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“I believe that science is not simply a matter of exploring new horizons. One must also make the new
knowledge readily available, and we have in this work a beautiful example of such a pedagogical effort.”
Claude Cohen-Tannoudji, in foreword to the book “Introduction to Quantum Optics”
by G. Grynberg, A. Aspect, C. Fabre ; Cambridge University Press 2010.
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A definition (at large)

To exploit quantum properties and phenomena
for information processing and computation.

Motivations for the quantic

for information and computation :

1) When using elementary systems (photons, electrons, atoms, ions,
nanodevices, ...).

2) To benefit from purely quantum effects (parallelism, entanglement, ... ).

3) Recent field of research, rich of large potentialities (science & technology).
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Some basic textbooks

Classical and
Quantum Information
Theory An Introduction for the

Telecom Scientist

Mark M. Wilde

Quantum
Information
Theory

EMMANUEL DESURVIRE

Quantum Computati
and Quantum Information

M. Nielsen & 1. Chuang
2000, 676 pages

M. Wilde
2017, 757 pages

E. Desurvire
2009, 691 pages

arXiv:1106.1445v8 [quant-ph] M. Wilde, “From classical to quantum Shannon theory”, 774 pages.
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Quantum system

(1) State

Represented by a state vector |¢)

in a complex Hilbert space H,
with unit norm (Y|y) = ||¢||2 =1.

In dimension 2 : the qubit (photon, electron, atom, ...)
State |¢) = a|0) +8]|1)

in some orthonormal basis {|0), |1)} of H>, p
with complex coordinates @, € C

such that |af® + |B* = (ly) = [IWI* = 1.

_|¢ F_ il — [t @ T 2
) = [ 3}, W' =Wl =[a,.1 = W) =IYll" =lal” +|Bl" scalar.
) (Yl [a} [a", 5] [(m/* @ *] IT, orthogonal projector on |y)
= a, = = .
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Measurement of the qubit

(2) Measurement

When a qubit in state [) = @ |0) + B|1)
is measured in the orthonormal basis {|0), [1)},

— only 2 possible outcomes (Born rule) :
state |0) with probability > = [(O) |* = (WI0XOly) = (Wllohy), or
state |1) with probability |8 = | (1) > = I1){1ly) = @I 1).

Quantum measurement : usually :
e a probabilistic process,
e as a destructive projection of the state [¢/) in an orthonormal basis,

e with statistics evaluable over repeated experiments with same preparation |i/).
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Hadamard basis )

Another orthonormal basis of H>,

_ ! 0)+11)); _ ! 0) -1 v
{=5(0+): =50 -m) |,
/4
10)
= Computational orthonormal basis |—)
1 1
(0= +1): 1= (0 -19) }.
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Experiments Coll. Magnet
— ¥
I Source — | Screen
& — 2 ‘

W

Stern-Gerlach apparatus for particles with two states of spin (electron, atom).
detector 1 0

Two states of polarization of a photon :
(Nicol prism, Glan-Thompson,

polarizing beam splitter, ... )

detector 2%
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Bloch sphere representation of the qubit 2

Qubit in state
) = a|0) + B 1) with |af?> + |8 = 1.

& |¢) = cos(6/2) |0) + € sin(/2) |1)

with 0 € [0, x],
€ [0,2n[.

Two states L in H, are antipodal on sphere.

1)

As a quantum object,

the qubit has access to infinitely many configurations
via its two continuous degrees of freedom (6, ¢),

yet when it is measured it can only be found in one of two states.
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In dimension N (finite) (extensible to infinite dimension)

N
State |y) = Z a, |n) , in some orthonormal basis {|1> L2y, ... IN)} of Hy,

n=1

N
witha, € €, and ) Jaul’ = Yly) = 1.
n=1

Proba. Pr{|n)} = |a,|*> in a projective measurement of |y} in basis {In)}.

N 51(11
Inner product (k|y) = Z a, {kln) = a; coordinate.
n=1
N
S= Z In)y (n| = Iy identity of Hy (closure or completeness relation),

n=1
a,

N . N
since, VIy) : Sly) = > Im) (i) = )" alny = ) = S =,
n=1

n=1
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Continuous infinite dimensional states

A particle moving in one dimension has a state [i/) = f Y(x)|x)dx in an

orthonormal basis {|x)} of a continuous infinite-dimensional Hilbert space H.

The basis states {|x)} in H satisfy (x|x") = 6(x — x") (orthonormality),
f |x) (x|dx = Id (completeness).

The coordinate C > ¥(x) = (x|¢) is the wave function, satisfying

1=f Ilﬁ(X)Izdx=f lﬁ*(X)lﬁ(X)dx=f Wlx) (xlp) dx = Ylyr)

with [/(x)|? the probability density for finding the particle at position x,
when measuring the position of the particle.
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Multiple qubits
A system (a word) of L qubits has a state in ?{fL,

a tensor-product vector space with dimension 2%,

and orthonormal basis {|x;x; - - - x1.)} .
2e {0, 1}F

Example L =2 :
Generally |) = aqg |00) + ag; [01) + a0 |10) + aqq |11) (2 coord.).

Or, as a special separable state (2L coord.)
#) = (@1 10) + 81 1) ® (@2 0) + B2 1))
= @122 |00) + @152 [01) + 12 [10) + 152 |11) .

A multipartite state which is not separable is entangled.

An entangled state behaves as a nonlocal whole : with no definite state for A
and B separately, and what is done on one part may influence the other part

instantly, no matter how distant they are.
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Entangled states

e Example of a separable state of two qubits AB :

IAB) = |+) ® |+) = %(m +11)) & %(m) +11)) = %(|00> +101) +110) +[11)).
When measured in the basis {|0), |1)}, each qubit A and B can be found in state |0) or |1)
independently with probability 1/2.

Pr{A in |0)} = Pr{|AB) = |00)} + Pr{|AB) = |01)} = 1/4+ 1/4 = 1/2.

e Example of an entangled state of two qubits AB :

|AB) = %(IOO) + |11)). Pr{A in |0)} = Pr{|AB) = |00)} = 1/2.

When measured in the basis {|0),|1)}, each qubit A and B can be found in state |0) or |1)
with probability 1/2 (randomly, no predetermination before measurement).

But if A is found in |0) necessarily B is found in |0),

and if A is found in |1) necessarily B is found in |1),

no matter how distant the two qubits are before measurement.
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Futhermore, |[AB) = %000) + |11)) = %(|++> + |__>).

= Pr{A in |+)} = Pr{|AB) = [++)} = 1/2.

When measured in the basis {|+),|—)}, each qubit A and B can be found in state [+) or |-)

with probability 1/2 (randomly, no predetermination before measurement).

Bell basis

A pair of qubits in ‘H?z is a quantum system with dimension 2° = 4,

with original (computational) orthonormal basis { |00),]01),]10),]11 )}.

Another orthonormal basis of 7-{?2 is the Bell basis {|ﬂ00> ,1B01) 5 1B10) » |B11 )} :

1
Bood) = —=(100) +11)) 00y = —(L800> + |B10))
But if A is found in |[+) necessarily B is found in [+), V2 V2
e _— . . _— 1
and if A is found in |-) necessarily B is found in |-), Bo) = 7001) " |10>) 01y = 7(|,301> " |,311>)
no matter how distant the two qubits are before measurement. —
1
@‘ Bro) = (100 - 110) 10y = 7(L801>—L8n>)
1
Bi) = 7(|01>—|10>) iy = 7(L800>—L810>)
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Observables Heisenberg uncertainty relation (1/2)
For a quantum system in space H with dimension N,
a projective measurement is defined by an orthonormal basis {|1),...|N)} of Hy, For two operators A and B : commutator [A,B] = AB - BA,
and the N orthogonal projectors |n) (n|, forn = 1 to N. anticommutator {A,B} = AB +BA,
1 1
Also, any Hermitian (i.e. Q = Q) operator Q on Hy, so that AB = E[A’ Bl + E{A, B} .
has its eigenstates forming an orthonormal basis {|w, ), ... |wy)} of Hy.
Therefore, any Hermitian operator € on Hy defines a valid measurement, When A and B Hermitian : [A, B] is antiHermitian and {A, B} is Hermitian,
N
and has a spectral decomposition Q = Z Wy W) {wyl with the real eigenvalues w,,. and for any /) then (Y|[A,B]ly) € iR and (Y|{A,B}ly) € R; then
n=1 1 1 2 1
| | , . WIABIY) = = (WIIA, BIlY) +5 (WIA, Blly) = [(wIABI)|" >
Also, any physical quantity measurable on a quantum system is represented in quantum 2 2
. imaginary (part) real (part)
theory by a Hermitian operator (an observable) €.
When system in state |i/), measuring observable € is equivalent to performing a projec- and for two vectors A i) and B ), the Cauchy—Schwarzzlnequahzty 15 )
tive measurement in eigenbasis {|w, )}, with projectors |w,) (w,| = I1,, and yields the |<¢|AB|W>| < (WIA ) (WIB-ly) ,

eigenvalue w, with probability Pr{w,} = | (w,|y) > = Wlw,) {wpllry = WL, ).
The average is (Q) = >, w, Pr{w,} = W|Q) .
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1
so that (IA%ly) (WIB%W) > —|(WITA, Blw)[
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Heisenberg uncertainty relation (2/2)

For two observables A and B measured in state |¢/) :
the average (scalar) : (A) = (Y|Aly) ,
the centered or dispersion operator : A=A- AT,

= <K2> = (A?) — (A)? scalar variance,
also [A,B] =[A,B] .

2\ /52 1 2 . . .
Whence <A ><B > > Z|<[A, B]>| Heisenberg uncertainty relation ;

—_ 2 ~, 2
or with the scalar dispersions AA = ((Az))l/ and AB = ((Bz))l/ ,

1
then AAAB > §|<[A, B]>| Heisenberg uncertainty relation.
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Computation on a qubit

(3) Evolution
(e Ul=U"

Through a unitary (linear) operator U on H; (a 2 X 2 matrix) :

normalized vector |y) € H>, — U |y) normalized vector € H, .

input output
) —= U

= quantum gate
— U[¢)

(always reversible)

1 [1 1
Hadamard gate H= — . 0 1

V2|1 -1
H? =1, & H™! = H = H" Hermitian unitary.
HI0) =1+) and H|I)=1-)

o)=Y

\/E \/i z€{0,1}

. 1 0
Identity gate I, = .

= Hln = (=D%lz) , Yxe{0,1}.
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Pauli gates

w_ . |01 T L N P
“9T ool T ol 7% T o -1l

X2 =Y?=272=1,. Hermitian unitary. XY =-YX=iZ, ZX =iV, etc.

{Iz, XY, Z} a basis for operators on H,.

1
Hadamard gate H = — (X + Z).
¢ \ﬁ( )

X =0, theinversion or Not quantum gate. X|0) = [1), X]|I) =]0).
1[1+i 1-i 1 [ ™4 ein/d

W= VX= o, = = =—| . wa | =W =X,
o -i 1+i} \/i[e"”/“ em/“]

square-root of Not, (or W'), typically quantum gate (no classical analogue).
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In general, the gates U and U lead to the same measurement statistics
at the output, and are thus physically equivalent, in this respect.

Any single-qubit gate can always be expressed as e’U; with
U = exp(—i gﬁ‘ o_") = cos(g)lg - isin(g)ﬁ- g €SuUQ),

with a formal “vector” of 2 X 2 matrices & = [0, oy, 0],
and 71 = [n,, ny, n,]" a real unit vector of R} = det(Uy) =1,

implementing in the Bloch sphere representation
a rotation of the qubit state of an angle & around the axis 77 in R? € SO(3).
Example : W = /&7 = e™*|cos(r/4) I, — i sin(rr/4) o, (€ =n)2, il = &)
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An optical implementation

1 0
0 €%
optically implemented by a Mach-Zehnder interferometer

out
A) phase shift &

|1> A A
ﬁ >
in 0) /

acting on individual photons with two states of polarization |0) and 1)

A one-qubit phase gate U; =

] = /% exp(—iéc,/2)

Y
Y

which are selectively shifted in phase,
to operate as well on any superposition ag[0) + a;|1) — ag|0) + a1e?|1).
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Computation on a pair of qubits
Through a unitary operator U on 7—(5’2 (a4 x4 matrix) :

normalized vector |y) € HE* — U |y) normalized vector € HE> .

input output
= quantum gate — —
(always reversible) |¢> U UW)

Completely defined for instance by the transformation of the four state vectors
of the computational basis {|00), [01)., 10}, [11)}.

But works equally on any linear superposition of quantum states
= quantum parallelism.
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e Example : Controlled-Not gate

Via the XOR binary function: a® b =a whenb =0, or =a whenb =1
invertiblea®x=b&c— x=adb=>bda.

Used to construct a unitary invertible quantum C-Not gate :
(T target, C control)

T - P VCEBT

ICT) — |C,.C®T) CT) Y C,CaT)
00 00 = >
|00) — |00) o o 1 0 00
01) —>[01) u_|0 1T 0o
110y — |11) 100 0 1
111y —> |10) 00 10
(C-Not)? = I; &= (C-Not)~! = C-Not = (C-Not)" Hermitian unitary.
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Computation on a system of L qubits
Through a unitary operator U on H" (a 2% x 2% matrix) :

normalized vector |) € HE" — U |y) normalized vector € HE™

u
= quantum gate : L input qubits ———— L output qubits.

Completely defined for instance by the transformation of the 2% state vectors
of the computational basis ;
but works equally on any linear superposition of them (parallelism).

Universal set of gates :

Any L-qubit quantum gate or circuit U can always be obtained

from two-qubit C-Not gates and single-qubit gates.

And in principle this ensures experimental realizability of any unitary U.

This provides a foundation for quantum computation.
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Continuous-time evolution of a quantum system

By empirical postulation Schrodinger equation (for isolated systems) :

d . . 1%}
7 W) = —éH W) = W (12)) = exp(-%f Hdt) [o(r1)) = U2, 1) o (21))

1

unitary U(z,, 11)
Hermitian operator Hamiltonian H, or energy operator.

Conversely, postulating for |) a linear unitary evolution U(t, #;)
between any two times #; and t,, especially [y (t + dt)) = U(t + dt, 1) [y (1)),
recovers the Schrodinger equation.
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Summary (so far) : Foundation on 3 general postulates or principles :

e State : Unit-norm vector |) = ZnN:1 a, [n) € Hy complex Hilbert space.
Realizable with L two-dimensional qubits, with 2¢ > N.

Multipartite states in tensor-product space = quantum entanglement.

e Measurement : Random and destructive, in Hy via a set of
N orthogonal projectors I, = |n) (n| € L(Hy), satisfying ZnNzl H;Hn =1y,
with N outcomes of probability P(n) = ||[L, || = WITTTL ) = Wi,

11 11
and post-measurement state |¢2°*") = n ) 122

T mw T VPm

n) .

e Evolution : Linear unitary : [i) —U—> Uly) .

Realizable from one-qubit gates and the two-qubit C-Not gate.

26/138

In particular :

N o
e State : i) =Z ayny = ) = f Y(x) |x) dx continuously infinite dimension. (p. 10)
n=1 -

e Measurement of |[AB) = %(|00>+ 1)) = %(|0>®|0>+ o) eH,@H, (p.12)

I, = 100)<00| = |0) (0| ® |0) (0|

_ _ 4

with I, = 101)¢01] =10){0l® 1) (1] . an “L-bhol

Iz = [10)<10] = |1) (1] ® |0) (0| m=1
Iy = [T = 1)1 1) (1]
7 _ 2

orwitht ) L1 = [DOI®E ZH;,,=12®12:14.

I, = [H{1ek =

U d j
¢ Evolution : |y) — Uy) & 7 |y = —%H ) = @(22)) = U2, t1) [¥(t1)) . (p-25)
. i (2 . .Ho
with U(tp, 1;) = exp (—}—1 f Hdt) . Trivial H = Hold = [¢(12)) = exp(—l?(tz - tl)) l(t)) .
5l
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No cloning theorem (1982)

(, Possibility of a circuit (a unitary U) that would take any state |i), associated with

an auxiliary register |0), to transform the input ) |@) into the cloned output [) ) ?

101 10) —— Uu) 10) = W) ) (would be). 1) —> u2
0 —> "

U
2) 10) —— U(y2) 10)) = [v2) ¥2) (would be).
Linear superposition |) = a; 1) + a2 [y2)

U
) 10) ——— U(ly) 10)) = U(aq i) 10) + s |y) |@>)
= a1 Y1) Y1) + az o) o)

since U linear.

But [} ) = ) ® ) = (a1 1) + @z o)) @1 ) + a2 )

= W) W) + s ) o) + aras ) W) + a5 [a) o)
# U(ly)10)) in general. = No cloning U possible.

28/138




Quantum parallelism

For a system of L qubits,
a quantum gate or circuit is any unitary operator U from W?L onto 7—(5“.

The quantum gate U is completely defined
by its action on the 2% basis states of ‘Hf’L : {l)? Y, X €0, 1}L},
just like a classical gate.

Yet, the quantum gate U can be operated
on any linear superposition of the basis states {l)? y,x e {0, I}L}.

This is quantum parallelism, with no classical analogue.

log,(10) = 3.32 = log2(1015) ~ 49.83 & 10" = 2%
So 1000 Tbits can be stored in a register of 50 qubits ! ‘

Parallel evaluation of a function (1/4)

A classical Boolean function f(-) from L bits to 1 bit
¥ e {0, 1}f —— f(®) € {0, 1}.

Used to construct a unitary operator U as an invertible f-controlled gate :

T T
Uy

y & f(0)—

_>y

with binary output y @ f(¥) = f(¥) wheny =0, or = ]ﬁ wheny =1,
(invertible as [y® f(X)]|® f(X) =y® f(X)D f(X) =yd 0 =y).
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Parallel evaluation of a function (2/4) Parallel evaluation of a function (3/4)
Toffoli gate or Controlled-Controlled-Not gate or CC-Not quantum gate : = =
—F4— €T 4>
U
la) —=— la @ be) f
) ) —W_ yof@)—
) = = |e) For every basis state |¥), with ¥ € {0, 1} :
_ 2 — _ -1 — _ — _ T .. . N Uf R
(CC-Not)” = Ig &= (CC-Not) CC-Not = (CC-Not)" Hermitian unitary. )1y = 0) 12) 1)
Any classical Boolean function f(¥) (invertible or non) on L bits =1 —— W ) ‘f (f)
can always be implemented (simulated) by means of 3-qubit Toffoli gates. 12) [+) 7 [| @) + | )?))] = ) |+)
1) Y [zty) (1) D [z) 10) D [zAY)
" R © ) ) )19 ) = @ - [F@)] = 1) 1= -1
ly) y) 1) )y ~[y)
NAND NOT AND
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Parallel evaluation of a function (4/4)

|+>®L+> T T A
Uy
) —y o f@—
1\
|+ = (—) Z |¥)  superposition of all basis states,
V2 7el0,1}E
Uf 1 L
4% @0y ———— (ﬁ) Z |X)|f(¥)) superposition of all values f(X).
2e{0,1)L

Uf 1 L
)% ®|-) (—) %) |-y (=1)/@

(, How to extract, to measure, useful informations from superpositions ?

Deutsch-Jozsa algorithm (1992) : Parallel test of a function (1/5)

A classical Boolean function {0, 1) — {0, 1}
O 4
2% values — 2 values,

can be constant (all inputs into O or 1) or balanced (equal numbers of 0, 1 in output).

L
Classically : Between 2 and > + 1 evaluations of f(-) to decide.

Quantumly : One evaluation of f(-) is enough (on a suitable superposition).

Lemmal: Hlx) = %(|O)+(—1)X|1)) = % Z (-D%zy, VYxe{0,1}
{0,1}

L
1 v7 |2 >
:>H®L|f>=H|x1)®"'®H|XL)=(—) Z(—l)“k), Ve {0, 1),
\/z 2€{0,1}

with scalar product ¥Z = x;z; + -+ + x,z; modulo 2. (quantum Hadamard transfo.)
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Deutsch-Jozsa algorithm (2/5) Deutsch-Jozsa algorithm (3/5)
I+l 7] oL e Output state |y3) = (H* @ L) ly2)
Uy |\
v == HEE 1) =) (-1
|—) T?J y @ f(T) T ?' (\/E)fe%fv
1\" .
1) |12) |13) = (5) DT EDFEDI 1YY by Lemma
Xe{0,1}L Ze{0,1}f
1 L
Input state ;) = |[+)® =) = (—2) 1X)|—) N
YO or ly3) = W) |-) . with  |y) = (5) w(@)12)
L\ 2e{0,1}
Internal state |yp) = (—) 12) =) (=1)/® .
V2 201} and the scalar weight w(Z) = Z (-1 Dexz
Xe{0,1}
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Deutsch-Jozsa algorithm (4/5)
1 22
So ) = 3z DT w@R)  with w@) = ) (-1

7€{0,1} ¥e{0,1}
For [7) = [0) = |0)®:  then w(Z=0) = Z (—1)f@ |
Xe{0,1}L

e When £(-) constant : w(Z=0) = 2L(~1Y® = 12 — in ) the amplitude of 0 ) is
+1, and since |y) is with unit norm = |y) = + |6>, and all other w(Z # 6)20.
— When |) is measured, L states |0) are found.

e When f(-) balanced : w(Z = 0 ) = 0 = |¢) is not or does not contain state |6 ).
— When |¢) is measured, at least one state |1) is found.

— Illustrates quantum ressources of parallelism, coherent superposition, interference.

(When f(-) is neither constant nor balanced, |/) contains a little bit of |6 ).)
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Deutsch-Jozsa algorithm (5/5)

[1] D. Deutsch; “Quantum theory, the Church-Turing principle and the universal quantum
computer”; Proceedings of the Royal Society of London A 400 (1985) 97-117.

The case L = 2 qubits.

[2] D. Deutsch, R. Jozsa; “Rapid solution of problems by quantum computation”; Proceedings of
the Royal Society of London A 439 (1992) 553-558.

Extension to arbitrary L > 2 qubits.

[3] E. Bernstein, U. Vazirani; “Quantum complexity theory”’; SIAM Journal on Computing 26
(1997) 1411-1473.

Extension to f(X) = dx or f(¥) = dX® b, to find binary L-word @ — by producing output

by = ).

[4] R. Cleve, A. Ekert, C. Macchiavello, M. Mosca; “Quantum algorithms revisited”; Proceedings
of the Royal Society of London A 454 (1998) 339-354.
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Superdense coding (Bennett 1992) : exploiting entanglement
1
Alice and Bob share a qubit pair in entangled state |AB) = $(IOO> + |1 1)) = |Boo)-

Alice chooses two classical bits, used to encode by applying to her qubit A
one of {I,, X, 1Y, Z}, delivering the qubit A’ sent to Bob.

Alice Bob
2 ‘t 'tL M =
cbits iz | qbit 4’ ) it L ®L |AB) = |Byo)
7 :D Cb1ts X®12|AB>:|ﬁ01>
Y ecoder ||F—F~—
A ) — Z®1,|AB) = |B1o)

iY®IQ |AB> = Iﬁ]])
|AB) 2 entangled qubits

Bob receives this qubit A’. For decoding, Bob measures |A’B) in the Bell basis
{lﬁoo) ,1Bo1) 5 1B10) » Iﬁu)}, from which he recovers the two classical bits.
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Teleportation (Bennett 1993) : of an arbitrary qubit state (1/3)
Qubit Q in an arbitrary state /o) = ag [0) + a; [1).

1
Alice and Bob share a qubit pair in entangled state [AB) = $(|OO) + 1 1)) = Boo)-

‘¢Q> Alice 2 chits  Bob

Measurement
—_—
in Bell basis y ' ‘ X
A {1Bey)} ,

T

[1) )

Alice measures the pair of qubits QA in the Bell basis (so [i/p) is locally destroyed),
and the two resulting cbits x, y are sent to Bob.
Bob on his qubit B applies the gates X* and Z* which reconstructs [ o).
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Teleportation (2/3)
1) = Wo) Boo) = \%[Q/o 105 (100) + [11)) + @y 1) (00} + [11))]
= %[ao 1000) + g [011) + @y [100) + ey [111)],

factorizable as |y = %[%(mm + [11))(c0 10} + a1 1)) +

L 101y + 10))(ao 1) + a1 [0)) +

V2

L (100) ~ 1)) (a0 10) - e 1)) +

e

( ) )

101) = [10))(@o [1) — @1 10) ] ;
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Teleportation (3/3)
Y1) = %[Woo) (0 10) + @1 1)) + 1Bor) (a0 1) + ey 10)) +
B10) (20 10) = 1 1) + B11) (oo 1) = 1 03)

The first two qubits QA measured in Bell basis {|8,,)} yield the two cbits xy,
used to transform the third qubit B by X” then Z*, which reconstructs |y/¢).

I I
When QA is measured in |Bo) then B is in o |0) + a1 |1y —— - —— )

X I

When QA is measured in |8y;) then Bis in aq 1) + a1 [0y —— - —— |g)
1 Z

When QA is measured in |819) then Bisin a(|0) — ay|1) 2, S, o)

X Z
When QA is measured in |31;) then Bisin ag|l) — @ |0) — - — [yp).
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Princeps references on superdense coding ...

[1] C. H. Bennett, S. J. Wiesner; “Communication via one- and two-particle operators on
Einstein-Podolsky-Rosen states”; Physical Review Letters 69 (1992) 2881-2884.

[2] K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger; “Dense coding in experimental
quantum communication”; Physical Review Letters 76 (1996) 4656—4659.

... and teleportation
[3] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters; “Teleporting an
unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels”;

Physical Review Letters 70 (1993) 1895-1899.

[4] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger;
“Experimental quantum teleportation”; Nature 390 (1997) 575-579.
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Grover quantum search algorithm (1/4)  Phys. Rev. Let. 79 (1997) 325,

o [terative algorithm that finds an item out of N in an unsorted dataset,
with O(VN) queries instead of O(V) classically.

e A dataset contains N items numbered as n € {1,2,--- N}.

One wants to find one (only one here, but extensible) item n = n
satisfying some criterion or property,

indicated by the test function or oracle f(-) responding as f(n) = onn,,.

With an unsorted dataset, finding n, requires

classically O(N) interrogations of the oracle or evaluations of f(-),
while O(VN) are enough quantumly.
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Grover quantum search algorithm (2/4)

e Quantumly, an N-dimensional quantum system in Hy with orthonormal basis {|1), - - -, |N)},
where the N basis states |n), for n € {1,2,--- N}, represent the N items of the dataset.

From a quantum implementation of the test function f(-), it is possible to obtain a quantum oracle
as the unitary operator Uy realizing U |n) = (=D 0y for anyn € {1,2,---N}.

Thus, the quantum oracle returns its response by reversing the sign of |n) when 7 is the solution ny,
while no change of sign occurs to |z) when 7 is not the solution.

Equivalently Uy = Iy — 2 [ng){np|, although |ng) need not be known, but only f(-) evaluable.

The quantum oracle is able to respond to a superposition of input query states |n) in a single

interrogation, for instance to a superposition like [y) = N -1/2 22’:1 ).

Upon measuring |y), any specific item |n;) would be obtained as measurement outcome with the
probability [(n|y) | = 1/N , since (ni|y) = 1/ VN for any ny € {1,2,---N}.

Instead, as measurement outcome, we would like to obtain the solution |ng) with probability 1.
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Grover quantum search algorithm (3/4) Inp)

N
1 .
Z |n) normalized state L |ng)

VN — 1 n#ng

= |y) = N~1/2 ZnNzl |n) is in plane (Ino) s InJ_)).

o Let Il’lJ_) =

e With the oracle Uy = Iy — 2 |np){(no|l = Up [n) = |ny ) and Ug |ng) = — |no).

So in plane (|n0> ,In L)), the operator Uy performs a reflection about |n, ).

e Let [, ) normalized state L [i/) in plane (|n0> , Inl)).

e Define the unitary operator Uy, = 2 [y) (¢| — Iy = Uy ) = ) and Uy 1) = —y1).

So in plane (|n0> Sy )), the operator Uy, performs a reflection about [1/).

e In plane (Ino) ,In L)), the composition of two reflections is a rotation Uy, Uy = G (Grover
2
amplification operator). It verifies G |ng) = Uy Ug Ing) = —Uy Ing) = Ing) — — ¥).
N
The rotation angle 8 between |ng) and G |ng), via the scalar product of |ng) and G |ng), verifies
92

2 2
005(0):(n0|G|n0>:1—N zl—; = 0= T atN > 1.
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Grover quantum search algorithm (4/4)

2
e In plane (Ino) , Inl)), the rotation G = U, Uy is with angle 6 ~ T .
N

2 4 2
* Gly) = UyUo Iy = Uy(Iv) - Wi Ino)) = (1 - N)IW) + 5 o

So after rotation by 6 the rotated state G i) is closer to |ng).

e G |y) remains in plane (|n0> , |nl>), and any state in plane (|n0> , |nl)) by G is rotated by 6.

So G2 |y) rotates |i) by 26 toward |ng), and G* |y) rotates | by k6 toward |ng).

e The angle ® of |y) and |ng) is such that cos(®) = (noly) = 1/ VN =0-= acos(l/ \/IV)

® N
eSoK = rl ~ g acos(l/ \/ﬁ) iterations of G rotate |y/) onto |ng).

At most ® = (when N > l)zatmostK:%\/ﬁ.

SR

o So when the state GX |y} ~ |ng) is measured, the probability is almost 1 to obtain |ng) .
= The searched item |ng) is found with O(VN) interrogations instead of O(N) classically.
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Other quantum algorithms

e Shor factoring algorithm (1994) :
Finds the prime factors of an integer with a complexity polynomial in its size,

instead of exponential classically.

15 = 3 x 5, with spin-1/2 nuclei (Vandersypen et al., Nature 2001).
21 = 3 x 7, with photons (Martin-Lopez et al., Nature Photonics 2012).

35 =5 %7, on IBM Q processor (Amico et al., Phys. Rev. A 2019).

e https://quantumalgorithmzoo.org

“A comprehensive catalog of quantum algorithms ...”
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Quantum cryptography
e The problem of cryptography

Message X, a string of bits.
Cryptographic key K, a completely random string of bits with proba. 1/2 and 1/2.

The cryptogram or encrypted message C(X, K) = X & K (encrypted string of bits).
This is Vernam cipher or one-time pad,
with provably perfect security, since mutual information /(C; X) = H(X) — H(X|C) = 0.

Problem : establishing a secret (private) key
between emitter (Alice) and receiver (Bob).

With quantum signals,
any measurement by an eavesdropper (Eve) disturbs the system,

and hence reveals the eavesdropping, and also certifies perfect security conditions.

e BB8&4 protocol (Bennett & Brassard 1984)

¢ Alice has a string of 4N random bits. She encodes with
a qubit in a basis state either from {|0), [1)} or {|+), |-)}
randomly chosen for each bit.

1)

¢ Then Bob chooses to measure each received qubit either in
basis {|0), [1)} or {|+),]|—)} so as to decode each transmitted bit. /4

¢+ When the whole string of 4N bits has been transmitted,

Alice and Bob publicly disclose the sequence of their basis choices
to identify where they coincide. -
4 Alice and Bob keep only the positions where their basis choices coincide,

and they obtain a shared secret key of length approximately 2.

+ If Eve intercepts Alice’s qubit, she cannot make a copy (no-cloning theorem).

She has to measure (and destroy) it, and forward to Bob a qubit in her known measured
state. Roughly half of the time Eve forwards an incorrect state.

From this Bob half of the time decodes an incorrect bit value.

¢ From their 2N coinciding bits, Alice and Bob classically exchange N bits at random.
In case of eavesdropping, around N/4 of these N test bits will differ.
If all N test bits coincide, then the remaining N bits form the shared secret key.
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e B92 protocol with two nonorthogonal states (Bennett 1992) + e Protocol by broadcast of an entangled qubit pair
p g y gled q p
¢ To encode the bit a Alice uses a qubit in state [0) if a =0 ¢ With an entangled pair, Alice and pr do not need a quantum qhanpel between them
d in state [+) =( |0) + |1 2 if a=1. two, and can exchange only classical information to establish their private secret key.
and in state |+) (l A >)/ V2 if @ /4 10) Each one of Alice an Bob just needs a quantum channel from a common server

4 Bob, depending on a random bit @’ he generates,
measures each received qubit either in basis {|0), |1)} if a’ = 0
orin {|+),|-)} if @ = 1. From his measurement, Bob obtains the result b = 0 or 1.

¢ Then Bob publishes his series of b, and agrees with Alice to keep only those pairs
{a,a’} for which b =1,

this providing the final secret key a for Alice and 1 —a’ = a for Bob.

This is granted because a =a’ = b =0 andhence b=1=—=a+#d =1-a.

+ A fraction of this secret key can be publicly exchanged between Alice and Bob
to verify they exactly coincide, since in case of eavesdropping by interception and
resend by Eve, mismatch ensues with probability 1/4.

N. Gisin, et al.; “Quantum cryptography’’; Reviews of Modern Physics 74 (2002) 145-195.
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dispatching entangled qubit pairs prepared in one stereotyped quantum state.

¢ Alice and Bob share a sequence of entangled qubit pairs all prepared in the same
entangled (Bell) state |AB) = (IOO) + |11>)/ V2.

¢ Alice and Bob measure their respective qubit of the pair in the basis {|0), |1)}, and they
always obtain the same result, either O or 1 at random with equal probabilities 1/2.

+ To prevent eavesdropping, Alice and Bob can switch independently at random to
measuring in the basis {|+),|-)}, where one also has |AB) = (|++) + |——>)/ V2.

So when Alice and Bob measure in the same basis, they always obtain the same results,
either O or 1.

¢ Then Alice and Bob publicly disclose the sequence of their basis choices.
The positions where the choices coincide provide the shared secret key.

¢ A fraction of this secret key is extracted to check exact coincidence, since in case of
eavesdropping by interception and resend, mismatch ensues with probability 1/4.
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IDQ

| D . FROM VISION TO TECHNOLOGY R E P U B L I c
AND STATE
Quanthue I I OF GENEVA
Redefining the fields of Random Numbers, REDEFINING SECURITY ;
Quantum-Safe Crypto & Photon Counting G G t
|D Quan‘thue eneva Ove rnl I Ient POST TENEBRAS LUX
QUANTUM-SAFE CRYPTO — PHOTON COUNTING — RANDOMNESS .
ID Quantique (IDQ) is the world leader in quantum-safe crypto solutions, designed to protect data for the S ec u re Data Tra n Sfer for E | e Ct l O n S
long-term future. The company provides quantum-safe network encryption, secure quantum key : " < ; 5 s s
generation and quantum key distribution solutions and services to the financial industry, enterprises and Gtgabit Ethefn et ENCWDUOH \N!th Quantum Key DlStrlbthlOﬂ

Cerberis QKD Server

Cerberis from IDQ is a standalone rack-mountable
“We have to provide The Challenge
optimal security
conditions for the
counting of ballots....

QKD server; providing secure quantum keys based
on the BB84 and SARG protocols. Integrated with

Switzerland epitomises the concept of direct democracy. Citizens of Geneva are
IDQ’s Centauris Ethernet and Fiber Channel i C

called on to vote multiple times every yea anything from e

encryptors, Cerberis has been deployed by Gliartirn n::monal and t.?amu.na! [?a_rh(jm.nims l:-:- Ie »caE raﬂ:—rew?u_ms bfidlene: ’
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since 2007 ability to verify that é‘md am.;ml;. \\Jh\l he same il '._rﬂf',ﬂf]g‘i'{‘? .heﬁplocr:‘n iciently. They also
have to guarantee the axiom of One Citizen One Vote.
Clavis? QKD Platform the data has not been .
corrupted in transit The Solution

Open QKD platform for R&D, based on BB84 and between entry & On 21st October 2007 the Geneva government implemented for the first time
SARG protocols with auto-compensating storage” IDQ's hybrid encryption solution, using state of the art Layer 2 encryption
interferometric set-up. Widely deployed in the combined with @lantim Key Disiribution (GKD)! The Cerberis solution secures a
academic community for quantum cryptography Robert Hensler, ex- point-to-point Gigabit Ethemet link used to send ballot information for the federal
research , quantum hacking and certification, and = — -

technology evaluations. 53/138 54/138

. .
Summary on computation Quantum correlations by entanglement

e No cloning possible of an arbitrary unknown quantum state [y) into ) [i/).

e Parallel computation : Any (classical) Boolean function from Ni, bits into Ny bits B#&) NOBELPRISET | FYSIK 2022

can always be implemented by a quantum circuit (from the Toffoli gate), THE NOBEL PRIZE IN PHYSICS 2022

and executed in parallel on superposed quantum states.

e Deutsch-Jozsa algorithm (1992) :
classifies Boolean functions from a single parallel evaluation.

e Superdense coding (1992) & teleportation (1993) :
exploit a shared stereotyped entanglement for enhanced communication.

u

. . Alain Aspect John F. Clauser Anton Zeilinger
e Grover quantum search algorithm (1997) : searches an unsorted database of N items Ui o Sy & ' FrClatsera Assoos Univarsitylof Vienna)

with O(VN) queries instead of O(N) classically. Ecole Polytechnique, France Lo Glstia

’fér experiment med sammanflatade fotoner som pavisat brott mot Bell-olikheter och
banat vég for kvantinformationsvetenskap”

complexity polynomial in its size, instead of exponential classically. “for experiments with entangled photons, establishing the violation of Bell inequalities and
pioneering quantum information science”

Photo: Sepp Drelssinger

§
£
£

e Shor factoring algorithm (1994) : Finds the prime factors of an integer with a

e Quantum cryptography : No-cloning theorem and destructive quantum measurement #nobelprize

to guarantee secret key distribution (BB84 protocol, or distributed entanglement).
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Quantum correlations by entanglement (1/5)

For any four random binary variables A;, A,, By, B, with values +1,
I'=(A; —A)B) —(Ay + Ay)By = A|By —AyB — A1 By — Ao By = 2,
because since A, A, = *1, either (A; — A>)B; =0or (A; + Ay)B, =0,
and in each case the remaining term is +2.

So for any probability distribution on (A1, A,, By, B,), the average

(T) = (A1B1 = Ay By — A 1By — AyBy) = (A1 By) — (A2 B1) — (A1 By) — (A1By)
necessarily verifies -2 < (') < 2. Bell inequalities (1964).
The binary variables at +1 will be obtained (by Alice and Bob)
from the results when measuring an entangled qubit pair.

[1] A. Einstein, B. Podolsky, N. Rosen ; “Can quantum-mechanical description of physical reality
be considered complete ?”’; Physical Review 47, 777-780 (1935).

[2] J. S. Bell ; “On the Einstein—Podolsky—Rosen paradox”; Physics 1, 195-200 (1964).

[3] J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt; “Proposed experiment to test local
hidden-variable theories”; Physical Review Letters 23, 880-884 (1969).
57/138

Quantum correlations by entanglement (2/5)

Alice or Bob gets results =1 by measuring qubit observable Q(6) = sin(6)X + cos(6)Z,
having eigenvalues +1, equivalent to a qubit measurement in the eigenbasis
{ 10.(0) = [cos(8/2), sin(B/2)]7, |1-(6)) = [~ sin(6/2), cos(@/2)]" | .

Alice measures at @ = « to obtain A = +1, and Bob measures at § = 8 to obtain B = +1,
with the joint probabilities P(A = £1,B = £1) = |</li(a) ® A:(6) | zﬁAB>|2 .

1
Alice and Bob share a qubit pair AB in the entangled state [y .5) = $(|Ol> - IIO)) .

+1 +1

- - [
A N

-1 -1
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Quantum correlations by entanglement (3/5)

— Joint probabilities

PA=+1,B=+1)=PA=-1,B=-1) = %[1 — cos( - )] »

PA=+1,B=-1)=PA=-1,B=+1) = %[l +cos(a—ﬁ)] ,

and by summation the marginal probabilities
1
PA=+1)=PA=-1)=PB=+1)=PB=-1)= 7

and the correlation (AB) = —cos(a —f3) ,

or alternatively (from p. 15): (AB) = (Yap| Q@) ® Q(B) |Yap) = —cos(a — ).
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Quantum correlations by entanglement (4/5)

To obtain four binary variables +1,
Alice randomly switches between measuring A; when 6 = @; or A, when 6 = a5,
Bob randomly switches between measuring B; when 8 = 8, or B, when 6 = 3,.

For (I') = {(A1B;) — {(A,B,) — (A1 B,) — (A, B,) one obtains
(I') = —cos(a; — B1) + cos(az — B1) + cos(a; — f2) + cos(az — B).

The choice a; =0, o, =n/2 and By =3n/4, B, = n/4 leads to
() = — cos(3r/4) + cos(r/4) + cos(r/4) + cos(m/4) = 2V2 > 2 .

Bell inequalities are violated by quantum correlations !!

Experimentally verified (Aspect et al., Phys. Rev. Let. 1981, 1982.) Nobel 2022

[4] A. Aspect, P. Grangier, G. Roger ; “Experimental test of realistic theories via Bell’s theorem™;

Physical Review Letters 47, 460-463 (1981).
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Quantum correlations by entanglement (5/5)

e Einstein-Podolsky-Rosen : Quantum mechanics might be incomplete (1935).

[1] A. Einstein, B. Podolsky, N. Rosen ; “Can quantum-mechanical description of physical reality
be considered complete 7”’; Physical Review 47, 777-780 (1935).

e If hidden variables exist = Bell inequalities are satisfied (1964).

e A. Aspect experiments : Bell inequalities are violated by Reality (1982).
— No possibility of hidden-variables theories underneath quantum mechanics.

e Quantities that cannot be simultaneously measured (incompatible)
have no simultaneous physical existence or reality.

e Correlations between variables obtained from measurements of incompatible
quantum quantities on entangled systems, may escape classical constraints.
= a resource for information processing.
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Bell-type inequalities in EPR experiment
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HIGHLIGHTS

= A new Bell-type inequality for nonlocal correlation in quantum systems is derived.
» The Tsallis entropy is used as a generalized metric of statistical dependence.

» Itis applied to classical outcomes of quantum measurements, as in the EPR setting.
# Superiority and complementarity of the generalized Bell inequality is demonstrared.
» Itis able to detect nonlocal quantum correlation from a larger set of observables.

ARTICLE INFO ABSTRACT

Article history: A new Bell-type inequality is derived through the use of the Tsallis entropy to quantify the
Received 14 April 2014 dependence between the classical outcomes of measurements performed on a bipartite
Received in revised form 13 July 2014 quantum system, as typical of an EPR experiment. This new inequality is confronted with
Auglible (unl R My 2010 standard correlation-based Bell inequalities, and with other known Bell-type inequalities
based on the Shannon entropy for which it constitutes a generalization. For an optimal
range of the Tsallis order, the new inequality is able to detect nonlocal quantum correla-
tion with measurements from a larger set of quantum observables. In this respect it is more
powerful and also complementary compared to the previously known Bell-type inequali-
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GHZ states (1/5) (1989, Greenberger, Horne, Zeilinger) Nobel 2022 GHZ states (2/5)

3-qubit entangled states.

Three players, each receiving a binary input x; = 0/1, for j = 1,2, 3,
with four possible input configurations x;x,x3 € {000,011, 101, 110}. 1 —*D——) U1

T ——)D——) Yo
T3 ——)D——) Ys

Game is won if the players collectively respond according to the input—output matches :

Each player j responds by a binary output y;(x;) = 0/1,

function only of its own input x;, for j = 1,2, 3.

X1x3x3 = 000 ——— > y1yy3 suchthat y; @y, ®y; =0  (conserve parity),

x1xx3 € {011,101, 110} — y{y,y3 suchthat y; @y, ®y; =1 (reverse parity).

To select their responses y;(x;), the players can agree on a collective strategy before,

but not after, they have received their inputs x;.
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A strategy winning on all four input configurations
would consist in three binary functions y;(x;) meeting the four constraints :

1(0) @ y2(0) ® y3(0) = 0 v
yi0)@y,(1)@oys(l) =1

yi)®y(0) @ ys3(1) = 1 T2
yi(1) @ y2(1) ® y3(0) = 1 23

=> Y1
= Y2

=> Y3

[

0 @ 0@ 0 =1, bysummation of the four constraints,
5 0 =1, so the four constraints are incompatible.
So no (classical) strategy exists that would win on all four input configurations.
Any (classical) strategy is bound to fail on some input configuration(s).

We show a strategy using quantum resources winning on all four input configurations,
(by escaping local realism, y;(0) = 0/1 and y;(1) = 0/1 not existing simultaneously).
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GHZ states (3/5)

Before the game starts, each player receives one qubit from a qubit triplet prepared in the

entangled state (GHZ state)

1
) = |w123) = 5(1000) = fo11) = [101) - [110).

GHZ states (4/5)

2) When x;x,x3 = 011, only player 1 measures in {|0),]1)}.

) = %(|000> —|011) = [101) — |110>) = %[m) (|00> - |11>) - |1>(|01> + |10>)].

. 1 1

And the players agree on the common (prior) strategy : Since [0) = %(H) + |_>)’ 1= 6(”) - |_>) =
if x; = 0, player j obtains y; as the outcome of measuring its qubit in basis {|0), [1)}, |
if x; = 1, player j obtains y; as the outcome of measuring its qubit in basis {|+) , |-)}. 100) = 11) = 2 (|+> + |_>)(|+> + |_>) - (|+> - |_>)(|+> - |_>)]

1

= S|y =) =)+ =) = () = o) = =) + |——>)]

We prove this is a winning strategy on all four input configurations : = [+=) + —4)

1
1) When x;x,x3 = 000, the three players measure in {|0), |1)} 01) +110) = 2 (|+> * |_>)(|+> B |_>) * (|+> B |_>)(|+> * |_>) ===

=0i tched.
= 1828 15 Maiehe =>|¢r>=%(|O+—>+|O—+>—|1++>+|l——))=>y169y269y3:1 matched.
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GHZ states (5/5) So far,

3) When x,x,x;3 = 101, only player 2 measures in {|0),|1)}.

W) = %(|000>—|011>— j101) - [110)) = %[|-0->(|0-0>—|1 D) =11 (j0- 1)+ 11 -0>)]

- %[|.0.>(|+ Y= ) = Ly () = 1 _>)]

1
= 5(1#0-) +1=0) = [+14) + |-1-)) =y ©y, @3 = 1 matched.

4) When x;x,x3 = 110, only player 3 measures in {|0), |1)}.

|1//>=%(IOOO)—IOII)—|101>—|110)) %[(|00>—|11>)|0>—(|01>+|1o>)|1>]

%[(|+_> +1=0)10) = (1++) = 1--)) |1>]
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well defined state vectors (pure state),
unitarily evolved,
to represent closed or isolated quantum systems.

SIS ISIC I IS,

Next to come,

JCIC

open quantum systems,

interacting with an uncontrolled environment,

inducing uncertainty to the quantum state (mixed state),
and evolving non-unitarily,

under decoherence.
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Density operator (1/3)

Quantum system in (pure) state [1;) € Hy, measured in an orthonormal basis {In)};\/:1 :

= probability Pr{ln)‘lz,//j)} = [(nly ;) P = (nly ;) (Pjlny . (nonlinear in the state [1f;))
J

J possible states |y;) with probabilities p j, With Z pj=
j=1

Zp, Pri |n>\|w, = (nl ij W) Wl) Ind = (nlp )

J=1 J=1

with density operator p = Z pilv) ;€ LHy).

j=1

and Pr{ln)} = (nlpln) = t(p|n) (nl) = t(pT,) .

= Pr{|n)} =

(linear in the state p)

The quantum system is in a mixed state, corresponding to the statistical ensemble

{(p i W j))}, described by the density operator p.

Lemma : For any operator A with trace tr(A) = ), (n| A|n), one has

tr(A ) (@) = X, (nl Alw) (@lny = 3, (gln) (nl Al = (@I In) ml)A L) = (I Al .

Density operator (2/3)
The statistical ensemble of states {(p i W ))} has density operator p = Z Dl il

= p = p' Hermitian ;
V), Wloly) = X; pil (W) P = 0 = p > 0 positive ;
trace tr(p) = 2 p; () Y, = 2 pj =1

N
On Hy, eigen decomposition p = »" 1,14, (4| , with
n=1
eigenvalues {4,} a probability distribution,

eigenstates {|4,)} an orthonormal basis of Hy.

N
Purity tr(p?) = Z A2 = 1 for a pure state, and tr(p?) < 1 for a mixed state.

n=1

A valid density operator on Hy = any positive operator p with unit trace,

provides a general representation for the state of a quantum system in Hy.

State evolution |y;) — Uy;) = {(p‘,-, |1//_,»))} - {(pj, u |1//J-))} = p — UpUT .
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Density operator (3/3 another motivation) Noisy preparation 1)
A bipartite system AB i tangled) state |AB) € HA ® HE. . . .
ba ,1 58 er,n ina pure (entang ef ) state |4B) , Noise-free preparation of a qubit |i) = |0).
Only A is accessible for measurement, with the set of projectors {Hm ® IB}.
Probability of outcome m : Noisy preparation [¢) = cos(£)|0) + sin(€) |1) )
P(m) = (AB|TI,, ® I¥ | AB) = tr,5(T1,, ® I? |AB) (AB|) = tr, tr(TT,, ® I |AB) (AB]). with probability density ps(¢) (assumed even). £ 10)

Mathematically try(TT,, ® I? |AB) (AB]) = T, trs(|AB) (ABI) = TI,,p,,
with p, = trB(|AB> (ABI) a density operator (positive unit-trace) on H4,

which alone determines the measurement probabilities P(m) = tra (HmpA).

= A density operator p4 arises to describe a system A
entangled to an unobserved (unaccessed) environment B.
System A entangled to its environment B has no definite pure state of its own,
but an uncertain or mixed state describable by p4.
Classical analog : Joint (A, B) with hidden B described by marginal distribution P(A) = } 5 P(A, B) .
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o

N

Density operator p = f‘; pe(&) W) (Wl dé

w

= p = (cos”(©)10) (0] + (sin(&)) [1) (1.

n

probability density pi(E_,)

-04-03-02-01 0 01 02 03 04

PI'{|0> |,0} = <0|P|0> = <COSZ(‘§:)> s O' T Tangle €
Pr{|1) o} = (1lol1) = (sin(©)) .

Measurement :

Similar to the statistical ensemble {((cos2(§)>, IO)), ((sin2(§)>, |1))} .
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Purification of a mixed state

A quantum system A of N-dimensional space H* = Hy prepared in the statistical

J

ensemble {(p N ,))};1 is represented by the density operator ps = Z iyl
=1

Auxiliary system B of J-dimensional space H® = H; and orthonormal basis {l j>};:1‘

J
The bipartite system AB prepared in the pure entangled state |[AB) = Z Pl 1))

realizes a purification of p, since trB(IAB) (AB|) =pa. =

Classical analog : Joint (A, B) with hidden B described by marginal distribution P(A) = .5 P(A, B) .

— Statistical ensemble and reduction by partial tracing are two alternative
representations always available for a given density operator.

Uncertainty on A, with a pure turned into a mixed state, by its entanglement
with unaccessed environment B = quantum decoherence or quantum noise.
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Average of an observable

A quantum system in Hy has observable Q € L(H ) vector space of operators on Hy.

e In pure state |i;) : from p.15:
average (Q); = (W/1Qy;) = tr(Qy ) (W)

nonlinear in [¢;), but linear in |y;) (¢/;| .

e In statistical ensemble {(p i j>)} of density operator p = Z pily i)yl
J

average (Q) = Y p;j(Q); = > pitr(Qly) () = tr(sz WA <w,-|) = tr(Qp) .
J J J
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Density operator for the qubit
{0'0 =h,o 0, O'Z} a basis of L(H;) (with Pauli operators from p. 19),
orthogonal for the Hilbert-Schmidt inner product tr(A"B).
1 1
Any p = E(Iz + 1Oy + 1oy + I’ZO'Z) = E(Iz +7- 5‘).
= tr(p) = 1.

Jol =,oT = =1y, Iy = r;‘, r; =1, = Iy, Iy, 1;real

1
Eigenvalues A, = 5(1 = [I7)1) 2 0 = |7l < 1.

I7|| = 1 for pure states,
II”|l < 1 for mixed states.

7 = [ry, 1y, r;]7 Bloch vector for p,
in Bloch ball of R3.
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Observables of the qubit

Any operator on H, has general form A = aol, +d - &,
with determinant det(A) = a} — @2, two eigenvalues ay + Va2,

. . - 1 - -
and two projectors on the two eigenstates |+d ) (+d| = 2 (12 +d- &/ Vaz).

For A = Q an observable, Q Hermitian requires ap € R and @ = [a,,ay,a,]" € R>.
1 =2

Probabilities Pr{|+d)} = (xd|p |+ a@) = tr(|xd ) (d]p) = —(1 + ?4)
2 [l ||

1
when measuring a qubit in state p = E(Iz +7- 0'"). (= ap has no effect on Pr{|+d )} ).

-

An important observable measurable on the qubitis Q = d- & with ||@]| = 1,

known as a spin measurement in the direction @ of R?,
yielding as possible outcomes the two eigenvalues +||@ || = 1, with Pr{+1} = —(1 +7 a).

Lemma : Forany 7 and @ in R, one has : (7-&)@-&) = (Fa)L+i(Fxa)- .
A consequence : A’ = a(lp +d@ - & = AA’ = (apay +dd )y + (ajd + apd' +idxd') o .
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Generalized measurement of a state ) € Hy

¢ Standard von Neumann projective measurement : Defined by

a set of N orthogonal projectors IT,, = |n) (n| € L(H ), satisfying Zi:':l Hjll'ln =1y,

with N outcomes of probability P(n) = ||I1, |¢>||2 = WL, ) = tr(ly) (I T, )
Ow) - TLW) _ .

I P@)

and post-measurement state |¢h ") =

Moreover YN, P(n) = 1,V |y) &= YN I/, = Ly.

For a mixed state p € £(H) : probability P(n) = tr(pIT}I1,) and ph™" = H;’(O )” =In)(n| .
e Generalized measurement : Defined by

a set of M measurement operators M,, € L(H ) satlsfymg M MM, =1y,

Justification for the generalized measurement
State |y) € Hy coupled to an auxiliary M-dimensional space H, by

U M
1) @ leg) ——— Ulp) @ leg) = ) M, [9) @ Im)

m=1
with arbitrary state |eg) € H), and {|m>} _, an orthonormal basis of H,.

Operator U from HyQH,, onto Hy®H), is a valid unitary, as it conserves inner product :
M

(Ulw) ®leo), Uy ®1leoy) = 3 > W@alMEMyrlra) Gmlm'y = il D MMy W2) = Wrilra) -

m=1m'=1 m=1

Nothing is done in Hy, while in H), a standard VN projective measurement
by M projectors Iy ® |m) (m| on the pre-measurement state U [/) ® ey) ,

_ _ _ ¥
with M outcomes of probability P(m) _,\”M[Z},l)w“ —N<It//||(2/|>mMm ) = tr(ll//) Wl MmMm), yields M,, ) ® |m) of squared norm |||\/|m ) ® |m>||2 = (WM M, |y) = P(m) ,
post m _ m Mm
and post-measurement state |, ") = |||\/| |¢,>|| B ,/P(m) ) and post-measurement state W ® |m) separable between Hy and H),.
\P(m)
Moreover Zm Pm) =1,V Y) Zm MM, = Ty,
) . . . post M,,oM The standard VN projective measurement in Hy; with M outcomes, realizes the
For a mixed state p € L(Hy) : probability P(m) = tr(p M'"M'") and o = CPm) generalized measurement in Ay (thanks to the entanglement by U).
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Positive operator-valued measure (POVM) A generalized measurement and POVM for the qubit
For the generalized measurement {M,,}* . acting in Hy,
g M}y g N Operators of L(H,) : Iem) (eml and POVM {E |€m> <€m|}

when the post-measurement states p5" = M,,oM],/P(m) are not needed,

the probabilities P(m) = tr(pMLMm) = tr(pEm) , are determined by the M

positive operators E,, = M! M, of L(H ~), satisfying Z E,=1Iy.

m=1

The set {E,,}™ . defines a POVM, with M elements E,,.

m=1

When a POVM {E,, } - is fixed, the set of M measurement operators
M,, = VE,, verifies MmMm = E,, and offers one possibility for a physical
implementation of the measurement.

Often, the optimization of statistical performance criteria from the measurement
results, fixes or imposes or constrains, the POVM only.
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for m:O,l,...M—l, and M > 2,

with  |e,) = COS(Zﬂ'Z) |0) + sm(27r )ll)
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Open quantum systems and quantum noise (1/3)

A quantum system Q interacting (so as to entangle) with its environment £

represents an open quantum system.

When the environment E is uncontrolled and unobserved, its entanglement to Q induces
uncertainty on the state of Q, or decoherence, acting also as a quantum noise.
As aresult, Q undergoes a nonunitary evolution.

At the onset of the interaction, Q is in state p € L(H ) and E in state |eg).

The compound QF can be considered as a closed or isolated system,

starting in the joint state p ® |eg) {eol ,

and undergoing a unitary evolution by Upg as p ® leg) (eg| — UQE(p ® leg) (eOI)UTQE .

At the end of the interaction, a density operator can be obtained for Q
by the partial trace over the environment £ as N (p) = trE(UQE(p ® leg) <eOI)UTQE) .

Open quantum systems and quantum noise (2/3)

To compute trg(-) let {|ek>},"f:1 an orthonormal basis for the environment E, giving
K

LHw) 3 p— Np) = > (ex|Uor(p ® leo) (eol)Upler) € LHy) -

k=1
Define K operators A, from Hy onto Hy as the partial inner product
Ai = (ex] Ugg leg) € L(Hy) .

This is equivalent to A, |Q) = (ex|Uge 10) ® lep) for any |Q) € Hy,
or (Q'IAUQ) = (el ® (Q'|Ugr 10) ® leo) , and AypA] = (erlUor(p @ leo) (eol)Upler) -

K
yielding N(p) = Z Akp/\z . (operator-sum representation of the evolution of p)
l=1

The Ay are the Kraus operators. K

Since trQ(N(p)) = trQ(trE(- . -)) =1,Yp = Z A;Ak = Iy and N(-) is trace-preserving.
k=1

They come with an isometric freedom. They need not be more than N” for any quantum

evolution p — N(p) from L(Hy) into L(Hy), whatever the size of the envrionment E.
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Open quantum systems and quantum noise (3/3) Quantum noise on the qubit (1/6) 0
'y
G 1 evoluti f t t 1
enerat evotution p € L(Hy) — Nip) € L(ql(N) OF &l Open quan 'um 5ys eTm 0 For an arbitrary qubit state defined by p = —(12 +7- 0‘") z
by quantum operation p — N(p) = >, Ayp/A, (superoperator), with 37, Aj Ay = Iy, with ||7] < 1 2
representing a (nonunitary) completely positive trace-preserving linear map, ) :
requiring no more than N> Kraus operators Ay of L(Hy). the evolution p+— Nip) = 2 Aoy »
. since every Ay = bl +d - &,
When Q is closed : Only one A; = U for unitary evolution p — UTpU. ¥
is equivalent to the affine map 7+— A7+ ¢,
ilistic i ion : i ioni i with A a 3x3 real matrix and ¢ a real vector in R?
Probabilistic interpretation : the action of the quantum operation is equivalent to ’
randomly replacing the state p by the state AipA] / tr(AkpAZ) = px mapping the Bloch ball onto itself.
with probability tr(AkpAZ) = px, 1.e.toreplace p by the statistical ensemble {(pk, pk)} 1
] 2 _
having density operator 3, piox = Sy AgoA £ - N). No more than N* = 4 Kraus operators A of L(H>)
are required.
The Kraus operators A; can be guessed or postulated empirically,
according to the type of environment and its effect envisaged
on the quantum system of interest Q.
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Quantum noise on the qubit (2/6)

Important quantum noises on a qubit in state p can be represented by random
applications of some of the 4 Pauli operators {I,, oy, oy, 0} on the qubit, e.g.

Bit-flip noise : flips the qubit state with probability p by applying o, or leaves the
qubit unchanged with probability 1 — p :
Kraus A; = 4/1-pl, and A, = \/po,, 1 0 0

pr— N@p)=(-pp+popot,  F—AF=|0 1-2p 0 |7

Examples : e Electronic spin in the earth magnetic field incurring random flips.

e Noisy preparation of the qubit (page 72):

0) > [0) with probability (cos*(¢)) = 1 - p,

0y — |1) = o, [0) with probability (sin*(€)) = p.
representable as a bit-flip noise with probability p = <sin2(§)> .
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Quantum noise on the qubit (3/6)

Phase-flip noise : flips the qubit phase with probability p by applying o, or leaves the
qubit unchanged with probability 1 — p :

Kraus A; = 4/1 =pL, and A, = /po, 1-2p 0 0
pr— N@)=(1-pp+popo., Fr—AP=| 0 1-2p 0 |7
0 0 1

Example :
Noisy photonic interferometer (page 21) : with a fluctuating phase shift &
= noise-free interferometer around an average phase shift & ,
supplemented by a phase-flip noise with probability p = <sin2[(§ -8/ 2]> .

Bit-phase-flip noise : A, = /1 —-pL, and A, = \/po, .

Also Pauli operator oy = io,0, = —io,0,.
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Quantum noise on the qubit (4/6)

Depolarizing noise : leaves the qubit unchanged with probability 1 — p, or apply any
of oy, o or o, with equal probability p/3 :

Kraus Ay = /1 =ply, Ay = +/p/30y, A3 =+/p/30y, and Ay = /p/30,,

p
p— Np)= (= plp+ Z(0upa + oo +0p0l).

Can be seen as an equiprobable combination of random bit-flip by o,
or phase-flip by o, or bit-phase flip by o, = io,0.
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Quantum noise on the qubit (5/6)

Amplitude damping noise : relaxes the excited state |1) to the ground state |0) with
probability y (for instance by losing a photon) :

p+— N(p) = AipA] + ArpA],

with A, = & = 4710)<1| taking [1) to [0) with probability v,
0
1 0 .
and A; = =10)(0] + /1 —y|1){1] which leaves |0) unchanged and
0 1-vy

reduces the probability amplitude of resting in state |1).

Ji—y 0 0 0
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Quantum noise on the qubit (6/6)
Generalized amplitude damping noise : interaction of the qubit with a thermal bath at

temperature 7T : + . . ;
p o N(p) = MipA| + AapA, + AspAg + Aaph,

with A \P ! 0 A \P 0 V¥ p,y €10,1]
1= ) 2 = ) >
0 1-vy 0 0
Vi-v O 0 O
As=+1-p . A= 1-p .
0 1 vy 0

JI—v 0 0 0
= P+ AP +C= 0 V1—y 0 7+ 0
0 0 -y (2p -1y

Damping [0,1] 3y = 1 —¢™"/7 — 1 as the interaction time # — co with the bath of the qubit relaxing to
equilibrium p, = p|0) (0] + (1 — p)|1) (1], with equilibrium probabilities p = exp[—Ey/(kgT)]/Z and

1 —p =expl—E,/(kgT)]/Z with Z = exp[—Ey/(kpT)] + exp[—E} /(kgT)] governed by the Boltzmann distribution
between the two energy levels Ej of |0) and E| > Ej of |1).

T=0=>p=1=2p,=1000. T-oo00o=p=1/2=ps,— (0)O0]+(1){1]))/2=1,/2.

Noise on multiple qubits

On qubit pair AB the noise can often be assumed to act independently on each qubit A, B.
For qubit A, on p, € L(H>) noise Ny(-) with K Kraus operators A, € L(H>).

For qubit B, on pp € L(H>) noise Np(-) with K’ Kraus operators A/, € L(H>).

For pair AB, on pap € L(?—(fz) noise Np(-) with KK’ Kraus operators A, ® A}, acting as
K K

= Moo =N Moo= 32 S0 0 (5%

=1 k'=1
For separable psp = ps ® pp then p,p = Nup(pap) = Na(pa) ® N(pp).
For entangled p,p, decomposition of Nsp(pap) in standard basis of L(‘H?z) via
Nas(100) €011) = Ny5(10) 01 @ 10) (1) = Na(10) (0l) ® N(10) <11).
and similarly for the 16 (separable) basis operators of L(ﬂf’z).

Otherwise, correlated noise on AB requires a joint noise model Nyp(-)
with Kraus operators acting jointly in 7—(?2, and
not factorizable as tensor products of Kraus operators acting separately in #; .
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More on quantum noise, noisy qubits : . . ) .
e yd Quantum state detection or discrimination
w0 IEEE TRANSACTIONS ON INFORMATION THEORY YOL. 61, O,  AUGUST 2015 for quantum signaling, quantum communication, quantum storage
Optimization of Quantum States for Signaling A quantum system can be in one of two alternative states pg or o
Across an Arbitrary Qubit Noise Channel with prior probabilities Py and P = 1 — P,
€)1=ee TRANSACTIONS ON With Minimum-Error Detection ) ) ) )
INFORMATION W ———— Question : What is the best measuring POVM {Ey, E;} to decide
THEORY ’ . . -
with a maximal probability of success Py, ?
Ab: t— For discrimination between two signaling states of a  inevitable error; and such a general situation is frequent since
qubit, 'ﬁz‘(’l"e’l:ﬂ;ﬁ)‘f‘?zm etec“on‘:‘; probaniiey r(;flee““:;:: uantum noise and decoherence are prone to break the orthog-
AT ST Ty o R e e e ooty 0y O i ol ilgnthin Wi, & inpaIWGRY gtces) Answer : One has Py, = Py tr(poEp) + Py tr(p1Ey) = Py + tr(TEy),

PHYSICAL REVIEW A 91. 052310 (2015)

Optimized probing states for qubit phase estimation with general quantum noise

Francois Chapeau-Blondeau
Laboratoire Angevin de Recherche en Ingénierie des Systemes (LARIS), Université d’Angers,
02 avenue Notre Dame du Lac, 49000 Angers, France
(Received 27 March 2015: published 12 May 2015)

We exploit the theory of quantum estimation to investigate quantum state estimation in the presence of
noise. The quantum Fisher information is used to assess the estimation performance. For the qubit in Bloch
representation, general expressions are derived for the quantum score and then for the quantum Fisher information.
From this latter expression, it is proved that the Fisher information always increases with the purity of the
measured qubit state. An arbitrary quantum noise affecting the qubit is taken into account for its impact on 91 /1 ’;8

with the test operator T = Pyp; — Popo = ZnNzl A |4,

Then Py, is maximized by E(l)p = Z [4,04 A, ,
A4,>0
the projector on the eigensubspace of T with positive eigenvalues A,,.

The optimal measurement {E(l’pt, EF =1y - E(l’pt}

(Helstrom 1976)

N

. . 1
achieves the maximum Py = 5(1 + Z |/ln|).
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Discrimination from noisy qubits

Quantum noise on a qubit in state p implements the transformation p — N(p).

With a noisy qubit, discrimination from N(pg) and N(p;).

— Impact e of the preparation {pg, 01} (the signaling states),
e and of the quantum noise N(-) (its type and level),

max
suc
F. Chapeau-Blondeau, “Détection quantique optimale sur un qubit bruité ”,

25eme Colloque GRETSI sur le Traitement du Signal et des Images, Lyon, France, 8—11 sept. 2015.

on the performance P, of the optimal detector,

in relation to stochastic resonance and enhancement by noise.

F. Chapeau-Blondeau ; “Quantum state discrimination and enhancement by noise” ;
Physics Letters A 378 (2014) 2128-2136.

N. Gillard, E. Belin, F. Chapeau-Blondeau ; “Qubit state detection and enhancement
by quantum thermal noise” ; Electronics Letters 54 (2018) 38-39.
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Quantum state discrimination and enhancement by noise @Cmm,k

Frangois Chapeau-Blondeau

Laboraroire Angevin de Recherche en Ingénierie des Systémes (LARIS), Université d’Angers, 62 avenue Notre Dome du Lac, 49000 Angers, France

ARTICLE I1INFO ABSTRACT

Article history: Discrimination between two quantum states is addressed as a quantum detection process where a
Received 12 February 2014 measurement with two outcomes is performed and a conclusive binary decision results about the
Received in revised form 15 May 2014 state. The performance is assessed by the overall probability of decision error. Based on the theory of
:\iiell:ﬁ: ;zlih::ylgoh:l:y ot quanrum dereqinn. tl‘m optimal measurement ‘and its performance are exhihitedAin general. mndirinns.
Communicated by CR. Doering An appllm.atmn is realized on thf: f[ub{t, for which generic mudels of quantum noise can be investigated
for their impact on state discrimination from a noisy qubit. The quantum noise acts through random
Keywords: application of Pauli operators on the qubit prior to its measurement. For discrimination from a noisy
Quantum state discrimination qubit, various situations are exhibited where reinforcement of the action of the quantum noise can
Quantum noise be associated with enhanced performance. Such implications of the quantum noise are analyzed and
Quantum detection interpreted in relation to stochastic resonance and enhancement by noise in information processing.

Signal detection © 2014 Elsevier BV. All rights reserved.
Enhancement by noise

Stochastic resonance
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Discrimination between J > 2 quantum states
A quantum system can be in one of J alternative states p;, for j = 1to J,

with prior probabilities P; with ij':l P;=1

J
Problem : What is the best measuring POVM {Em}m:1 with J outcomes
to decide with a maximal probability of success Py ?

J
— Maximize Py, = Z P;tr(p,E;) according to the J operators E;,
j=1
J
subjectto 0 <E; <Iy and Z E; =1y

J=1

For J > 2 this problem is only partially solved, in some special cases.
(S. M. Barnett, S. Croke, Adv. Optics & Photonics, vol. 1, pp. 238-278, 2009).
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Error-free discrimination between J = 2 states

Two alternative states pg or p; of Hy, with priors Py and P; = 1 — Py,
are not full-rank in Hy, e.g. supp(p;) C Hy & [supp(p;)]* = ker(p;) D {6}.

If Sy = supp(po)N = ker(p;) # {6}, error-free discrimination of p; is possible.
If S,

supp(p1)N = ker(pg) # {0}, error-free discrimination of P is possible.

Necessity to find a three-outcome measurement {Eq, E;, E .}

ensuring that when E; is measured, the preparation is certainly p;, for j = 0,1 :

Find 0 <Ey< Iy s.t. Eg=dpIl; “proportional” to IT; projector on ker(p;) = tr(p;Eq) =0,
and 0 <E; < Iy s.t. E;=d,Il, “proportional” to I, projector on ker(pg) = tr(ooE;)=0,
and Eg + Ey < Iy & [Eg + E| + Eyne = Iy with 0 < Euye < Iy},
maximizing Pg,. = Py tr(Egpg) + Py tr(E;p1) (= min Pynec = 1 — Pgye)

This problem is only partially solved, in some special cases,
(Kleinmann et al., J. Mathematical Physics, vol. 51, pp. 032201,1-25, 2010).
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Error-free discrimination between J > 2 states
J alternative states p; of Hy, with prior probabilities P;, for j=1,---,J ;

typically every p; is with defective rank < N (except at most one full rank).
(}(.
/—/;
For all j = 1to J, define S; = supp(p;) N {ﬂ ker(pg)}.

23

For each nontrivial S; # {6 }, then p; can be measured where none other p; can be.
= Error-free discrimination of p; is possible,

by E; such that 0 <E;< Iy and E; “proportional” to the projector on K,

so that when E; is measured the preparation is certainly p; = tr(p/E;)=0, V{ # j.
To parametrize E;, find an orthonormal basis {|u£)}2i:11(7(j ' of K,

ORI N Y . .
then E; = Z,:l'( ’)a',i lu)) (u;| = @’ I1;, with IT; projector on %K.

Find the E; (the a@/) with }}; E; < Iy maximizing Py = }; P; tr(E; p)).

This problem is only partially solved, in some special cases, (Kleinmann, J. Math. Phys. 2010).
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More on quantum detection or discrimination :

Neyman-Pearson detection, minimax detection, minimal Bayesian cost detection,
have been considered in the quantum domain,

but all relevant aspects are not yet completely solved.

General considerations and overviews can be found in :
e C. W. Helstrom, “Quantum Detection and Estimation Theory”, Academic Press, 1976.

o Y. C. Eldar, A. Megretski, G. C. Verghese, “Designing optimal quantum detectors via semidefinite
programming”, IEEE Transactions on Information Theory, vol. 49, pp. 1007-1012, 2003.

e J. A. Bergou, “Discrimination of quantum states”, Journal of Modern Optics, vol. 57,
pp- 160-180, 2010.

e J. Bae, L.-C. Kwek, “Quantum state discrimination and its applications”, Journal of Physics A,
vol. 48, pp. 083001,1-35, 2015.
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Quantum estimation

for high-sensitivity high-precision quantum sensing & metrology (magneto-
metry, gravitometry, accelerometers, atomic clocks, frequency standards, etc)

A quantum system has its state ps € L(Hy)
dependent on an unknown parameter £ .

A generalized measurement by a POVM with M elements E,, for
m=12,...M,
can be used to measure pg in order to estimate &.

. process

nput output

o Tl S

An input excitation signal p,
to probe a £-dependent quantum process 7 ¢(-) ,
producing the £-dependent output signal pg to be processed to estimate £ .

[1] M. G. A. Paris (Ed.); “Quantum State Estimation™; Lecture Notes in Physics, vol. 649, Springer (2004).
[2] V. Giovannetti, ef al.; “Advances in quantum metrology”’; Nature Photonics 5, 222-229 (2011).
[3] C. L. Degen, et al.; “Quantum sensing”’; Reviews of Modern Physics 89, 035002,1-39 (2017). 99/138

e Classically, from some measured data ¥ with probability distribution P(¥; &),
any estimator E()? ) for ¢ has a mean-squared error ((E— &)%)
lower bounded via the classical Fisher information F.(¢) = <[8§ In P(X; §)]2> ,

—~ 1
ensuring ((£ — &)%) > Cramér-Rao bound ~ —— ,
g le=¢ F®

with the maximum likelihood estimator saturating the CR bound, at long ¥.

e Quantumly, when measuring p; ,
from the resulting data m with probability distribution P(m ;&) = tr(p:E,,),

one has F.(¢§) upper bounded by the quantum Fisher information F, (&) :<[Z)§p§]2> ,
(with D, symmetric logarithmic derivative) ensuring F.(§) < F,(¢),

Ap|0cpe| A, 2 0sA,)>
and Fq(§)=22|< el0cpeldn) | :Z(gf)
{.n 4

(A — 2,)? 2
w23 T @A) P
A+ A, A, ; A+ A, | Ol |

via eigendecomposition {/ln, |/1,,)} of pg.

[4] O. E. Barndorff-Nielsen, R. D. Gill; “Fisher information in quantum statistics”;

Journal of Physics A 33, 4481-4490 (2000).
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Qubit phase estimation

A photon (qubit) in an interferometer undergoing the unitary transformation

1 0
Ug = 0 e"‘f} (see p. 21) out
phase shift & >
I
= exp(—i§ﬁ~5') atii =&, 1) ‘
2 n
|z -
— Te(p) = Usp Uy P 10)

1 1
Input p = E(Iz + 7 5—) > output pg = E(Iz + 7 6"), 7 is 7 rotated by & // 7.

Fisher F,(¢;p) = (i1 X 7)* maximized at Fp™ =1 by apure state p of 7 L 7.

1
= optimal input ) = [+) = —(10) + 1)) = p = pop = ) W1 = [+) (+].

Optimal quantum measurement :

Spin observable Q = @ - ¢, with in R? the measurement vector [|d ]| = 1,
e 1 N
— measurement probabilities Pr{+1} = 5(1 + @ rf) =P,

- =

@:P)? | OcP) | (it % ?g)]2
P, P_ 1= (@7)
When p = pope = |[+)(+] of 7 Ll = 7 L7, then F.(¢) is maximized

at Fo(§) = F™ =1byany & L.

to reach the classical Fisher F.(¢) =

= optimal measurement : von Neumann in basis {|+) , |—)} ,

_lxcos(§)

P..
2 +

to yield Pr{j+)} = [(Ugy)|

V2
[5] F. Chapeau-Blondeau; “Optimizing qubit phase estimation”; Physical Review A 94, 022334,1-14 (2016).
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Optimal classical estimator from the measurement results : Qubit phase estimation with quantum noise
- : : P1 | noise
e [ successive experiments deliver a sequence of Input probe P —> U E > N >
L, outcomes |+) and L_ = L — L, outcomes |—). (> P¢
&-dependent unitary Ug delivers p1(§) = Ug p U;
e From the measured data (L, L_), leadi N ) N ( ) N(U U%) -
. . . -~ = eading to the noisy output = = = .
the value of £ is estimated by an estimator & = &(L,, L_). & y output pz p1E) £P e )
Maximum likelihood estimator (L., L-) = arg mglx Pr(L,,L_; &) With N(-) bit-flip, or phase-flip, or depolarizing noise,
: o 1 . .
_ L, _ _ 2L, — 1 the input exitation |) = —(lO) + |1)) remains optimal, (but not with thermal noise)
— P, = T = & = arccos (2P+ - 1) = arccos 7 . \2
but the output measurement in {|+> , |—)} is no longer optimal.
[6] F. Chapeau-Blondeau; “Optimized probing states for qubit phase estimation with general quantum noise”;
Physical Review A 91, 052310,1-13 (2015).
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Entanglement-assisted quantum estimation

Ue L Ue ()

)]

1
Optimal input |y) = [+) = —(|0)+|1)) maximizes quantum Fisher at F,(§) = F7™ = 1.

V2

Two consecutive independent inputs as [i) = |[+)®[+) reach quantum Fisher information

at Fy(§) = 2F,™ = 2, by additivity of the Fisher information for independent inputs.
From L independent inputs : shot-noise scaling of F,(§) ~ L.

Two optimally entangled inputs as [) = (|00>+|1 1)) reach quantum Fisher at

1
V2
Fy(&) = 4F;™ =4 by superadditivity of quantum Fisher for entangled inputs.
From L optimally entangled inputs : Heisenberg scaling of F, (&) ~ L.
[7] F. Chapeau-Blondeau; “Entanglement-assisted quantum parameter estimation from a noisy qubit pair:

A Fisher information analysis™; Physics Letters A 381 (2017) 1369-1378.
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Entanglement-assisted quantum estimation

U {3

) Pe

.
>

1
The entangled input |i/) = @ (|00)+|11)) with one active qubit and one passive qubit,

can improve over the configuration with only one active probing qubit.
[8] N. Gillard er al., “Estimation quantique en présence de bruit améliorée par I’intrication”, GRETSI 2017.

In the presence of noise, for quantum estimation, optimal entangled probing signals
and their processing, are not (yet) fully characterized in all configurations.

e Multiple-parameter estimation, via quantum Fisher information matrix F, (5 ) =

[F I (5 )] e Linear in the multiple parameters is tomography (estimation) of a complete

quantum state, or a quantum process. ® Bayesian quantum estimation is feasible.

[9] M. G. Paris; “Quantum estimation for quantum technology”; Int. J. Quantum Information 7 (2009) 125-137.
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Estimation of multiple quantum parameters
A quantum system with state pz € L(Hy) dependent on an unknown vector parameter
g = [£1,&,---]" has a quantum Fisher information matrix Fq(g? ) = [F/(,f)(f )] with

S (Al jpg |1 An) (AnlOkpz 12e)
matrix elements F?Z)(f) =2 Z o < .
J!
tn /li + /1n
M
Measuring p; by means of an arbitrary POVM {Em}m=1 leads to the probability
distribution P(m ; g? ) =tr(E,, pg) having classical Fisher information matrix
F, C(.{-‘ ) = [Fj(,f)(.f )] with matrix elements F;,f)(f ) = Z . -
m P(m;¢&)
upper bounded via the matrix inequality F. ({? ) <F (,(5 ) .

Exploit any flexibility on p; to maximize (not univocal) quantum Fisher F, q(g? )
Select the POVM {E,,}™ . to maximize classical Fisher Fc(g).

m=1

—

-

From (classical) measurement results : ML estimator Q?ML = arg max P({mg} € ) .
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Quantum tomography, of state p, or of process 7 (-)

A multiparametric estimation task, usually linear in the parameters, consisting in
estimating the coordinates of a density operator p, or of a process superoperator 7 (:),
in some useful basis.

1 1
e Example : A qubit state p = E(IZ + 7 o‘") = E(Iz + 10y + 1oy + rZO'Z) .
{0y, 0y, 0} three mutually L qubit observables = r, = (o7,) = tr(po ), r, = (07,

r, = (0o,) separately estimable in three independent single-parameter estimations.

Or globally, by measuring a POVM {E,,l}"";":1 on L independent repetitions to yield L,
M
outcomes m and the ML estimator 'EML({L,,,}) = arg max Z L, log(tr(Emp)) .
0 m=1

e A quantum process p +— 7 (p) = p’ from L(H) onto L(H’) can be completely
characterized by specifying how 7 (-) transforms a basis of L(#), for example by
successively estimating each 7~ (I n (kl) , each via quantum state tomography.

e Many variants % basis, measurement. e This remains a rather considerable effort.
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Wrap-up

3 fundamental principles : e State : unit-norm vector ) =

Zn an |n> E 7_(1\7 ’

or positive unit-trace operator p = 3; p; ;) (| = trE(|QE) (QEl) e L(Hy).

e Process: Closed evolution: |) — U |) linear unitary, from U(n,7) = exp (—% fz, tszr)
or open evolution: p +— N(p) = trE(UQE(p ® |leg) (eOI)UTQE) = AkpAZ .

e Measurement : a set of M operators M,, € £(H ) satisfying Y, M} M,, = Ly,

M,,oM},
= on p € L(H ) : probability P(m) = tr(pran) and post b = Pf )
m

o Computation : Deutsch-Jozsa parallelism, superdense coding, teleportation,
Grover search, Shor factoring, cryptography, non-classical correlation, - - -

o Information processing :
— Detection, discrimation, of quantum signals in noise ;
— Estimation, identification, of parameter, state, process ;

— Communication, source and channel codings ;

Information of a quantum system

How much information can be stored in a quantum system ?

A pure quantum state |y) = ZQ’:] @, |n) € Hy with continuously-valued coordinates «,,,
can store an arbitrary number J of discrete values {x J'}JJ‘=1'
As soon as a qubit state [y = cos(6/2)|0) + € sin(8/2) 1) € H,,

via J configurations iy ;) with 8 = 6; = (j — 1)x/J for j=1to J, and ¢ fixed.

With a probability distribution {p J} over the set {x /}

11’

— information content by Shannon entropy H(X) = — Z pjlog(p;) <log(J) .

J=1

With a uniform distribution {p; = 1/J } , the entropy H(X) = log(J) J—) + co

— 400

= An arbitrary large information can be stored in a quantum system of dimension N,
as soon as N = 2 with a qubit.

But how much information can be retrieved out ?
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How much information can be retrieved out of a quantum system ? But how much of the input information can be retrieved out ?
For a quantum system of dimension N in )y, with a state p (pure or mixed), With a quantum system of dimension N in Hy, each classical state x; is coded
a generalized measurement by the POVM with K elements E;, fork = 1,2,... K by a quantum state |y/;) € Hy or p; € L(Hy), for j=1,2,...J.
Measurement outcome ¥ with K possible values y; = k, fork = 1,2,...K, A generalized measurement by the POVM with K elements E;, fork = 1,2,... K
of probabilities Pr{¥ =y} = tr(oE) . Measurement outcome Y with K possible values y, = k, fork =1,2,...K,
K of conditional probabilities Pr{Y = y;|X = x;} = tr(p,;Ey) ,
Shannon output entropy H(Y) = — ; Pr{Y =y} log(Pr{Y = yk}) . and total probabilities Pr(¥ = yy) = i PrY = wilX = x,1p, = troEy)
K -
Z tr(pE;) log tr(pEk)) with p = Zjlpjpj the average state./ |
=1 =1
For any given state p (pure or mixed), K-element POVMs can always be found achieving The input—output mutual information I(X;Y) = H(Y) — H(Y|X) < X(p) ,
the limit H(Y) ~ log(K) at large K. (ex.: p=1r/2 and E; = (2/K) lex) {ex|) J
" thislrespect, whpn © . with H(Y) —» co. | | with the Holevo information X(p) = S(p) — JZI piS(p;) <log(N),
221 :g(l;gr;sr}lfvléz g2€ ;r;fgr;lzzgi .can be drawn out of a quantum system of dimension N, and von Neumann entropy S (o) = — tr[p log(p)] < log(N) .
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The von Neumann entropy
For a quantum system of dimension N with density operator p on Hy :

S (p) = ~tu|plog(p)] .

N

p unit-trace positive has diagonal form p = Z A A XAl
. n=1

whence S(p) = - > A,log(4,) € [0, log(N)] .

n=1

e S(p) =0 for apure state p = [Y){Y],
e S(p) = log(N) at equiprobability when 4, = 1/N and p = Iy/N .

J

Holevo information : X(p) = X({(p.,,p.,-)}) =S(p) —Z p;iS(p;) €10,log(N)] .
=1

e X(p) = 0 forone p; = 1 of a pure state p; = [y; )¢l ,

® X(p) = log(N) for N equiprobable p; = 1/N orthogonal pure states |y;) = | ).

113/138

The accessible information
For a given input ensemble {(p;,p;)} :
the accessible information [..(X;Y) = lgg{a}ﬁ I(X;Y).

For states p; in L(Hy), there always exists such an optimal POVM under the
form {Ex = ay | ){rl }, with e € [0, 1], fork = 1to K, and N < K < N?,

this by Theorem 3 of E. B. Davies; “Information and quantum measurement’;
IEEE Transactions on Information Theory 24 (1978) 596-599.

But, there is no general characterization of optimal POVM. [Sasaki, PRA 59 (1999) 3325]
There are hardly some known expressions for some special ensembles {(p;, p;)}.
SOMIM (Search for Optimal Measurements by an Iterative Method) for numerical
maximization by steepest-ascent that follows the gradient in the POVM space, and also

uses conjugate gradients for speed-up. [arXiv:0805.2847]

But an upper bound I,..(X;Y) < X({(Pj,pj)}) :
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Compression of a quantum information source (1/2)

A quantum source emits symbols p; € L(H)y) with probabilities p;, for j =1to J.

J
With p :Z pjpj of N-ary quantum entropy Sy(p) = — tr[p logN(p)] <logy(N)=1,
=1 J
and Holevo information Xy({(pj,p)}) = Sx(0) = > p;Sw(p)) < logy(N) = 1.
=

For lossless coding of the source, the average number of N-dimensional quantum
systems required per source symbol is lower bounded by X N({(p s p‘,-)}) .

For pure states p; = |y;) (¢/;l, the lower bound Xx(p;,p;) = Sn(p) is achievable,
with consecutive blocks of L quantum systems from Hy encodable by LS y(p) < L
quantum systems from Hj with asymptotically vanishing loss at L — oo,

B. Schumacher; “Quantum coding”; Physical Review A 51 (1995) 2738-2747.

R. Jozsa, B. Schumacher; “A new proof of the quantum noiseless coding theorem”;
Journal of Modern Optics 41 (1994) 2343-2349.
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Compression of a quantum information source (2/2)

For mixed states p;, the compression rate is lower bounded by XN<{(Pj,Pj)}) <Sy()
but this lower bound X N({(P j» P j)}) is not known to be generally achievable.

The compression rate S y(p) is however always achievable (by purification of the p; and
optimal compression of these purified states).

Depending on the mixed p;’s, and the criterion of faithfulness, there may exist an
achievable lower bound between X N({(p i P j)}) and S y(p). (Wilde 2021, §18.4)

The problem of general characterization of an achievable lower bound for the
compression rate of mixed states still remains open. (Wilde 2021, §18.5)

M. Horodecki; “Limits for compression of quantum information carried by ensembles of mixed
states”’; Physical Review A 57 (1998) 3364—-3369.

H. Barnum, C. M. Caves, C. A. Fuchs, R. Jozsa, B. Schumacher; “On quantum coding for
ensembles of mixed states”; Journal of Physics A 34 (2001) 6767-6785.

M. Koashi, N. Imoto; “Compressibility of quantum mixed-state signals”; Physical Review Letters
87 (2001) 017902,1-4.
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Classical information over a quantum channel (1/3)

X=xj,pj)) —p;j—| N —>N(pj):p;.—> K-element POVM |—Y =y,

J J
Mutual info. 1(X; ¥) <X({(pjp)}) = S(0) =D p; (o)) with p'=>"p;p}.
=1 j=1

Yet, X ({( Djs p;.)}) is a maximum achievable rate, for error-free communication,
by coding independent consecutive input symbols in blocks of length L.,q — oo,
and measuring the output with a collective POVM on L.4-long blocks

(and the suboptimal square-root measurement POVM is enough).

‘ X ({ (Pjs p})}) characterizes the best achievable rate without the need
to refer to any specific POVM and any L..4-long blocks.

B. Schumacher, M. D. Westmoreland; “Sending classical information via noisy quantum channels”;
Physical Review A 56 (1997) 131-138.
A. S. Holevo; “The capacity of the quantum channel with general signal states”;

IEEE Transactions on Information Theory 44 (1998) 269-273.
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pj =Wl with ;) € Hy

Classical information over a quantum channel (2/3)

For given N(-) therefore X,,x = max X({(N(pj), pj)})

{pjpj}

is the overall maximum and achievable rate for error-free communication
of classical information over a noisy quantum channel,

or the Holevo information capacity of the quantum channel,

for product states or successive independent uses of the channel,

and collective decoding over L.,q-long blocks, at L,q — oo.

The maximum rate X, can be achieved by J € [N, N?] pure input states
(not necessarily easy to characterize).
Shor, J. Math. Phys. 43 (2002) 4334. Shor, Com. Math. Phys. 246 (2004) 453.
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Classical information over a quantum channel (3/3)

For product states or consecutive independent uses of a channel,
the Holevo capacity is additive X (N1 ® N2) = Xinax (N1) + Ximax(N2) .

For non-product states or consecutive non-independent but entangled uses of the
channel, due to a convexity property, the Holevo capacity is always superadditive
Xinax (N1 © N2) 2 X inax (N1) + X nax(N2) [Wilde 2016, Eq. (20.126)]

For many channels it is found additive, X . (N1 ® Na) =X nax(N1) 4+ Ximax (N2)
so that entanglement does not improve over the product-state capacity.

Yet for some channels it has been found strictly superadditive,
Ximax(NT @ No) > Xnax (N1) + Xmax (N>) meaning that entanglement does improve over
the product-state capacity.

M. B. Hastings; “Superadditivity of communication capacity using entangled inputs”;
Nature Physics 5 (2009) 255-257.

= The classical capacity C(N) of a channel N is generally the “regularized”

1
Holevo capacity C(N) = Jim —+ Xuax(N®F) . (HSW theorem)
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Quantum information over a quantum channel (1/2)

Reliable transmission of the quantum states is targeted
(no classical coding / decoding (measurement) ; needs quantum distortion criteria).

e Primal channel, from Q to O : po + p)

K K K
N(p) = tre(Ugr (oo ® leo) (eohU, ) = [Z D Apoh], @lew) (exl ) = > AwpoA, .
k=1
E:

k=1 k'=1
e Dual channel, from Q into environment Po F— Pg =
K K
N(po) = tro(Ugr(po ®leo) (eolUpy;) = D > tr(AepoAy, ) lew) el -
k=1 k=1

Entropy exchange or final quantum entropy of the environment : S (0o, N) = S (p}) .

Sex(pQ’ N) .

(Intrinsic) channel coherent information : I.,(N) = r}l)ax Io(po. N) .
9]

Coherent information : Ie,(pg, N) = S (o) — S (0r) = S(N(pQ)) -

Generally 1.,(pg, N) non-concave (¢), maximized at I.,(N) > 0 by a mixed state p .
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Quantum information over a quantum channel (2/2)
Superadditivity in two channel uses : I.o(N] ® N2) > I.o(N}) + I.c(N>) .

For two separable product states : I.o(N| ® N3) = I.o(N1) + I.,(N7),
but for two entangled states I.,(N1 ® N3) > I.,(N1) + I.,(N3) is possible.

1
= Quantum capacity Q(N) = lim — Io(N**) . (LSD theorem)
On(N) <logy(N) =1 is the maximum rate R at which L input qudits with dimension N,
can be encoded into L/R > L qudits with same dimension N,
so that from the L/R corrupted qudits at the output,
the L input qudits can be recovered with perfect fidelity, when L — co.

S. Lloyd; “Capacity of the noisy quantum channel”’; Physical Review A 55 (1997) 1613-1622.

P. W. Shor; “The quantum channel capacity and coherent information”;
Lecture Notes MSRI Workshop on Quantum Computation, San Francisco (2002) 1-18.

I. Devetak, “The private classical capacity and quantum capacity of a quantum channel”;
IEEE Transactions on Information Theory 51 (2005) 44-55.

Today remain unknown many Q(N), C(N), the capacity-achieving codings 121/138
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Quantum feedback control

PHYSICAL REVIEW A 80. 013805 (2009)

Quantum feedback by discrete quantum nondemolition measurements:
Towards on-demand generation of photon-number states

L. Dotsenko, "™ M. Min‘ahimj.:’ M. Brune.! S. Haroche."* J.-M. Raimond." and P. Rouchon*
IIAbaratairefKastler Brossel Ecole Normale Supérieure. CNRS, Université P. et M. Curie,
24 rue Lhomond, F-75231 Paris Cedex 5, France
2Cal[ége de France, 11 Place Marcelin Berthelot, F-75231 Paris Cedex 5, France
3INRIA Rocquencourt, Domaine de Vouceau, BP 105, 78153 Le Chesnay Cedex, France
YCentre Automatique et Systemes, Mathématigues et Systémes, Mines ParisTech,
60 Boulevard Saini-Michel, 75272 Paris Cedex 6, France
(Received | May 2009: published 9 July 2009)

We propose a quantum feedback scheme for the preparation and protection of photon-number states of light
trapped in a high-Q microwave cavity. A quantum nondemolition measurement of the cavity field provides
information on the photon-number distribution. The feedback loop is closed by injecting into the cavity a
coherent pulse adjusted to increase the probability of the target photon number. The efficiency and reliability
of the closed-loop state stabilization is assessed by quantum Monte Carlo simulations. We show that. in
realistic experimental conditions, the Fock states are efficiently produced and protected against decoherence.
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System dynamics :

e Schrodinger equation (for isolated systems)

d . : 5]
S0 = —2HIW) = () = exp(—1 ftl Ha) (1)) = U, 2) W)

—_—,———
unitary U(t;,12)

Hermitian operator Hamiltonian H = Hg + H,, (control part H,).

d .
7 = —% [H,p] (Liouville — von Neumann equa.) = p(#2) = U(t1, ) p(t1) UT(tl,tz).

e Lindblad equation (for open systems)

d .

i —% [H, p] + Z(ZL ijj. - {L} L, p}), Lindblad op. L; for interaction with environment.
J

Measurement : Arbitrary operators {M,,} such that 3, MLMm =1y,

Pr{m} = tr(M,,oM},) = tr(oM},M,,) = tr(oE,,) with E,, = MJ,M,, positive,

MmpML

Post-measurement state Pm = 7T .
tr(M,,oM,,)
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Dimensionality explosion in quantum theory

o The most elementary and nontrivial object of quantum information is the qubit, representable with a state vector
[/1) in the 2-dimensional complex Hilbert space HH>.
Such a pure state |1/ ) of a qubit is thus a 2-dimensional object (a 2 X 1 vector).

On such a pure state [y ), any unitary evolution is described by a unitary operator belonging to the 4-dimensional
space L(H>), the space of linear maps or operators on H,.
A unitary evolution of a pure state | ) of a qubit is thus a 4-dimensional object (a 2 X 2 matrix).

o Accounting for the essential property of decoherence on a qubit, requires it be represented with the extended
notion of a density operator p;, existing in the 4-dimensional space L(H>).

Such a mixed state p; of a qubit is thus a 4-dimensional object (a 2 X 2 matrix).

On such a mixed state p; of a qubit, any nonunitary evolution such as decoherence, should be described by a
(super)operator belonging to the 16-dimensional space L(L(‘Hz)).

A nonunitary evolution of a mixed state p; of a qubit is thus a 16-dimensional object (a 4 X 4 matrix).

o The essential property of entanglement starts to arise with a qubit pair. A qubit pair in a pure state i), exists in
the 4-dimensional Hilbert space H, ® H,, while a qubit pair in a mixed state is represented by a density operator
p2 existing in the 16-dimensional Hilbert space L(H, ® H>).

A mixed state p, of a qubit pair is thus a 16-dimensional object (a 4 x 4 matrix).

On such a mixed state p, of a qubit pair, any nonunitary evolution such as decoherence, should be described by a
(super)operator belonging to the 256-dimensional space L(L(?’(z ® 7{2)).

A nonunitary evolution of a mixed state p, of a qubit pair is thus a 256-dimensional object (a 16 X 16 matrix).
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Technologies for quantum computer

¢ Quantum-circuit decomposition approach :
e Photons : with mirrors, beam splitters, phase shifters, polarizers.

e Trapped ions : confined by electric fields, qubits stored in stable electronic states,
manipulated with lasers. Interact via phonons.

e Light & atoms in cavity : Cavity quantum electrodynamics (Jaynes-Cummings model).
2012 Nobel Prize of S. Haroche (France) and D. Wineland (USA).
e Nuclear spin : manipulated with radiofrequency electromagnetic waves.

e Superconducting Josephson junctions : in electric circuits and control by electric
signals.

(Quantronics Group, CEA Saclay, France.)

e Electron spins : in quantum dots or single-electron transistor, and control by electric
signals.

M. Veldhorst et al.; “A two-qubit logic gate in silicon”; Nature 526 (2015) 410-414.
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4 Quantum annealing, adiabatic quantum computation :

For finding the global minimum of a given objective function, coded as the ground state
of an objective Hamiltonian.

Computation decomposed into a slow continuous transformation of an initial
Hamiltonian into a final Hamiltonian, whose ground states contain the solution.

Starts from a superposition of all candidate states, as stationary states of a simple
controllable initial Hamiltonian.

Probability amplitudes of all candidate states are evolved in parallel, with the
time-dependent Schrodinger equation from the Hamiltonian progressively deformed
toward the (complicated) objective Hamiltonian to solve.

Quantum tunneling out of local minima helps the system converge to the ground
state solution.

A class of universal Hamiltonians is the lattice of qubits (with Pauli operators X, Z) :
H= > hZ+ > eXe+ ) Jw@ZZi+ XX + ) KiXZi .
J k Jk Jk

J. D. Biamonte, P. J. Love; “Realizable Hamiltonians for universal adiabatic quantum computers’;
Physical Review A 78 (2008) 012352,1-7.

127/138

A commercial quantum computer : Canadian D-Wave :

i3 hittps//www.dwavesys. .ucts-serviceshtml | + |

Quantum computing

has arrived.

Wave offers the first commercial quantum
m on the market. If you are looking for a
olution to difficult computational problems,
we've got a pretty cool option for you

Since 2007 : a 128-qubit processor, with superconducting circuit implementation.

Based on quantum annealing, to solve optimization problems.

May 2013 : D-Wave 2, with 512 qubits. $15-million joint purchase by NASA & Google.
Aug. 2015 : D-Wave 2X of 1000 qubits. Apr. 2023 : D-Wave Advantage of 5000 qubits.

M. W. Johnson, ef al.; “Quantum annealing with manufactured spins”; Nature 473 (2011) 194—-198.
T. Lanting, et al.; “Entanglement in a quantum annealing processor”; Phys. Rev. X 4 (2014) 021041.
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Quantum Experiments at Space Scale

From Wikipedia, the free encyclopedia

Quantum Experiments at Space Scale (QUESS; Chinese: EFRIFITHTUE
pinyin: Lidngzi kéxué shiyan wéiing. literally: "Quantum Science Experiment
Satellite”). is an international research preject in the field of quantum physics. A
sateliite, nicknamed Micius or Mozi (Chinese: 2F) after the ancient Chinese
philosopher and scientist, is operated by the Chinese Academy of Sciences, as well
as ground stations in China. The University of Vienna and the Austrian Academy of
Sciences are running the satellite’s European receiving stations “* QUESS is a
proof-of-concept mission designed to facilitate quantum optics experiments over
long distances to allow the development of quantum encryption and guantum
teleportation technology.™ Quantum encryption uses the principle of entanglement
to facilitate communication that is totally safe against eavesdropping, let alone
decryption, by a third party. By producing pairs of entangled phofons, QUESS will
allow ground stations separated by many thousands of kilomeires to establish
secure quantum channels P! QUESS itself has limited communication capabilities: it
needs line-of-sight, and can only operate when not in suniight ® If QUESS is
successful, further Micius satellites will follow, allowing a European—Asian quantum-
encrypted network by 2020, and a glabal network by 2030 I

The mission will cost around US$100 million in fotal =l

Read Edit View history | |Searc pedia Q

Quantum Experiments at Space Scale

Names
us f Mozt
Mission type Technology demonstrator
QOperator Chinese Academy of Science
COSPARID  2015-051A"
Mission 2 years (planned)
duration
Spacecraft properties

Chinese Academy of Science

BOL mass 631kg (1,391 Ib)

Start of mission

I Launch date  17:40 UTC, 16 August 20165 I

Rocket Long March 2D

Jiuguan LA-4

Shanghai Academy of Spaceflight
Technology

Launch site
Contractor

BB84 QKD with key rate of 100 bps over a 1000 km satellite-to-ground photonic link.
[Liao et al., Chin. Phys. Lett. 34 (2017) 090302.]
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QUATRE GEANTS ET UN PIONNIER POUR FABRIQUER LE PROCESSEUR DE DEMAIN

Google

POUR LA SUPREMATIE
QUANTIQUE

De ses échanges initiaux
avec D-Wave, Google a gardé
une démarche hybride

qui méle I'approche souple
et dédiée a une gamme

de problémes de D-Wave

et la correction d'erreurs
alalBM. Le géant de
Mountain View travaillerait
sur un prototype

de 20 qubits et espére
«démontrer la suprématie
quantique dans le courant
de 2018 » avec une machine
de 49 qubits.

PAS A PAS VERS
L'UNIVERSEL

Lancéeen 2016, I'IlBM Q
Experience se traduit
aujourd”hui par un ordinateur
de 16 qubits accessible dans
le cloud. Utilisant des qubits
supraconducteurs implantés
sur du silicium et s'attachant
a maftriser les erreurs liées
ala décohérence, IBM
dispose aussi d'une machine
de 17 qubits sur laguelle

il travaille pour développer
un ordinateur universel
d'icia 2026.

LE SILICIUMROI

Intel veut mettre le silicium
au cceur de l'ordinateur
quantique. Avec 'avantage
de pouvoir utiliser le savoir-
faire et les process
traditionnels. L'américain
travaille sur un qubit
matérialisé par un électron
piégé dans un transistor
modifié. Mais Intel suit aussi
la piste supraconductrice,
comme en témoigne

la puce de 17 qubits
supraconducteurs présen’tée
mi-octobre.

L’Usine Nouvelle, N°3536 du 2 nov. 2017.

B® Microsoft

LEPARITOPOLOGIQUE

La firme de Redmond suit
une voie originale en pariant
pour ses qubits sur des
tresses de quasi-particules,
appelées fermions de
Majorana, générées dans
des gaz d'électrons 2D.
L'intérét de cette approche
dite topologique est d'avoir
une protection intrinséque
contre la décohérence et
donc de limiter la redondance
en qubits utilisée pour
corriger les erreurs.

Une premiére machine est
attendue « pour bient6t ».

D:\wWwave
LEPIONNIER CONTESTE

Ce spécialiste américain

né en1999 est le seul a avoir
déja vendu des machines
(ala Nasa, a Lockheed
Martin...) et a présenté

en 2017 son nouveau
modele a 2000 qubits
supraconducteurs. Mais ces
qubits connaissent beaucoup
d'erreurs et le caractére
quantique des calculs est
contesté. Une chose est
sire, la machine de D-Wave
est cantonnée a des calculs
spécifiques (mais trés utiles)
d’optimisation.
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« NOUS INTECRERONS
DES ACCELERATEURS
QUANTIQUES »

evtrouon
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La communauté francaise du chiffrement se mobilise. Elle

a lancé en début d'année l'initiative Risq (Regroupement de

[} Tindustrie francaise pour la sécurité post-quantique)| Une
quinzaine d’acteurs se sont regroupés, a la fois des laboratoires
e - académiques (CEA, Inria, Irisa, UPMC...), des grands groupes
et des PME (Airbus, Gemalto, Orange, Thales, CS, Secure-IC...).
Linitiative a bénéficié d’un financement du programme des
investissements d’avenir 4 hauteur d’environ 7,5 millions
d’euros sur trois ans dans le cadre de I'appel & projets liés
aux grands défis du numérique. Vu la sensibilité du sujet,
I'Etat soutient et suit de prés cette initiative, fournissant des
renforts de I'Agence nationale pour la sécurité des systémes
d'information (Anssi) et de la Direction générale de l'armement
(DGA). «Le projet Risq définit une feuille de route pour la
commercialisation de produits de sécurité post-quantique »,
précise Adrien Facon, le porte-parole de cette initiative. Des
démonstrateurs sont prévus pour répondre aux différents cas

ENFIN]
LAREVOLUTION
QUANTIQUE

Les ordinsteurs quantiques pourraiet deverieréaitéen 201, e ncustriee < emparent
de cete nouvele puissance e calcl oI France se mobilse pour revolesaséché, 4

« Le projet Risq définit une feullle
de route pour la commerclalisation
de prodults de sécurlté post-quantique. »

3 Adrien Facon, porte-parole du Regroupement de
vm l'industrie frangaise pourla sécurité post-quantique (Risg)

~

L'USINE NOUVELLE N°353612 NOVEMBRE 2017

INDUSTRIELS La puissance de I'ordinateur
quantique séduit déja. Aprés Lockheed Martin,

Philippe Vannier est conseiller d’Atos
pour la technologie. I affirme que I'ordinateur
quantique est un impératif pour surmonter

la fin de la loi de Moore.

Volkswagen et Biogen travaillent avec le pionnier
D-Wave et Airbus a monté une équipe dédiée.

IBM Q systems

@O @ hig

1.ibm.comy/ibm -q/tec

Network v

Premium systems

® IBMQ Tokyo

IBM Q systems are named after IBM office

locations around the globe.

About IBM Q quantum

devices

Technology

nology/devices/

v Resources v

Public systems

* IBM Q Melbourne
* IBM Q Tenerife

® IBM Q Yorktown

Quantum computers are rapidly emerging. Pursued for decades in
research labs, prototype machines are today getting bigger and more
capable. While quantum is stilin its infancy, significant progress s being
made across the entire quantum computing technology stack. Today, IBM
has several real quantum devices and simulators available for use through
the cloud. These devices are accessed and used through Qiskit, and open
source quantum software development kit, and IBM Q Experience, which
offers a virtual interface for coding a quantum computer.

- @ n o =

Retired systems

IBM Q Austin

IBM Q Ruschlikon

IBM quantum processors online https://research.ibm.com/quantum-computing
5 qubits on IBM Q Tenerife and on IBM Q Yorktown,

14 qubits on IBM Q Melbourne.

2019
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Online IBM quantum processors

https://quantum.ibm.com
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o F. Chapeau-Blondeau; “Modeling and simulation of a quantum thermal noise on the qubit”; Fluctuation and
Noise Letters 21, 2250060,1-17 (2022).

o N. Delanoue, F. Chapeau-Blondeau ; “Identification sur un systeme quantique bruité : Théorie et démonstration
expérimentale sur un processeur quantique.” ; Actes des 6émes Journées Démonstrateurs en Automatique du Club
EEA (Elcclroniquc Elcclrotcchniquc Automatique), Angers, France, 21-22 juin 2022.

o F. Chapeau-Blondeau, N. Delanoue ; “Détection quantique en présence de bruit : analyse théorique et étude
expérimentale sur un processeur quantique.” ; Actes du 29¢me Colloque GRETSI sur le Traitement du Signal et

des Images, Grenoble, France, 28 aofit — 1 sept. 2023.
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Ordinateur : les
promesses de l'aube
quantique

15.04.2019, par Julien Bourdet

https://lejournal.cnrs.fr/articles/ordinateur-les-promesses-de-laube-quantique 2019
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Quantique : Microsoft signe un partenariat avec le

francais Pasqal et avance sur ses recherches autour des
Qubits topologiques.

©le 24-03-2022
Par Loic Duval

Microsoft poursuit sa quéte des qubits logi pour des ordinateurs quantiques sans
erreur tout en de P iats pour son service Azure Quantum avec le
frangais Pasqal notamment.

En matiere d'informatique quantique, Microsoft a choisi une approche un peu singuliere et

probablement risquée. Depuis le début, ses chercheurs sont en quéte des hypothétiques fermions de Faceboo
Majorana dont I'existence n'est encore que théorique. Car en combinant ces fermions sous forme de
paires MZM (Majorana zero modes), il est possible de les associer pour former une structure
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(QUANDELA

Quantum Computing Glossary

What is NISQ ?

QUANDELA HUB

v v v ABOUTUS v

February 2025

NISQ, which stands for Noisy Intermediate-Scale Quantum, refers to the current generation of
quantum computers. These devices have several tens to a few hundred qubits and are
characterized by their ability to perform quantum operations, but with significant noise and errors
that limit their capabilities. The term was coined by John Preskill in 2018 to describe the near-
term quantum computing landscape.

Table of Contents

Key Characteristics of NISQ Devices

Potential of NISQ Era Computing
At Quandela, we're pushing the boundaries of NISQ-era ing with our
approach. Our technology offers unique advantages in mitigating noise and scaling up quantum
systems, bringing us closer to practical quantum advantage.

Key Characteristics of NISQ Devices

* Qubit Count: Typically ranging from tens to a few hundred qubits

+—— Limitations of NISQ Technology

+— Frequently Asked Questions About NISQ

* Limited C Qubits intain their states for short periods

* Noisy Oj i Quant gates and are prone to errors

« Lack of Error Correction: Insufficient resources for full quantum error correction

« Hybrid Algorithms: Often used in j ion with i for pi
applications
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Microsoft unveils Majorana 1,
the world’s first quantum
processor powered by
topological qubits

by Chetan Nayak, Technical Fellow and Corporate Vice President of Quantum Hardware

J/quantum/2025,

Built with a breakthrough class of materials called a topoconductor, Majorana 1
marks a transformative leap toward practical quantum computing.

Quantum computers promise to transform science and society—but only after
they achieve the scale that once seemed distant and elusive, and their reliability is
ensured by quantum error correction. Today, we're announcing rapid
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