computational basis
{
|00〉 , |01〉 , |10〉 , |11〉

}
.

But works equally on any linear superposition of quantum states

=⇒ quantum parallelism.
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• Example : Controlled-Not gate

Via the XOR binary function : a ⊕ b = a when b = 0, or = a when b = 1 ;

invertible a ⊕ x = b⇐⇒ x = a ⊕ b = b ⊕ a.

Used to construct a unitary invertible quantum C-Not gate :

(T target, C control)

|CT 〉

T

C

|C,C ⊕ T 〉

C ⊕ T

C

U =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



|CT 〉 −→ |C,C ⊕ T 〉
|00〉 −→ |00〉
|01〉 −→ |01〉
|10〉 −→ |11〉
|11〉 −→ |10〉

(C-Not)2
= I4 ⇐⇒ (C-Not)−1

= C-Not = (C-Not)† Hermitian unitary.
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Computation on a system of N qubits

Through a unitary operator U onH⊗N
2

(a 2N × 2N matrix) :

normalized vector |ψ〉 ∈ H⊗N
2
−→ U |ψ〉 normalized vector ∈ H⊗N

2
.

≡ quantum gate : N input qubits
U−−−−−−−→ N output qubits.

Completely defined for instance by the transformation of the 2N state vectors

of the computational basis ;

but works equally on any linear superposition of them (parallelism).

Any N-qubit quantum gate or circuit can always be obtained

from two-qubit C-Not gates and single-qubit gates (universality).

And in principle this ensures experimental realizability.

This provides a foundation for quantum computation.
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No cloning theorem (1982)

¿ Possibility of a circuit (a unitary U) that would take any state |ψ〉, associated with

an auxiliary register |s〉, to transform the input |ψ〉 |s〉 into the cloned output |ψ〉 |ψ〉 ?

|ψ1〉 |s〉
U−−−−−→ U(|ψ1〉 |s〉) = |ψ1〉 |ψ1〉 (would be).

|ψ2〉 |s〉
U−−−−−→ U(|ψ2〉 |s〉) = |ψ2〉 |ψ2〉 (would be).

Linear superposition |ψ〉 = α1 |ψ1〉 + α2 |ψ2〉

|ψ〉 |s〉 U−−−−−→ U(|ψ〉 |s〉) = U
(
α1 |ψ1〉 |s〉 + α2 |ψ2〉 |s〉

)

= α1 |ψ1〉 |ψ1〉 + α2 |ψ2〉 |ψ2〉 since U linear.

But |ψ〉 |ψ〉 = |ψ〉 ⊗ |ψ〉 =
(
α1 |ψ1〉 + α2 |ψ2〉

)(
α1 |ψ1〉 + α2 |ψ2〉

)

= α2
1 |ψ1〉 |ψ1〉 + α1α2 |ψ1〉 |ψ2〉 + α1α2 |ψ2〉 |ψ1〉 + α2

2 |ψ2〉 |ψ2〉
, U(|ψ〉 |s〉) in general. =⇒ No cloning U possible.
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Quantum parallelism

For a system of N qubits,

a quantum gate is any unitary operator U fromH⊗N
2

ontoH⊗N
2

.

The quantum gate U is completely defined

by its action on the 2N basis states ofH⊗N
2

:
{
|~x〉 , ~x ∈ {0, 1}N

}
,

just like a classical gate.

Yet, the quantum gate U can be operated

on any linear superposition of the basis states
{
|~x〉 , ~x ∈ {0, 1}N

}
.

This is quantum parallelism, with no classical analogue.
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Parallel evaluation of a function (1/4)

A classical Boolean function f (·) from N bits to 1 bit

~x ∈ {0, 1}N −−−−−→ f (~x) ∈ {0, 1}.

Used to construct a unitary operator U f as an invertible f -controlled gate :

Uf

~x ~x

y y ⊕ f (~x)

with binary output y ⊕ f (~x) = f (~x) when y = 0, or = f (~x) when y = 1,

(invertible as [y ⊕ f (~x)] ⊕ f (~x) = y ⊕ f (~x) ⊕ f (~x) = y ⊕ 0 = y ).
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Parallel evaluation of a function (2/4)

Toffoli gate or Controlled-Controlled-Not gate or CC-Not quantum gate :

|a〉

|b〉

|c〉

|a⊕ bc〉

|b〉

|c〉

(CC-Not)2
= I8 ⇐⇒ (CC-Not)−1

= CC-Not = (CC-Not)† Hermitian unitary.

Any classical Boolean function f (~x) (invertible or non) on N bits

can always be implemented (simulated) by means of 3-qubit Toffoli gates.

|1〉

|x〉

|y〉

|x↑y〉

|x〉

|y〉

NAND

|1〉

|x〉

|1〉

|x〉

|x〉

|1〉

NOT

|0〉

|x〉

|y〉

|x∧y〉

|x〉

|y〉

AND
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Parallel evaluation of a function (3/4)

Uf

~x ~x

y y ⊕ f (~x)

For every basis state |~x〉, with ~x ∈ {0, 1}N :

|~x 〉 |y = 0〉
U f

−−−−−−−−−−−−→ |~x 〉 | f (~x)〉

|~x 〉 |y = 1〉 −−−−−−−−−−−−→ |~x 〉
∣∣∣∣ f (~x)

〉

|~x 〉 |+〉 −−−−−−−−−−−−→ |~x 〉 1
√

2

[
| f (~x)〉 +

∣∣∣∣ f (~x)
〉]
= |~x 〉 |+〉

|~x 〉 |−〉 −−−−−−−−−−−−→ |~x 〉 1
√

2

[
| f (~x)〉 −

∣∣∣∣ f (~x)
〉]
= |~x 〉 |−〉 (−1) f (~x)
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Parallel evaluation of a function (4/4)

|+〉⊗N

|y〉

Uf

~x ~x

y y ⊕ f (~x)

|+〉⊗N
=

(
1
√

2

)N ∑

~x∈{0,1}N
|~x 〉 superposition of all basis states,

|+〉⊗N ⊗ |0〉
U f

−−−−−−−→
(

1
√

2

)N∑

~x∈{0,1}N
|~x 〉 | f (~x) 〉 superposition of all values f (~x).

|+〉⊗N ⊗ |−〉
U f

−−−−−−−→
(

1
√

2

)N∑

~x∈{0,1}N
|~x 〉 |−〉 (−1) f (~x)

¿ How to extract, to measure, useful informations from superpositions ?
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Deutsch-Jozsa algorithm (1992) : Parallel test of a function (1/5)

A classical Boolean function f (·)
∣∣∣∣∣
{0, 1}N −→ {0, 1}

2N values −→ 2 values,

can be constant (all inputs into 0 or 1) or balanced (equal numbers of 0, 1 in output).

Classically : Between 2 and
2N

2
+ 1 evaluations of f (·) to decide.

Quantumly : One evaluation of f (·) is enough (on a suitable superposition).

Lemma 1 : H |x〉 = 1
√

2

(
|0〉 + (−1)x |1〉

)
=

1
√

2

∑

z∈{0,1}
(−1)xz |z〉 , ∀ x ∈ {0, 1}

=⇒ H⊗N |~x 〉 = H |x1〉 ⊗ · · · ⊗ H |xN〉 =


1
√

2


N∑

~z∈{0,1}N
(−1)~x~z |~z 〉 , ∀ ~x ∈ {0, 1}N ,

with scalar product ~x~z = x1z1 + · · · + xNzN modulo 2. (quant. Hadamard transfo.)
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Deutsch-Jozsa algorithm (2/5)

|+〉⊗N

|−〉

H⊗N

Uf

~x ~x

y y ⊕ f (~x)

|ψ1〉 |ψ2〉 |ψ3〉

Input state |ψ1〉 = |+〉⊗N |−〉 =
(

1
√

2

)N ∑

~x∈{0,1}N
|~x 〉 |−〉

Internal state |ψ2〉 =
(

1
√

2

)N∑

~x∈{0,1}N
|~x 〉 |−〉 (−1) f (~x)
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Deutsch-Jozsa algorithm (3/5)

Output state |ψ3〉 =
(
H⊗N ⊗ I2

)
|ψ2〉

=

(
1
√

2

)N∑

~x∈{0,1}N
H⊗N |~x 〉 |−〉 (−1) f (~x)

=

(
1

2

)N∑

~x∈{0,1}N

∑

~z∈{0,1}N
(−1)~x~z |~z 〉 |−〉 (−1) f (~x) by Lemma 1,

or |ψ3〉 = |ψ〉 |−〉 , with |ψ〉 =
(

1

2

)N∑

~z∈{0,1}N
w(~z ) |~z 〉

and the scalar weight w(~z ) =
∑

~x∈{0,1}N
(−1) f (~x)⊕ ~x~z
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Deutsch-Jozsa algorithm (4/5)

So |ψ〉 = 1

2N

∑

~z∈{0,1}N
w(~z ) |~z 〉 with w(~z ) =

∑

~x∈{0,1}N
(−1) f (~x)⊕ ~x~z .

For |~z 〉 = |~0 〉 = |0〉⊗N then w(~z = ~0 ) =
∑

~x∈{0,1}N
(−1) f (~x) .

•When f (·) constant : w(~z = ~0 ) = 2N(−1) f (~0)
= ±2N

=⇒ in |ψ〉 the amplitude of |~0 〉 is

±1, and since |ψ〉 is with unit norm =⇒ |ψ〉 = ± |~0 〉, and all other w(~z , ~0 )=0.

=⇒When |ψ〉 is measured, N states |0〉 are found.

•When f (·) balanced : w(~z = ~0 ) = 0 =⇒ |ψ〉 is not or does not contain state |~0 〉.
=⇒When |ψ〉 is measured, at least one state |1〉 is found.

−→ Illustrates quantum ressources of parallelism, coherent superposition, interference.

(When f (·) is neither constant nor balanced, |ψ〉 contains a little bit of |~0 〉.)
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Deutsch-Jozsa algorithm (5/5)

[1] D. Deutsch; “Quantum theory, the Church-Turing principle and the universal quantum

computer”; Proceedings of the Royal Society of London A 400 (1985) 97–117.

The case N = 2.

[2] D. Deutsch, R. Jozsa; “Rapid solution of problems by quantum computation”; Proceedings of

the Royal Society of London A 439 (1992) 553–558.

Extension to arbitrary N ≥ 2.

[3] E. Bernstein, U. Vazirani; “Quantum complexity theory”; SIAM Journal on Computing 26

(1997) 1411–1473.

Extension to f (~x) = ~a~x or f (~x) = ~a~x ⊕ b, to find binary N-word ~a −→ by producing output

|ψ〉 = |~a 〉.

[4] R. Cleve, A. Ekert, C. Macchiavello, M. Mosca; “Quantum algorithms revisited”; Proceedings

of the Royal Society of London A 454 (1998) 339–354.
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Superdense coding (Bennett 1992) : exploiting entanglement

Alice and Bob share a qubit pair in entangled state |AB〉 = 1
√

2

(
|00〉 + |11〉

)
= |β00〉.

Alice chooses two classical bits, used to encode by applying to her qubit A

one of {I2,X, iY,Z}, delivering the qubit A′ sent to Bob.

Alice Bob
2 cbits I2

X

iY

Z

Decoder
2 cbits1 qbit A′

2 entangled qubits|AB〉

A
B

I2 ⊗ I2 |AB〉 = |β00〉
X ⊗ I2 |AB〉 = |β01〉
Z ⊗ I2 |AB〉 = |β10〉
iY ⊗ I2 |AB〉 = |β11〉

Bob receives this qubit A′. For decoding, Bob measures |A′B〉 in the Bell basis{
|β00〉 , |β01〉 , |β10〉 , |β11〉

}
, from which he recovers the two classical bits.
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Teleportation (Bennett 1993) : of an unknown qubit state (1/3)

Qubit Q in unknown arbitrary state |ψQ〉 = α0 |0〉 + α1 |1〉.
Alice and Bob share a qubit pair in entangled state |AB〉 = 1

√
2

(
|00〉 + |11〉

)
= |β00〉.

Alice Bob|ψQ〉
Measurement
in Bell basis
{|βxy〉}

2 cbits

y x

Xy Zx

|ψQ〉
2 entangled qubits|AB〉

A

B

|ψ1〉 |ψ2〉

Alice measures the pair of qubits QA in the Bell basis (so |ψQ〉 is locally destroyed),

and the two resulting cbits x, y are sent to Bob.

Bob on his qubit B applies the gates Xy and Zx which reconstructs |ψQ〉.
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Teleportation (2/3)

|ψ1〉 = |ψQ〉 |β00〉 =
1
√

2

[
α0 |0〉

(
|00〉 + |11〉

)
+ α1 |1〉

(
|00〉 + |11〉

)]

=
1
√

2

[
α0 |000〉 + α0 |011〉 + α1 |100〉 + α1 |111〉

]
,

factorizable as |ψ1〉 =
1

2

[
1
√

2

(
|00〉 + |11〉

)(
α0 |0〉 + α1 |1〉

)
+

1
√

2

(
|01〉 + |10〉

)(
α0 |1〉 + α1 |0〉

)
+

1
√

2

(
|00〉 − |11〉

)(
α0 |0〉 − α1 |1〉

)
+

1
√

2

(
|01〉 − |10〉

)(
α0 |1〉 − α1 |0〉

)]
,
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Teleportation (3/3)

|ψ1〉 =
1

2

[
|β00〉

(
α0 |0〉 + α1 |1〉

)
+ |β01〉

(
α0 |1〉 + α1 |0〉

)
+

|β10〉
(
α0 |0〉 − α1 |1〉

)
+ |β11〉

(
α0 |1〉 − α1 |0〉

)]
.

The first two qubits QA measured in Bell basis {|βxy〉} yield the two cbits xy,

used to transform the third qubit B by Xy then Zx, which reconstructs |ψQ〉.

When QA is measured in |β00〉 then B is in α0 |0〉 + α1 |1〉
I2−−−→ · I2−−−→ |ψQ〉

When QA is measured in |β01〉 then B is in α0 |1〉 + α1 |0〉
X−−−→ · I2−−−→ |ψQ〉

When QA is measured in |β10〉 then B is in α0 |0〉 − α1 |1〉
I2−−−→ · Z−−−→ |ψQ〉

When QA is measured in |β11〉 then B is in α0 |1〉 − α1 |0〉
X−−−→ · Z−−−→ |ψQ〉.
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Princeps references on superdense coding . . .

[1] C. H. Bennett, S. J. Wiesner; “Communication via one- and two-particle operators on

Einstein-Podolsky-Rosen states”; Physical Review Letters 69 (1992) 2881–2884.

[2] K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger; “Dense coding in experimental

quantum communication”; Physical Review Letters 76 (1996) 4656–4659.

. . . and teleportation

[3] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters; “Teleporting an

unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels”;

Physical Review Letters 70 (1993) 1895–1899.

[4] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger;

“Experimental quantum teleportation”; Nature 390 (1997) 575–579.
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Grover quantum search algorithm (1/4) Phys. Rev. Let. 79 (1997) 325.

• Iterative algorithm that finds an item out of N in an unsorted dataset,

with O(
√

N) queries instead of O(N) classically.

• A dataset contains N possible items or states indexed by n ∈ {1, 2, · · ·N}. One wants to find one

(only one here, but extensible) state n = n0 satisfying some criterion or property. For the search of

the solution n0, one can test whether any state n is solution or not, by interrogating a classical

oracle, which amounts to evaluate a classical function f (·) responding as f (n) = δnn0 .

For this, we note that the oracle does not need to know or to establish the solution n0, but it needs to

be able to evaluate (efficiently at low computing cost) at each n the function f (n) so as to tell

whether the proposed n is solution or not.

For instance, for the RSA factoring problem, the oracle does not need to know the two prime factors

of the large integer key ; the oracle only needs to be able to tell efficiently whether a query integer n

is a factor or not, i.e. whether the query integer n divides the key or not. The oracle can do this

efficiently by computing the integer division to implement f (·).

Classically, for such search based on interrogating the oracle, it requires O(N) interrogations of

the classical oracle in order to find the solution n0.
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Grover quantum search algorithm (2/4)

• Quantumly, an N-dimensional quantum system inHN with orthonormal basis {|1〉 , · · · , |N〉},
where the N basis states |n〉, for n ∈ {1, 2, · · ·N}, represent the N items of the dataset.

From a quantum implementation of the function f (·), it is possible to obtain the quantum oracle as

the unitary operator U0 realizing U0 |n〉 = (−1) f (n) |n〉 for any n ∈ {1, 2, · · ·N}.
Thus, the quantum oracle returns its response by reversing the sign of |n〉 when n is the solution n0,

while no change of sign occurs to |n〉 when n is not the solution.

Equivalently U0 = IN − 2 |n0〉〈n0 | , although |n0〉 may not be known, but only f (·) evaluable.

The quantum oracle is able to respond to a superposition of input query states |n〉 in a single

interrogation, for instance to a superposition like |ψ〉 = N−1/2 ∑N
n=1 |n〉 .

Upon measuring |ψ〉, any specific item |n1〉 would be obtained as measurement outcome with the

probability |〈n1 |ψ〉 |2 = 1/N , since 〈n1 |ψ〉 = 1/
√

N for any n1 ∈ {1, 2, · · ·N}.

Instead, as measurement outcome, we would like to obtain the solution |n0〉 with probability 1.
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Grover quantum search algorithm (3/4)

• Let |n⊥〉 =
1

√
N − 1

N∑

n,n0

|n〉 normalized state ⊥ |n0〉

=⇒ |ψ〉 = N−1/2 ∑N
n=1 |n〉 is in plane

(
|n0〉 , |n⊥〉

)
.

•With the oracle U0 = IN − 2 |n0〉〈n0 | =⇒ U0 |n⊥〉 = |n⊥〉 and U0 |n0〉 = − |n0〉.
So in plane

(
|n0〉 , |n⊥〉

)
, the operator U0 performs a reflection about |n⊥〉.

• Let |ψ⊥〉 normalized state ⊥ |ψ〉 in plane
(
|n0〉 , |n⊥〉

)
.

• Define the unitary operator Uψ = 2 |ψ〉 〈ψ| − IN =⇒ Uψ |ψ〉 = |ψ〉 and Uψ |ψ⊥〉 = − |ψ⊥〉.
So in plane

(
|n0〉 , |n⊥〉

)
, the operator Uψ performs a reflection about |ψ〉.

• In plane
(
|n0〉 , |n⊥〉

)
, the composition of two reflections is a rotation UψU0 = G (Grover

amplification operator). It verifies G |n0〉 = UψU0 |n0〉 = −Uψ |n0〉 = |n0〉 −
2
√

N
|ψ〉.

The rotation angle θ between |n0〉 and G |n0〉, via the scalar product of |n0〉 and G |n0〉, verifies

cos(θ) = 〈n0 |G|n0〉 = 1 − 2

N
≈ 1 − θ

2

2
=⇒ θ ≈ 2

√
N

at N ≫ 1.

G|ψ〉

|ψ〉

|n⊥〉

|n0〉

U0 |ψ〉

θ

θ/2

θ/2
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Grover quantum search algorithm (4/4)

• In plane
(
|n0〉 , |n⊥〉

)
, the rotation G = UψU0 is with angle θ ≈ 2

√
N

.

• G |ψ〉 = UψU0 |ψ〉 = Uψ

(
|ψ〉 − 2

√
N
|n0〉

)
=

(
1 − 4

N

)
|ψ〉 + 2

√
N
|n0〉.

So after rotation by θ the rotated state G |ψ〉 is closer to |n0〉.

• G |ψ〉 remains in plane
(
|n0〉 , |n⊥〉

)
, and any state in plane

(
|n0〉 , |n⊥〉

)
by G is rotated by θ.

So G2 |ψ〉 rotates |ψ〉 by 2θ toward |n0〉, and Gk |ψ〉 rotates |ψ〉 by kθ toward |n0〉.

• The angle Θ of |ψ〉 and |n0〉 is such that cos(Θ) = 〈n0 |ψ〉 = 1/
√

N =⇒ Θ = acos
(
1/
√

N
)
.

• So K =
Θ

θ
≈
√

N

2
acos

(
1/
√

N
)

iterations of G rotate |ψ〉 onto |n0〉.

At most Θ =
π

2
(when N ≫ 1) =⇒ at most K ≈ π

4

√
N .

• So when the state GK |ψ〉 ≈ |n0〉 is measured, the probability is almost 1 to obtain |n0〉 .
=⇒ The searched item |n0〉 is found with O(

√
N) interrogations instead of O(N) classically.

G|ψ〉

|ψ〉

|n⊥〉

|n0〉

U0 |ψ〉

θ

θ/2

θ/2
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Other quantum algorithms

• Shor factoring algorithm (1997) :

Factors any integer in polynomial complexity

(instead of exponential classically).

15 = 3 × 5, with spin-1/2 nuclei (Vandersypen et al., Nature 2001).

21 = 3 × 7, with photons (Martı́n-López et al., Nature Photonics 2012).

• http://math.nist.gov/quantum/zoo/

“A comprehensive catalog of quantum algorithms . . . ”
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Quantum cryptography

• The problem of cryptography

Message X, a string of bits.

Cryptographic key K, a completely random string of bits with proba. 1/2 and 1/2.

The cryptogram or encrypted message C(X,K) = X ⊕ K (encrypted string of bits).

This is Vernam cipher or one-time pad,

with provably perfect security, since mutual information I(C; X) = H(X) − H(X|C) = 0.

Problem : establishing a secret (private) key

between emitter (Alice) and receiver (Bob).

With quantum signals,

any measurement by an eavesdropper (Eve) perturbs the system,

and hence reveals the eavesdropping, and also identifies perfect security conditions.
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• BB84 protocol (Bennett & Brassard 1984)

q Alice has a string of 4N random bits. She encodes with
a qubit in a basis state either from {|0〉 , |1〉} or {|+〉 , |−〉}
randomly chosen for each bit.

q Then Bob chooses to measure each received qubit either in
basis {|0〉 , |1〉} or {|+〉 , |−〉} so as to decode each transmitted bit.

qWhen the whole string of 4N bits has been transmitted,
Alice and Bob publicly disclose the sequence of their basis choices
to identify where they coincide.

q Alice and Bob keep only the positions where their basis choices coincide,
and they obtain a shared secret key of length approximately 2N.

q If Eve intercepts and measures Alice’s qubit and forward her measured state to Bob,
roughly half of the time Eve forwards an incorrect state, and from this Bob half of the
time decodes an incorrect bit value.

q From their 2N coinciding bits, Alice and Bob classically exchange N bits at random.
In case of eavesdropping, around N/4 of these N test bits will differ.
If all N test bits coincide, then the remaining N bits form the shared secret key.

|0〉

|1〉

|+〉

|−〉

π/4
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• B92 protocol with two nonorthogonal states (Bennett 1992)

q To encode the bit a Alice uses a qubit in state |0〉 if a = 0

and in state |+〉 =
(
|0〉 + |1〉

)
/
√

2 if a = 1.

q Bob, depending on a random bit a′ he generates,
measures each received qubit either in basis {|0〉 , |1〉} if a′ = 0
or in {|+〉 , |−〉} if a′ = 1. From his measurement, Bob obtains the result b = 0 or 1.

q Then Bob publishes his series of b, and agrees with Alice to keep only those pairs
{a, a′} for which b = 1,
this providing the final secret key a for Alice and 1 − a′ = a for Bob.
This is granted because a = a′ =⇒ b = 0 and hence b = 1 =⇒ a , a′ = 1 − a.

q A fraction of this secret key can be publicly exchanged between Alice and Bob
to verify they exactly coincide, since in case of eavesdropping by interception and
resend by Eve, mismatch ensues with probability 1/4.

N. Gisin, et al.; “Quantum cryptography”; Reviews of Modern Physics 74 (2002) 145–195.

|0〉

|+〉

π/4
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• Protocol by broadcast of an entangled qubit pair

qWith an entangled pair, Alice and Bob do not need a quantum channel between them
two, and can exchange only classical information to establish their private secret key.
Each one of Alice an Bob just needs a quantum channel from a common server
dispatching entangled qubit pairs prepared in one stereotyped quantum state.

q Alice and Bob share a sequence of entangled qubit pairs all prepared in the same

entangled (Bell) state |AB〉 =
(
|00〉 + |11〉

)
/
√

2 .

q Alice and Bob measure their respective qubit of the pair in the basis {|0〉 , |1〉}, and they
always obtain the same result, either 0 or 1 at random with equal probabilities 1/2.

q To prevent eavesdropping, Alice and Bob can switch independently at random to

measuring in the basis {|+〉 , |−〉}, where one also has |AB〉 =
(
|++〉 + |−−〉

)
/
√

2.

So when Alice and Bob measure in the same basis, they always obtain the same results,
either 0 or 1.

q Then Alice and Bob publicly disclose the sequence of their basis choices.
The positions where the choices coincide provide the shared secret key.

q A fraction of this secret key is extracted to check exact coincidence, since in case of
eavesdropping by interception and resend, mismatch ensues with probability 1/4.
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Quantum correlations (1/2)

For any four random binary variables A1, A2, B1, B2 with values ±1,

Γ = (A1 − A2)B1 − (A1 + A2)B2 = A1B1 − A2B1 − A1B2 − A2B2 = ±2 ,

because since A1, A2 = ±1, either (A1 − A2)B1 = 0 or (A1 + A2)B2 = 0,

and in each case the remaining term is ±2.

So for any probability distribution on (A1, A2, B1, B2), the average

〈Γ〉 =
〈
A1B1 − A2B1 − A1B2 − A2B2

〉
= 〈A1B1〉 − 〈A2B1〉 − 〈A1B2〉 − 〈A2B2〉

necessarily verifies −2 ≤ 〈Γ〉 ≤ 2 . Bell inequalities (1964).

Alice and Bob share a pair of qubits in the entangled (Bell) state |ψAB〉 =
|01〉 − |10〉
√

2
.

Alice or Bob on its qubit can measure observables of the form Ω(θ) = sin(θ)X+ cos(θ)Z ,

having eigenvalues ±1.

Alice measures Ω(α) to obtain A = ±1, and Bob measures Ω(β) to obtain B = ±1,

then we have the average 〈AB〉 = 〈ψAB |Ω(α) ⊗ Ω(β) |ψAB〉 = − cos(α − β).
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Quantum correlations (2/2)

A long series of experiments repeated on identical copies of |ψAB〉 :

EPR experiment (Einstein, Podolsky, Rosen, 1935).

Alice chooses to randomly switch between measuring A1 ≡ Ω(α1) or A2 ≡ Ω(α2),

and Bob chooses to randomly switch between measuring B1 ≡ Ω(β1) or B2 ≡ Ω(β2).

For 〈Γ〉 = 〈A1B1〉 − 〈A2B1〉 − 〈A1B2〉 − 〈A2B2〉 one obtains

〈Γ〉 = − cos(α1 − β1) + cos(α2 − β1) + cos(α1 − β2) + cos(α2 − β2).

The choice α1 = 0, α2 = π/2 and β1 = 3π/4, β2 = π/4 leads to

〈Γ〉 = − cos(3π/4) + cos(π/4) + cos(π/4) + cos(π/4) = 2
√

2 > 2 .

Bell inequalities are violated by quantum correlations.

Experimentally verified (Aspect et al., Phys. Rev. Let. 1981, 1982.) Nobel 2022

Local realism and separability (classical) replaced by

a nonlocal nonseparable reality (quantum).
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EPR paradox (Einstein-Podolski-Rosen) :

A. Einstein, B. Podolsky, N. Rosen ; “Can quantum-mechanical description of physical reality

be considered complete ?”; Physical Review, 47 (1935) 777–780.

Bell inequalities :

J. S. Bell ; “On the Einstein–Podolsky–Rosen paradox”; Physics, 1 (1964) 195–200.

Aspect experiments :

A. Aspect, P. Grangier, G. Roger ; “Experimental test of realistic theories via Bell’s theorem”;

Physical Review Letters, 47 (1981) 460–463.
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GHZ states (1/5) (1989, Greenberger, Horne, Zeilinger) Nobel 2022

3-qubit entangled states.

Three players, each receiving a binary input x j = 0/1, for j = 1, 2, 3,

with four possible input configurations x1x2x3 ∈ {000, 011, 101, 110}.

Each player j responds by a binary output y j(x j) = 0/1,

function only of its own input x j, for j = 1, 2, 3.

Game is won if the players collectively respond according to the input–output matches :

x1x2x3 = 000 −−−−−−−−−−−−−→ y1y2y3 such that y1 ⊕ y2 ⊕ y3 = 0 (conserve parity),

x1x2x3 ∈ {011, 101, 110} −−−→ y1y2y3 such that y1 ⊕ y2 ⊕ y3 = 1 (reverse parity).

To select their responses y j(x j), the players can agree on a collective strategy before,

but not after, they have received their inputs x j.

x1 y1

x2 y2

x3 y3
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GHZ states (2/5)

A strategy winning on all four input configurations

would consist in three binary functions y j(x j) meeting the four constraints :

y1(0) ⊕ y2(0) ⊕ y3(0) = 0

y1(0) ⊕ y2(1) ⊕ y3(1) = 1

y1(1) ⊕ y2(0) ⊕ y3(1) = 1

y1(1) ⊕ y2(1) ⊕ y3(0) = 1

0 ⊕ 0 ⊕ 0 = 1 , by summation of the four constraints,

=⇒ 0 = 1 , so the four constraints are incompatible.

So no (classical) strategy exists that would win on all four input configurations.

Any (classical) strategy is bound to fail on some input configuration(s).

We show a strategy using quantum resources winning on all four input configurations,

(by escaping local realism, y j(0) = 0/1 and y j(1) = 0/1 not existing simultaneously).

x1 y1

x2 y2

x3 y3
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GHZ states (3/5)

Before the game starts, each player receives one qubit from a qubit triplet prepared in the

entangled state (GHZ state)
|ψ〉 =

∣∣∣ψ123

〉
=

1

2

(
|000〉 − |011〉 − |101〉 − |110〉

)
.

And the players agree on the common (prior) strategy :

if x j = 0, player j obtains y j as the outcome of measuring its qubit in basis {|0〉 , |1〉},
if x j = 1, player j obtains y j as the outcome of measuring its qubit in basis {|+〉 , |−〉}.

We prove this is a winning strategy on all four input configurations :

1) When x1x2x3 = 000, the three players measure in {|0〉 , |1〉}
=⇒ y1 ⊕ y2 ⊕ y3 = 0 is matched.
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GHZ states (4/5)

2) When x1x2x3 = 011, only player 1 measures in {|0〉 , |1〉}.

|ψ〉 = 1

2

(
|000〉 − |011〉 − |101〉 − |110〉

)
=

1

2

[
|0〉

(
|00〉 − |11〉

)
− |1〉

(
|01〉 + |10〉

)]
.

Since |0〉 = 1
√

2

(
|+〉 + |−〉

)
, |1〉 = 1

√
2

(
|+〉 − |−〉

)
=⇒

|00〉 − |11〉 = 1

2

[(
|+〉 + |−〉

)(
|+〉 + |−〉

)
−

(
|+〉 − |−〉

)(
|+〉 − |−〉

)]

=
1

2

[(
|++〉 + |+−〉 + |−+〉 + |−−〉

)
−

(
|++〉 − |+−〉 − |−+〉 + |−−〉

)]

= |+−〉 + |−+〉 ;

|01〉 + |10〉 = 1

2

[(
|+〉 + |−〉

)(
|+〉 − |−〉

)
+

(
|+〉 − |−〉

)(
|+〉 + |−〉

)]
= |++〉 − |−−〉 ;

=⇒ |ψ〉 = 1

2

(
|0 + −〉 + |0 − +〉 − |1 + +〉 + |1 − −〉

)
=⇒ y1 ⊕ y2 ⊕ y3 = 1 matched.
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GHZ states (5/5)

3) When x1x2x3 = 101, only player 2 measures in {|0〉 , |1〉}.

|ψ〉 = 1

2

(
|000〉 − |011〉 − |101〉 − |110〉

)
=

1

2

[
|·0·〉

(
|0 · 0〉 − |1 · 1〉

)
− |·1·〉

(
|0 · 1〉 + |1 · 0〉

)]

=
1

2

[
|·0·〉

(
|+ · −〉 + |− · +〉

)
− |·1·〉

(
|+ · +〉 − |− · −〉

)]

=
1

2

(
|+0−〉 + |−0+〉 − |+1+〉 + |−1−〉

)
=⇒ y1 ⊕ y2 ⊕ y3 = 1 matched.

4) When x1x2x3 = 110, only player 3 measures in {|0〉 , |1〉}.

|ψ〉 = 1

2

(
|000〉 − |011〉 − |101〉 − |110〉

)
=

1

2

[(
|00〉 − |11〉

)
|0〉 −

(
|01〉 + |10〉

)
|1〉

]

=
1

2

[(
|+−〉 + |−+〉

)
|0〉 −

(
|++〉 − |−−〉

)
|1〉

]

=
1

2

(
|+ − 0〉 + |− + 0〉 − |+ + 1〉 + |− − 1〉

)
=⇒ y1 ⊕ y2 ⊕ y3 = 1 matched.
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Density operator (1/2)

Quantum system in (pure) state |ψ j〉, measured in an orthonormal basis {|n〉} :

=⇒ probability Pr{|n〉 |ψ j〉} = | 〈n|ψ j〉 |2 = 〈n|ψ j〉 〈ψ j|n〉 .

Several possible states |ψ j〉 with probabilities p j (with
∑

j p j = 1) :

=⇒ Pr{|n〉} = ∑
j p j Pr{|n〉 |ψ j〉} = 〈n|

(∑
j p j |ψ j〉 〈ψ j|

)
|n〉 = 〈n| ρ |n〉 ,

with density operator ρ =
∑

j p j |ψ j〉 〈ψ j| .

and Pr{|n〉} = 〈n| ρ |n〉 = tr(ρ |n〉 〈n|) = tr(ρΠn) .

The quantum system is in a mixed state, corresponding to the statistical ensemble{(
p j, |ψ j〉

)}
, described by the density operator ρ.

Lemma : For any operator A with trace tr(A) =
∑

n 〈n|A |n〉, one has

tr(A |ψ〉 〈φ|) =∑
n 〈n|A |ψ〉 〈φ|n〉 =

∑
n 〈φ|n〉 〈n|A |ψ〉 = 〈φ|

(∑
n |n〉 〈n|

)
A |ψ〉 = 〈φ|A |ψ〉 .
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Density operator (2/2)

Density operator ρ =
∑

j p j |ψ j〉 〈ψ j|

=⇒ ρ = ρ† Hermitian ;

∀ |ψ〉 , 〈ψ|ρ|ψ〉 = ∑
j p j| 〈ψ|ψ j〉 |2 ≥ 0 =⇒ ρ ≥ 0 positive ;

trace tr(ρ) =
∑

j p j tr(|ψ j〉 〈ψ j|) =
∑

j p j = 1.

OnHN , eigen decomposition ρ =

N∑

n=1

λn |λn〉 〈λn| , with

eigenvalues {λn} a probability distribution,

eigenstates {|λn〉} an orthonormal basis ofHN .

Purity tr(ρ2) =

N∑

n=1

λ2
n = 1 for a pure state, and tr(ρ2) < 1 for a mixed state.

A valid density operator onHN ≡ any positive operator ρ with unit trace,

provides a general representation for the state of a quantum system inHN .

State evolution |ψ j〉 → U |ψ j〉 =⇒ ρ→ UρU† .
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Noisy preparation

Noise-free preparation of a qubit |ψ〉 = |0〉.

Noisy preparation |ψ〉 = cos(ξ) |0〉 + sin(ξ) |1〉
with probability density pξ(ξ) (assumed even).

Density operator ρ =

∫

ξ

pξ(ξ) |ψ〉 〈ψ| dξ

=⇒ ρ =
〈
cos2(ξ)

〉
|0〉 〈0| +

〈
sin2(ξ)

〉
|1〉 〈1| .

Measurement : Pr
{
|0〉

∣∣∣ρ
}
= 〈0|ρ|0〉 =

〈
cos2(ξ)

〉
,

Pr
{
|1〉

∣∣∣ρ
}
= 〈1|ρ|1〉 =

〈
sin2(ξ)

〉
.

Similar to the statistical ensemble
{(
〈cos2(ξ)〉, |0〉

)
,
(
〈sin2(ξ)〉, |1〉

)}
.

ξ
|0〉

|1〉

|ψ〉

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

0

1

2

3
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5

angle ξ

p
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b
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s
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Average of an observable

A quantum system inHN has observable Ω of diagonal form Ω =

N∑

n=1

ωn |ωn〉 〈ωn|.

When the quantum system is in state ρ, measuring Ω amounts to performing

a projective measurement on ρ in the orthonormal eigenbasis {|ω1〉 , . . . |ωN〉} ofHN ,

with the N orthogonal projectors |ωn〉 〈ωn|, for n = 1 to N.

The outcome yields the eigenvalue ωn ∈  with probability

Pr{ωn} = 〈ωn| ρ |ωn〉 = tr(ρ |ωn〉 〈ωn|).

Over repeated measurements of Ω on the system prepared in the same state ρ,

the average value of Ω is

〈Ω〉 =
N∑

n=1

ωn Pr{ωn} =
N∑

n=1

ωn tr(ρ |ωn〉 〈ωn|) = tr
(
ρ

N∑

n=1

ωn |ωn〉 〈ωn |
)

= tr(ρΩ).
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Density operator for the qubit

{σ0 = I2, σx, σy, σz} a basis of L(H2) (vector space of operators onH2),

orthogonal for the Hilbert-Schmidt inner product tr(A†B).

Any ρ =
1

2

(
I2 + rxσx + ryσy + rzσz

)
=

1

2

(
I2 + ~r · ~σ

)
.

=⇒ tr(ρ) = 1.

ρ = ρ† =⇒ rx = r∗x, ry = r∗y , rz = r∗z =⇒ rx, ry, rz real.

Eigenvalues λ± =
1

2

(
1 ± ‖~r ‖

)
≥ 0 =⇒ ‖~r ‖ ≤ 1.

‖~r ‖ < 1 for mixed states,

‖~r ‖ = 1 for pure states.

~r = [rx, ry, rz]
⊤ in Bloch ball of  3.
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Observables of the qubit

Any operator onH2 has general form A = a0I2 + ~a · ~σ,

with determinant det(A) = a2
0 − ~a 2, two eigenvalues a0 ±

√
~a 2,

and two projectors on the two eigenstates |±~a 〉 〈±~a | = 1

2

(
I2 ± ~a · ~σ/

√
~a 2

)
.

For A ≡ Ω an observable, Ω Hermitian requires a0 ∈  and ~a = [ax, ay, az]
⊤ ∈  3.

Probabilities Pr
{
|±~a〉

}
=

1

2

1 ±~r
~a

‖~a ‖

 when measuring a qubit in state ρ =
1

2

(
I2 +~r · ~σ

)
.

(=⇒ a0 has no effect on Pr{|±~a〉} ).

An important observable measurable on the qubit is Ω = ~a · ~σ with ‖~a ‖ = 1,

known as a spin measurement in the direction ~a of 3,

yielding as possible outcomes the two eigenvalues ±‖~a ‖ = ±1, with Pr{±1} = 1

2

(
1 ± ~r~a

)
.

Lemma : For any ~r and ~a in 3, one has : (~r · ~σ )(~a · ~σ ) = (~r~a ) I2 + i (~r × ~a ) · ~σ .

A consequence : A′ = a′
0
I2 + ~a

′ · ~σ =⇒ AA′ = (a0a′
0
+ ~a~a′)I2 + (a′

0
~a + a0~a

′
+ i~a × ~a′) · ~σ .
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Generalized measurement

In a Hilbert spaceHN with dimension N, the state of a quantum system

is specified by a Hermitian positive unit-trace density operator ρ.

• Projective measurement :

Defined by a set of N orthogonal projectors |n〉 〈n| = Πn ,

verifying
∑

n |n〉 〈n| =
∑

nΠn = IN ,

and Pr{|n〉} = tr(ρΠn) . Moreover
∑

n Pr{|n〉} = 1 ,∀ρ⇐⇒ ∑
nΠn = IN .

• Generalized measurement (POVM) : (positive operator valued measure)

Equivalent to a projective measurement in a larger Hilbert space (Neumark th.).

Defined by a set of an arbitrary number of positive operators Mm,

verifying
∑

m Mm = IN ,

and Pr{Mm} = tr(ρMm) . Moreover
∑

m Pr{Mm} = 1 ,∀ρ⇐⇒ ∑
m Mm = IN .
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A generalized measurement (POVM) for the qubit

POVM
{
Mk =

2

K
|ek〉 〈ek|

}
, for k = 0, 1, . . .K − 1, and K > 2,

with |ek〉 = cos
(
2πk

K

)
|0〉 + sin

(
2πk

K

)
|1〉 .

|0〉 |0〉 |0〉

K = 3 K = 5 K = 7
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Information in a quantum system

How much information can be stored in a quantum system ?

A classical source of information : a random variable X, with J possible states x j, for
j = 1, 2, . . . J, with probabilities Pr{X = x j} = p j .

Information content by Shannon entropy : H(X) = −
J∑

j=1

p j log(p j) ≤ log(J) .

With a quantum system of dimension N inHN , each classical state x j is coded
by a quantum state |ψ j〉 ∈ HN or ρ j ∈ L(HN) , for j = 1, 2, . . . J.

Since there is a continuous infinity of quantum states inHN ,
an infinite quantity of information can be stored in a quantum system of dim. N
(an infinite number J), as soon as N = 2 with a qubit.

But how much information can be retrieved out ?
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Entropy from a quantum system

For a quantum system of dim. N inHN , with a state ρ (pure or mixed),

a generalized measurement by the POVM with K elements Λk, for k = 1, 2, . . .K.

Measurement outcome Y with K possible values yk, for k = 1, 2, . . .K,
of probabilities Pr{Y = yk} = tr(ρΛk) .

Shannon output entropy H(Y) = −
K∑

k=1

Pr{Y = yk} log
(
Pr{Y = yk}

)
.

= −
K∑

k=1

tr(ρΛk) log
(
tr(ρΛk)

)
.

For any given state ρ (pure or mixed), K-element POVMs can always be found
achieving the limit H(Y) ∼ log(K) at large K.

In this respect, with H(Y) −→ ∞ when K −→ ∞ ,
an infinite quantity of information can be drawn from a quantum system of dim. N,
as soon as N = 2 with a qubit.
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But how much of the input information can be retrieved out ?

With a quantum system of dim. N inHN , each classical state x j is coded

by a quantum state |ψ j〉 ∈ HN or ρ j ∈ L(HN) , for j = 1, 2, . . . J.

A generalized measurement by the POVM with K elements Λk, for k = 1, 2, . . .K.

Measurement outcome Y with K possible values yk, for k = 1, 2, . . .K,

of conditional probabilities Pr{Y = yk |X = x j} = tr(ρ jΛk) ,

and total probabilities Pr{Y = yk} =
J∑

j=1

Pr{Y = yk |X = x j}p j = tr(ρΛk) ,

with ρ =

J∑

j=1

p jρ j the average state.

The input–output mutual information I(X; Y) = H(Y) − H(Y |X) ≤ χ(ρ) ≤ H(X) ,

with the Holevo information χ(ρ) = S (ρ) −
J∑

j=1

p jS (ρ j) ≤ log(N) ,

and von Neumann entropy S (ρ) = − tr
[
ρ log(ρ)

]
≤ log(N) .
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The von Neumann entropy

For a quantum system of dimension N with state ρ onHN :

S (ρ) = − tr
[
ρ log(ρ)

]
.

ρ unit-trace Hermitian has diagonal form ρ =

N∑

n=1

λn |λn〉〈λn| ,

whence S (ρ) = −
N∑

n=1

λn log(λn) ∈ [0, log(N)] .

• S (ρ) = 0 for a pure state ρ = |ψ〉〈ψ| ,

• S (ρ) = log(N) at equiprobability when λn = 1/N and ρ = IN/N .
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The accessible information

For a given input ensemble {(p j, ρ j)} :

the accessible information Iacc(X; Y) = max
POVM

I(X; Y) ≤ χ(p j, ρ j) ,

is the maximum amount of information about X

which can be retrieved out from Y ,

by using the maximally efficient generalized measurement or POVM.

For states ρ j in L(HN), there always exists such an optimal POVM under the

form {Λk = αk |φk〉〈φk| }, with αk ∈ [0, 1], for k = 1 to K, and N ≤ K ≤ N2,

this by Theorem 3 of E. B. Davies; “Information and quantum measurement”;

IEEE Transactions on Information Theory 24 (1978) 596–599.

But, there is no general characterization of optimal POVM. [Sasaki, PRA 59 (1999) 3325]

There are hardly some known expressions for some special ensembles {(p j, ρ j)}.
SOMIM (Search for Optimal Measurements by an Iterative Method) for numerical

maximization by steepest-ascent that follows the gradient in the POVM space, and also

uses conjugate gradients for speed-up. [arXiv:0805.2847]
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Compression of a quantum source (1/2)

A quantum source emits states or symbols ρ j with probabilities p j, for j = 1 to J.

With ρ =

J∑

j=1

p j ρ j , the D-ary quantum entropy is S D(ρ) = − tr
[
ρ logD(ρ)

]
,

and the Holevo information is χ
D(p j, ρ j) = S D(ρ) −

J∑

j=1

p j S D(ρ j) .

For lossless coding of the source, the average number of D-dimensional quantum

systems required per source symbol is lower bounded by χD(p j, ρ j) .

For pure states ρ j = |ψ j〉 〈ψ j|, the lower bound χ
D(p j, ρ j) = S D(ρ) is achievable

(by coding successive symbols in blocks of length L→ ∞).

B. Schumacher; “Quantum coding”; Physical Review A 51 (1995) 2738–2747.

R. Jozsa, B. Schumacher; “A new proof of the quantum noiseless coding theorem”;

Journal of Modern Optics 41 (1994) 2343–2349.
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Compression of a quantum source (2/2)

For mixed states ρ j, the compressed rate is lower bounded by χ
D(p j, ρ j) ≤ S D(ρ) but

this lower bound χD(p j, ρ j) is not known to be generally achievable.

The compressed rate S D(ρ) is however always achievable (by purification of the ρ j and

optimal compression of these purified states).

Depending on the mixed ρ j’s, and the index of faithfulness, there may exist an

achievable lower bound between χD(p j, ρ j) and S D(ρ). (Wilde 2016, §18.4)

The problem of general characterization of an achievable lower bound for the

compressed rate of mixed states still remains open. (Wilde 2016, §18.5)

M. Horodecki; “Limits for compression of quantum information carried by ensembles of mixed

states”; Physical Review A 57 (1998) 3364–3369.

H. Barnum, C. M. Caves, C. A. Fuchs, R. Jozsa, B. Schumacher; “On quantum coding for

ensembles of mixed states”; Journal of Physics A 34 (2001) 6767–6785.

M. Koashi, N. Imoto; “Compressibility of quantum mixed-state signals”; Physical Review Letters

87 (2001) 017902,1–4.

74/111

Quantum noise (1/2)
A quantum system ofHN in state ρ interacting with its environment represents an open

quantum system. The state ρ usually undergoes a nonunitary evolution.

With ρenv the state of the environment at the onset of the interaction, the joint state

ρ ⊗ ρenv can be considered as that of an isolated system, undergoing a unitary evolution

by U as ρ ⊗ ρenv −→ U(ρ ⊗ ρenv)U†.

At the end of the interaction, the state of the quantum system of interest is obtained by

the partial trace over the environment : ρ −→ N(ρ) = trenv

[
U(ρ ⊗ ρenv)U†

]
. (1)(

{Mℓ} POVM for A =⇒ {Mℓ ⊗ IB} POVM for AB. Then trAB[ρAB(Mℓ ⊗ IB)] = trA(ρA Mℓ) with ρA = trB(ρAB).

)

Very often, the environment incorporates a huge number of degrees of freedom, and is

largely uncontrolled ; it can be understood as quantum noise inducing decoherence.

A very nice feature is that, independently of the size of the environment, Eq. (1) can

always be put in the form ρ −→ N(ρ) =
∑
ℓ ΛℓρΛ

†
ℓ

operator-sum or Kraus

representation, with the Kraus operators Λℓ, which need not be more than N2, satisfying
∑
ℓ Λ
†
ℓΛℓ = IN .
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Quantum noise (2/2)

A general transformation of a quantum state ρ can be expressed by the

quantum operation ρ −→ N(ρ) =
∑
ℓ ΛℓρΛ

†
ℓ

, with
∑
ℓ Λ
†
ℓ
Λℓ = IN ,

representing a linear completely positive trace-preserving map,

mapping a density operator onHN into a density operator onHN .

Probabilistic interpretation : the action of the quantum operation

is equivalent to randomly replacing the state ρ by the state

ΛℓρΛ
†
ℓ
/ tr

(
ΛℓρΛ

†
ℓ

)
with probability tr

(
ΛℓρΛ

†
ℓ

)
.

For an arbitrary qubit state defined by ρ =
1

2

(
I2 + ~r · ~σ

)

with ‖~r ‖ ≤ 1,

this is equivalent to the affine map ~r → A~r + ~c ,

with A a 3×3 real matrix

and ~c a real vector in 3,

mapping the Bloch ball onto itself.
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Quantum noise on the qubit (1/4)

Quantum noise on a qubit in state ρ can be represented by random applications of some

of the 4 Pauli operators {I2, σx, σy, σz} on the qubit, e.g.

Bit-flip noise : flips the qubit state with probability p by applying σx, or leaves the

qubit unchanged with probability 1 − p :

ρ −→ N(ρ) = (1 − p)ρ + pσxρσ
†
x , ~r −→ A~r =



1 0 0

0 1 − 2p 0

0 0 1 − 2p


~r .

Phase-flip noise : flips the qubit phase with probability p by applying σz, or leaves the

qubit unchanged with probability 1 − p :

ρ −→ N(ρ) = (1 − p)ρ + pσzρσ
†
z , ~r −→ A~r =



1 − 2p 0 0

0 1 − 2p 0

0 0 1


~r .
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Quantum noise on the qubit (2/4)

Depolarizing noise : leaves the qubit unchanged with probability 1 − p, or apply any

of σx, σy or σz with equal probability p/3 :

ρ −→ N(ρ) = (1 − p)ρ +
p

3

(
σxρσ

†
x + σyρσ

†
y + σzρσ

†
z

)
,

~r −→ A~r =



1 − 4

3
p 0 0

0 1 − 4

3
p 0

0 0 1 − 4

3
p


~r .
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Quantum noise on the qubit (3/4)

Amplitude damping noise : relaxes the excited state |1〉 to the ground state |0〉 with

probability γ (for instance by losing a photon) :

ρ −→ N(ρ) = Λ1ρΛ
†
1
+ Λ2ρΛ

†
2

,

with Λ2 =


0
√
γ

0 0

 =
√
γ |0〉 〈1| taking |1〉 to |0〉 with probability γ,

and Λ1 =


1 0

0
√

1 − γ

 = |0〉 〈0| +
√

1 − γ |1〉 〈1| which leaves |0〉 unchanged and

reduces the probability amplitude of resting in state |1〉.

=⇒ ~r −→ A~r + ~c =



√
1 − γ 0 0

0
√

1 − γ 0

0 0 1 − γ


~r +



0

0

γ


.
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Quantum noise on the qubit (4/4)

Generalized amplitude damping noise : interaction of the qubit with a thermal bath at

temperature T :
ρ −→ N(ρ) = Λ1ρΛ

†
1
+ Λ2ρΛ

†
2
+ Λ3ρΛ

†
3
+ Λ4ρΛ

†
4

,

with Λ1 =
√

p


1 0

0
√

1 − γ

 , Λ2 =
√

p


0
√
γ

0 0

 , p, γ ∈ [0, 1] ,

Λ3 =
√

1 − p



√
1 − γ 0

0 1

 , Λ4 =
√

1 − p


0 0
√
γ 0

 ,

=⇒ ~r −→ A~r + ~c =



√
1 − γ 0 0

0
√

1 − γ 0

0 0 1 − γ


~r +



0

0

(2p − 1)γ


.

Damping [0, 1] ∋ γ = 1 − e−t/T1 → 1 as the interaction time t → ∞ with the bath of the qubit relaxing to

equilibrium ρ∞ = p |0〉 〈0| + (1 − p) |1〉 〈1|, with equilibrium probabilities p = exp[−E0/(kBT )]/Z and

1 − p = exp[−E1/(kBT )]/Z with Z = exp[−E0/(kBT )] + exp[−E1/(kBT )] governed by the Boltzmann distribution

between the two energy levels E0 of |0〉 and E1 > E0 of |1〉.
T = 0⇒ p = 1⇒ ρ∞ = |0〉 〈0| . T → ∞ ⇒ p = 1/2⇒ ρ∞ → (|0〉 〈0| + (|1〉 〈1|)/2 = I2/2 .
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More on quantum noise, noisy qubits :

81/111

Quantum state discrimination

A quantum system can be in one of two alternative states ρ0 or ρ1

with prior probabilities P0 and P1 = 1 − P0.

Question : What is the best measurement {M0,M1} to decide

with a maximal probability of success Psuc ?

Answer : One has Psuc = P0 tr(ρ0M0) + P1 tr(ρ1M1) = P0 + tr(TM1) ,

with the test operator T = P1ρ1 − P0ρ0 =
∑N

n=1 λn |λn〉〈λn| .

Then Psuc is maximized by M
opt

1
=

∑

λn>0

|λn〉〈λn| ,

the projector on the eigensubspace of T with positive eigenvalues λn.

The optimal measurement
{
M

opt

1
, M

opt

0
= IN −M

opt

1

}

achieves the maximum Pmax
suc =

1

2

(
1 +

N∑

n=1

|λn|
)
. (Helstrom 1976)



82/111

Discrimination from noisy qubits

Quantum noise on a qubit in state ρ implements the transformation ρ −→ N(ρ).

With a noisy qubit, discrimination from N(ρ0) and N(ρ1).

−→ Impact of the preparation and level of quantum noise,

on the performance Pmax
suc of the optimal detector,

F. Chapeau-Blondeau, “Détection quantique optimale sur un qubit bruité ”,

25ème Colloque GRETSI sur le Traitement du Signal et des Images, Lyon, France, 8–11 sept. 2015.

in relation to stochastic resonance and enhancement by noise.

F. Chapeau-Blondeau ; “Quantum state discrimination and enhancement by noise” ;

Physics Letters A 378 (2014) 2128–2136.

N. Gillard, E. Belin, F. Chapeau-Blondeau ; “Qubit state detection and enhancement

by quantum thermal noise” ; Electronics Letters 54 (2018) 38–39.
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Discrimination among M > 2 quantum states

A quantum system can be in one of M alternative states ρm, for m = 1 to M,

with prior probabilities Pm with
∑M

m=1 Pm = 1.

Problem : What is the best measurement {Mm} with M outcomes to decide

with a maximal probability of success Psuc ?

=⇒Maximize Psuc =

M∑

m=1

Pm tr(ρmMm) according to the M operators Mm,

subject to 0 ≤ Mm ≤ IN and
∑M

m=1 Mm = IN .

For M > 2 this problem is only partially solved, in some special cases.

(Barnett et al., Adv. Opt. Photon. 2009).
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Error-free discrimination between M = 2 states

Two alternative states ρ0 or ρ1 ofHN , with priors P0 and P1 = 1 − P0,

are not full-rank inHN , e.g. supp(ρ0) ⊂ HN ⇐⇒ [supp(ρ0)]⊥ ⊃ {~0}.

If S0 = supp(ρ0) ∩ [supp(ρ1)]⊥ , {~0}, error-free discrimination of ρ0 is possible.

If S1 = supp(ρ1) ∩ [supp(ρ0)]⊥ , {~0}, error-free discrimination of ρ1 is possible.

Necessity to find a three-outcome measurement {M0,M1,Munc} :

Find 0 ≤ M0 ≤ IN s.t. M0 = ~a0Π1 “proportional” to Π1 projector on [supp(ρ1)]⊥,

and 0 ≤ M1 ≤ IN s.t. M1 = ~a1Π0 “proportional” to Π0 projector on [supp(ρ0)]⊥,

and M0 +M1 ≤ IN ⇐⇒
[
M0 +M1 +Munc = IN with 0 ≤ Munc ≤ IN

]
,

maximizing Psuc = P0 tr(M0ρ0) + P1 tr(M1ρ1) (≡ min Punc = 1 − Psuc)

This problem is only partially solved, in some special cases,

(Kleinmann et al., J. Math. Phys. 2010).
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Error-free discrimination between M ≥ 2 states

M alternative states ρm ofHN , with prior Pm, for m = 1, . . .M ;

every ρm must be with defective rank < N.

For all m = 1 to M, define Sm = supp(ρm) ∩

Km︷              ︸︸              ︷{⋂

ℓ,m

[supp(ρℓ)]
⊥
}
.

For each nontrivial Sm , {~0}, then ρm can go where none other ρℓ can go.

=⇒ Error-free discrimination of ρm is possible,

by Mm such that 0 ≤ Mm ≤ IN and Mm “proportional” to the projector on Km.

To parametrize Mm, find an orthonormal basis {|um
j
〉}dim(Km)

j=1
of Km,

then Mm =
∑dim(Km)

j=1
am

j
|um

j
〉 〈um

j
| = ~a m

Πm, with Πm projector on Km.

Find the Mm (the ~a m) with
∑

m Mm ≤ IN maximizing Psuc =
∑

m Pm tr(Mmρm).

This problem is only partially solved, in some special cases, (Kleinmann, J. Math. Phys. 2010).
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Communication over a noisy quantum channel (1/3)

(X = x j, p j) −→ ρ j −→ N −→N(ρ j) = ρ
′
j
−→ K-element POVM −→Y = yk

Rate I(X; Y) ≤ χ(ρ′j, p j) = S (ρ′) −
J∑

j=1

p j S (ρ′j) with ρ′ =
J∑

j=1

p j ρ
′
j .

∀{(p j, ρ j)} and N(·) given, there always exists a POVM to achieve

I(X; Y) = χ(ρ′j, p j) ,

i.e. χ(ρ′
j
, p j) is an achievable maximum rate for error-free communication,

by coding consecutive classical input symbols X in blocks of length L→ ∞.

B. Schumacher, M. D. Westmoreland; “Sending classical information via noisy quantum channels”;

Physical Review A 56 (1997) 131–138.

A. S. Holevo; “The capacity of the quantum channel with general signal states”;

IEEE Transactions on Information Theory 44 (1998) 269–273.
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Communication over a noisy quantum channel (2/3)

For given N(·) therefore χ
max = max

{p j ,ρ j}
χ
(
N(ρ j), p j

)

is the overall maximum and achievable rate for error-free communication

of classical information over a noisy quantum channel,

or the classical information capacity of the quantum channel,

for product states or successive independent uses of the channel.

NB : The maximum χ
max can be achieved by no more than N2 pure input states

ρ j = |ψ j〉 〈ψ j| with |ψ j〉 ∈ HN .

[Shor, J. Math. Phys. 43 (2002) 4334. Shor, Com. Math. Phys. 246 (2004) 453].
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Communication over a noisy quantum channel (3/3)

For product states or successive independent uses of the channel (with given dimensiona-

lity), the Holevo information is additive χ
max(N1 ⊗ N2) = χmax(N1) + χmax(N2) .

For non-product states or successive non-independent but entangled uses of the channel,

due to a convexity property, the Holevo information is always superadditive
χ

max(N1 ⊗ N2) ≥ χmax(N1) + χmax(N2) . [Wilde 2016 Eq. (20.126)]

For many channels it is found additive, χmax(N1 ⊗ N2) = χmax(N1) + χmax(N2)

so that entanglement does not improve over the product-state capacity.

Yet for some channels it has been found strictly superadditive,
χ

max(N1 ⊗ N2) > χmax(N1) + χmax(N2) meaning that entanglement does improve over

the product-state capacity.

M. B. Hastings; “Superadditivity of communication capacity using entangled inputs”;

Nature Physics 5 (2009) 255–257.

Then, which channels ? which entanglements ? which improvement ?

which capacity ? . . . (largely, these are open issues).
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Continuous infinite dimensional states (1/5)

A particle moving in one dimension has a state |ψ〉 =
∫ ∞

−∞
ψ(x) |x〉 dx in an

orthonormal basis {|x〉} of a continuous infinite-dimensional Hilbert spaceH .

The basis states {|x〉} inH satisfy 〈x|x′〉 = δ(x − x′) (orthonormality),∫ ∞

−∞
|x〉 〈x| dx = I (completeness).

The coordinate  ∋ ψ(x) = 〈x|ψ〉 is the wave function, satisfying

1 =

∫ ∞

−∞
|ψ(x)|2dx =

∫ ∞

−∞
ψ∗(x)ψ(x) dx =

∫ ∞

−∞
〈ψ|x〉 〈x|ψ〉 dx = 〈ψ|ψ〉 ,

with |ψ(x)|2 the probability density for finding the particle at position x when

measuring position operator (observable) X =

∫ ∞

−∞
x |x〉 〈x| dx (diagonal form).
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Continuous infinite dimensional states (2/5)

A particle moving in three dimensions has a state |ψ〉 =
∫

ψ(~r ) |~r 〉 d~r in an

orthonormal basis {|~r 〉} of a continuous infinite-dimensional Hilbert spaceH .

The basis states {|~r 〉} inH satisfy 〈~r |~r ′〉 = δ(~r − ~r ′) (orthonormality),∫
|~r 〉 〈~r | d~r = I (completeness).

The coordinate  ∋ ψ(~r ) = 〈~r |ψ〉 is the wave function, satisfying

1 =

∫
|ψ(~r )|2d~r =

∫
ψ∗(~r )ψ(~r ) d~r =

∫
〈ψ|~r 〉 〈~r |ψ〉 d~r = 〈ψ|ψ〉 ,

with |ψ(~r )|2 the probability density for finding the particle at position ~r

when measuring the position observable
−→
R =

∫
~r |~r 〉 〈~r | d~r (diagonal form),

vector operator with components the 3 commuting position operators X=Rx,

Y=Ry, Z=Rz, and orthonormal basis of eigenstates {|~r 〉} i.e.
−→
R |~r 〉 = ~r |~r 〉.
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Continuous infinite dimensional states (3/5)

Another orthonormal basis ofH is formed by {|~p 〉} the eigenstates of the

momentum observable
−→
P or velocity

−→
V =

−→
P /m,

also satisfying 〈~p |~p ′〉 = δ(~p − ~p ′) (orthonormality),∫
|~p 〉 〈~p | d~p = I (completeness), and

−→
P |~p 〉 = ~p |~p 〉 (eigen invariance).

After De Broglie, by empirical postulation, a particle with a well defined

momentum ~p is endowed with a wave vector ~k = ~p/~ and a wave function

φ(~r ) =
1

(2π~)3/2
exp

(
i~k~r

)
=

1

(2π~)3/2
exp

(
i
~p~r

~

)
in position representation,

defining the state |~p 〉 =
∫

φ(~r ) |~r 〉 d~r = 1

(2π~)3/2

∫
exp

(
i
~p~r

~

)
|~r 〉 d~r ,

with 〈~r |~p 〉 = φ(~r ) .
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Continuous infinite dimensional states (4/5)

Particle with arbitrary state H ∋ |ψ〉 =
∫

ψ(~r )︸︷︷︸
〈~r |ψ〉

|~r 〉 d~r =
∫
Ψ(~p )︸︷︷︸
〈~p |ψ〉

|~p 〉 d~p ,

with Ψ(~p ) = 〈~p |ψ〉 =
∫

ψ(~r ) 〈~p |~r 〉 d~r = 1

(2π~)3/2

∫
ψ(~r ) exp

(
−i
~p~r

~

)
d~r ,

i.e. the wave function Ψ(~p ) in momentum representation is the

Fourier transform of the wave function ψ(~r ) in position representation.

Position operator
−→
R =

∫
~r |~r 〉 〈~r | d~r acting on state |ψ〉 with wave function ψ(~r )

in ~r-representation =⇒ −→R |ψ〉 has wave function ~r ψ(~r ) in ~r-representation,

since
−→
R |ψ〉 =

∫
~r |~r 〉 〈~r | d~r |ψ〉 =

∫
~r |~r 〉 〈~r |ψ〉︸︷︷︸

ψ(~r )

d~r =

∫
~r ψ(~r )︸︷︷︸

wf of ~R |ψ〉

|~r 〉 d~r .

94/111

Continuous infinite dimensional states (5/5)

Momentum operator
−→
P =

∫
~p |~p 〉 〈~p | d~p (its diagonal form)

acting on state |ψ〉 with wave function Ψ(~p ) in ~p-representation

=⇒ −→P |ψ〉 has wave function ~pΨ(~p ) in ~p-representation,

since
−→
P |ψ〉 =

∫
~p |~p 〉 〈~p | d~p |ψ〉 =

∫
~p |~p 〉 〈~p |ψ〉︸︷︷︸

Ψ(~p )

d~p =

∫
~pΨ(~p )︸  ︷︷  ︸

wf of ~P |ψ〉

|~p 〉 d~p .

FT−1
[
~pΨ(~p )

]
= −i~

−→∇ψ(~r ) gives wave function(s) of
−→
P |ψ〉 in ~r-representation.

Canonical commutation relations [Rk,Pℓ] = i~ δkℓ I , for k, ℓ = x, y, z,

then ∆rk ∆pℓ ≥
~

2
δkℓ Heisenberg uncertainty relations.
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Continuous-time evolution of a quantum system

By empirical postulation Schrödinger equation (for isolated systems) :

d

dt
|ψ〉 = − i

~
H |ψ〉 =⇒ |ψ(t2)〉 = exp

(
− i

~

∫ t2

t1

Hdt

)

︸                ︷︷                ︸
unitary U(t1, t2)

|ψ(t1)〉 = U(t1, t2) |ψ(t1)〉

Hermitian operator Hamiltonian H, or energy operator.

Or, postulating U(t1, t2) = exp
(
− i
~

∫ t2

t1
H(t)dt

)
recovers Schrödinger equa.

A particle of mass m in potential V(~r, t) has Hamiltonian H =
1

2m

−→
P

2
+ V(
−→
R , t),

giving rise to the Schrödinger equation for the wave function ψ(~r, t) = 〈~r |ψ〉

in ~r-representation i~
∂

∂t
ψ(~r, t) = − ~

2

2m
∆ψ(~r, t) + V(~r, t)ψ(~r, t) .
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Quantum feedback control
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System dynamics :

• Schrödinger equation (for isolated systems)

d

dt
|ψ〉 = − i

~
H |ψ〉 =⇒ |ψ(t2)〉 = exp

(
− i

~

∫ t2

t1

Hdt
)

︸                ︷︷                ︸
unitary U(t1 ,t2)

|ψ(t1)〉 = U(t1, t2) |ψ(t1)〉

Hermitian operator Hamiltonian H = H0 + Hu (control part Hu).

d

dt
ρ = − i

~
[H, ρ] (Liouville – von Neumann equa.) =⇒ ρ(t2) = U(t1, t2) ρ(t1) U†(t1, t2).

• Lindblad equation (for open systems)

d

dt
ρ = − i

~
[H, ρ] +

∑

j

(
2L jρL

†
j
− {L†

j
L j, ρ}

)
, Lindblad op. L j for interaction with environment.

Measurement : Arbitrary operators {Em} such that
∑

m E
†
mEm = IN ,

Pr{m} = tr(EmρE
†
m) = tr(ρE

†
mEm) = tr(ρMm) with Mm = E

†
mEm positive,

Post-measurement state ρm =
EmρE

†
m

tr(EmρE
†
m)

.
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Dimensionality explosion in quantum theory
• The most elementary and nontrivial object of quantum information is the qubit, representable with a state vector

|ψ1〉 in the 2-dimensional complex Hilbert spaceH2.

Such a pure state |ψ1〉 of a qubit is thus a 2-dimensional object (a 2 × 1 vector).

On such a pure state |ψ1〉, any unitary evolution is described by a unitary operator belonging to the 4-dimensional

space L(H2), the space of linear maps or operators onH2.

A unitary evolution of a pure state |ψ1〉 of a qubit is thus a 4-dimensional object (a 2 × 2 matrix).

• Accounting for the essential property of decoherence on a qubit, requires it be represented with the extended

notion of a density operator ρ1 , existing in the 4-dimensional space L(H2).

Such a mixed state ρ1 of a qubit is thus a 4-dimensional object (a 2 × 2 matrix).

On such a mixed state ρ1 of a qubit, any nonunitary evolution such as decoherence, should be described by a

(super)operator belonging to the 16-dimensional space L
(
L(H2)

)
.

A nonunitary evolution of a mixed state ρ1 of a qubit is thus a 16-dimensional object (a 4 × 4 matrix).

• The essential property of entanglement starts to arise with a qubit pair. A qubit pair in a pure state |ψ2〉 exists in

the 4-dimensional Hilbert spaceH2 ⊗H2, while a qubit pair in a mixed state is represented by a density operator

ρ2 existing in the 16-dimensional Hilbert space L(H2 ⊗H2).

A mixed state ρ2 of a qubit pair is thus a 16-dimensional object (a 4 × 4 matrix).

On such a mixed state ρ2 of a qubit pair, any nonunitary evolution such as decoherence, should be described by a

(super)operator belonging to the 256-dimensional space L
(
L(H2 ⊗H2)

)
.

A nonunitary evolution of a mixed state ρ2 of a qubit pair is thus a 256-dimensional object (a 16 × 16 matrix).
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Technologies for quantum computer

q Quantum-circuit decomposition approach :

• Photons : with mirrors, beam splitters, phase shifters, polarizers.

• Trapped ions : confined by electric fields, qubits stored in stable electronic states,
manipulated with lasers. Interact via phonons.

• Light & atoms in cavity : Cavity quantum electrodynamics (Jaynes-Cummings
model).

2012 Nobel Prize of S. Haroche (France) and D. Wineland (USA).

• Nuclear spin : manipulated with radiofrequency electromagnetic waves.

• Superconducting Josephson junctions : in electric circuits and control by electric
signals.

(Quantronics Group, CEA Saclay, France.)

• Electron spins : in quantum dots or single-electron transistor, and control by electric
signals.

M. Veldhorst et al.; “A two-qubit logic gate in silicon”; Nature 526 (2015) 410–414.
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q Quantum annealing, adiabatic quantum computation :

For finding the global minimum of a given objective function, coded as the ground
state of an objective Hamiltonian.

Computation decomposed into a slow continuous transformation of an initial
Hamiltonian into a final Hamiltonian, whose ground states contain the solution.

Starts from a superposition of all candidate states, as stationary states of a simple
controllable initial Hamiltonian.

Probability amplitudes of all candidate states are evolved in parallel, with the
time-dependent Schrödinger equation from the Hamiltonian progressively deformed
toward the (complicated) objective Hamiltonian to solve.

Quantum tunneling out of local minima helps the system converge to the ground
state solution.

A class of universal Hamiltonians is the lattice of qubits (with Pauli operators X, Z) :

H =
∑

j

h jZ j +

∑

k

gkXk +

∑

j,k

J jk(Z jZk + X jXk) +
∑

j,k

K jkX jZk .

J. D. Biamonte, P. J. Love; “Realizable Hamiltonians for universal adiabatic quantum

computers”; Physical Review A 78 (2008) 012352,1–7.
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A commercial quantum computer : Canadian D-Wave :

Since 2007 : a 128-qubit processor, with superconducting circuit implementation.

Based on quantum annealing, to solve optimization problems.

May 2013 : D-Wave 2, with 512 qubits. $15-million joint purchase by NASA & Google.

Aug. 2015 : D-Wave 2X of 1000 qubits. Apr. 2023 : D-Wave Advantage of 5000 qubits.

M. W. Johnson, et al.; “Quantum annealing with manufactured spins”; Nature 473 (2011) 194–198.

T. Lanting, et al.; “Entanglement in a quantum annealing processor”; Phys. Rev. X 4 (2014) 021041.

105/111

BB84 QKD with key rate of 100 bps over a 1000 km satellite to ground photonic link.

[Liao et al., Chin. Phys. Lett. 34 (2017) 090302.]
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L’Usine Nouvelle, N◦3536 du 2 nov. 2017.
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IBM quantum processors online https://research.ibm.com/quantum-computing 2019

5 qubits at IBM Q Tenerife and at IBM Q Yorktown,

14 qubits at IBM Q Melbourne.
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Online IBM quantum processors

https://quantum-computing.ibm.com

F. Chapeau-Blondeau; “Modeling and simulation of a quantum thermal noise on the qubit”; Fluctuation and Noise

Letters 21, 2250060,1–17 (2022).

N. Delanoue, F. Chapeau-Blondeau; “Identification sur un système quantique bruité : Théorie et démonstration

expérimentale sur un processeur quantique.”; Actes des 6èmes Journées Démonstrateurs en Automatique du Club

EEA (Électronique Électrotechnique Automatique), Angers, France, 21–22 juin 2022.
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https://lejournal.cnrs.fr/articles/ordinateur-les-promesses-de-laube-quantique 2019
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