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“I believe that science is not simply a matter of exploring new horizons. One must also make the new
knowledge readily available, and we have in this work a beautiful example of such a pedagogical effort.”
Claude Cohen-Tannoudji, in foreword to the book “Introduction to Quantum Optics”
by G. Grynberg, A. Aspect, C. Fabre ; Cambridge University Press 2010.
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A definition (at large)

To exploit quantum properties and phenomena
for information processing and computation.

Motivations for the quantic

for information and computation :

1) When using elementary systems (photons, electrons, atoms, ions,
nanodevices, ...).

2) To benefit from purely quantum effects (parallelism, entanglement, ... ).

3) Recent field of research, rich of large potentialities (science & technology).
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Some basic textbooks

Classical and
Quantum Information

Theoiiiemnter Quantum
Information
Theory

Mark M. Wilde

i EMMANUEL DESURVIRE
and Quantum Information

M. Nielsen & 1. Chuang
2000, 676 pages

M. Wilde
2017, 757 pages

E. Desurvire
2009, 691 pages

arXiv:1106.1445v8 [quant-ph] M. Wilde, “From classical to quantum Shannon theory”, 774 pages.
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Quantum system

(1) State

Represented by a state vector |¢)

in a complex Hilbert space H,
with unit norm (Y|y) = ||¢||2 =1.

In dimension 2 : the qubit (photon, electron, atom, ...)
State |¢) = a|0) +8]|1)

in some orthonormal basis {|0), |1)} of H>, p
with complex coordinates @, € C

such that |af® + |B* = (ly) = [IWI* = 1.

_|¢ F_ il — [t @ T 2
) = [ 3}, W' =Wl =[a,.1 = W) =IYll" =lal” +|Bl" scalar.
) (Yl [a} [a", 5] [(m/* @ *] IT, orthogonal projector on |y)
= a, = = .
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Measurement of the qubit

(2) Measurement

When a qubit in state [) = @ |0) + B|1)
is measured in the orthonormal basis {|0), [1)},

— only 2 possible outcomes (Born rule) :
state |0) with probability > = [(O) |* = (WI0XOly) = (Wllohy), or
state |1) with probability |8 = | (1) > = I1){1ly) = @I 1).

Quantum measurement : usually :
e a probabilistic process,
e as a destructive projection of the state [¢/) in an orthonormal basis,

e with statistics evaluable over repeated experiments with same preparation |i/).
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Hadamard basis )

Another orthonormal basis of H>,

_ ! 0)+11)); _ ! 0) -1 v
{=5(0+): =50 -m) |,
/4
10)
= Computational orthonormal basis |—)
1 1
(0= +1): 1= (0 -19) }.
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Experiments Coll. Magnet
— ¥
I Source — | Screen
& — 2 ‘

W

Stern-Gerlach apparatus for particles with two states of spin (electron, atom).
detector 1 0

Two states of polarization of a photon :
(Nicol prism, Glan-Thompson,

polarizing beam splitter, ... )

detector 2%
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Bloch sphere representation of the qubit 2

Qubit in state
) = a|0) + B 1) with |af?> + |8 = 1.

& |¢) = cos(6/2) |0) + € sin(/2) |1)

with 0 € [0, x],
€ [0,2n[.

Two states L in H, are antipodal on sphere.

1)

As a quantum object,

the qubit has access to infinitely many configurations
via its two continuous degrees of freedom (6, ¢),

yet when it is measured it can only be found in one of two states.
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In dimension N (finite) (extensible to infinite dimension)

N
State |y) = Z a, |n) , in some orthonormal basis {|1> L2y, ... IN)} of Hy,

n=1

N
witha, € €, and ) Jaul’ = Yly) = 1.
n=1

Proba. Pr{|n)} = |a,|*> in a projective measurement of |y} in basis {In)}.

N 51(11
Inner product (k|y) = Z a, {kln) = a; coordinate.
n=1
N
S= Z In)y (n| = Iy identity of Hy (closure or completeness relation),

n=1
a,

N . N
since, VIy) : Sly) = > Im) (i) = )" alny = ) = S =,
n=1

n=1
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Continuous infinite dimensional states

A particle moving in one dimension has a state [i/) = f Y(x)|x)dx in an

orthonormal basis {|x)} of a continuous infinite-dimensional Hilbert space H.

The basis states {|x)} in H satisfy (x|x") = 6(x — x") (orthonormality),
f |x) (x|dx = Id (completeness).

The coordinate C > ¥(x) = (x|¢) is the wave function, satisfying

1=f Ilﬁ(X)Izdx=f lﬁ*(X)lﬁ(X)dx=f Wlx) (xlp) dx = Ylyr)

with [/(x)|? the probability density for finding the particle at position x,
when measuring the position of the particle.
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Multiple qubits
A system (a word) of L qubits has a state in ?{fL,

a tensor-product vector space with dimension 2%,

and orthonormal basis {|x;x; - - - x1.)} .
2e {0, 1}F

Example L =2 :
Generally |) = aqg |00) + ag; [01) + a0 |10) + aqq |11) (2 coord.).

Or, as a special separable state (2L coord.)
#) = (@1 10) + 81 1) ® (@2 0) + B2 1))
= @122 |00) + @152 [01) + 12 [10) + 152 |11) .

A multipartite state which is not separable is entangled.

An entangled state behaves as a nonlocal whole : with no definite state for A
and B separately, and what is done on one part may influence the other part

instantly, no matter how distant they are.
11/130

Entangled states

e Example of a separable state of two qubits AB :

IAB) = |+) ® |+) = %(m +11)) & %(m) +11)) = %(|00> +101) +110) +[11)).
When measured in the basis {|0), |1)}, each qubit A and B can be found in state |0) or |1)
independently with probability 1/2.

Pr{A in |0)} = Pr{|AB) = |00)} + Pr{|AB) = |01)} = 1/4+ 1/4 = 1/2.

e Example of an entangled state of two qubits AB :

|AB) = %(IOO) + |11)). Pr{A in |0)} = Pr{|AB) = |00)} = 1/2.

When measured in the basis {|0),|1)}, each qubit A and B can be found in state |0) or |1)
with probability 1/2 (randomly, no predetermination before measurement).

But if A is found in |0) necessarily B is found in |0),

and if A is found in |1) necessarily B is found in |1),

no matter how distant the two qubits are before measurement.
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Futhermore, |[AB) = %000) + |11)) = %(|++> + |__>).

= Pr{A in |+)} = Pr{|AB) = [++)} = 1/2.

When measured in the basis {|+),|—)}, each qubit A and B can be found in state [+) or |-)

with probability 1/2 (randomly, no predetermination before measurement).

Bell basis

A pair of qubits in ‘H?z is a quantum system with dimension 2° = 4,

with original (computational) orthonormal basis { |00),]01),]10),]11 )}.

Another orthonormal basis of 7-{?2 is the Bell basis {|ﬂ00> ,1B01) 5 1B10) » |B11 )} :

1
Bood) = —=(100) +11)) 00y = —(L800> + |B10))
But if A is found in |[+) necessarily B is found in [+), V2 V2
e _— . . _— 1
and if A is found in |-) necessarily B is found in |-), Bo) = 7001) " |10>) 01y = 7(|,301> " |,311>)
no matter how distant the two qubits are before measurement. —
1
@‘ By = 500 -111) 10) = 7(L801>—L8n>)
1
Bi) = 7(|01>—|10>) iy = 7(L800>—L810>)
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Observables Heisenberg uncertainty relation (1/2)
For a quantum system in space H with dimension N,
a projective measurement is defined by an orthonormal basis {|1),...|N)} of Hy, For two operators A and B : commutator [A,B] = AB - BA,
and the N orthogonal projectors |n) (n|, forn = 1 to N. anticommutator {A,B} = AB +BA,
1 1
Also, any Hermitian (i.e. Q = Q) operator Q on Hy, so that AB = E[A’ Bl + E{A, B} .
has its eigenstates forming an orthonormal basis {|w, ), ... |wy)} of Hy.
Therefore, any Hermitian operator € on Hy defines a valid measurement, When A and B Hermitian : [A, B] is antiHermitian and {A, B} is Hermitian,
N
and has a spectral decomposition Q = Z Wy W) {wyl with the real eigenvalues w,,. and for any /) then (Y|[A,B]ly) € iR and (Y|{A,B}ly) € R; then
n=1 1 1 2 1
| | , . WIABIY) = = (WIIA, BIlY) +5 (WIA, Blly) = [(wIABI)|" >
Also, any physical quantity measurable on a quantum system is represented in quantum 2 2
. imaginary (part) real (part)
theory by a Hermitian operator (an observable) €.
When system in state |i/), measuring observable € is equivalent to performing a projec- and for two vectors A i) and B ), the Cauchy—Schwarzzlnequahzty 15 )
tive measurement in eigenbasis {|w, )}, with projectors |w,) (w,| = I1,, and yields the |<¢|AB|W>| < (WIA ) (WIB-ly) ,

eigenvalue w, with probability Pr{w,} = | (w,|y) > = Wlw,) {wpllry = WL, ).
The average is (Q) = >, w, Pr{w,} = W|Q) .
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1
so that (IA%ly) (WIB%W) > —|(WITA, Blw)[
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Heisenberg uncertainty relation (2/2)

For two observables A and B measured in state |¢/) :
the average (scalar) : (A) = (Y|Aly) ,
the centered or dispersion operator : A=A- AT,

= <K2> = (A?) — (A)? scalar variance,
also [A,B] =[A,B] .

2\ /52 1 2 . . .
Whence <A ><B > > Z|<[A, B]>| Heisenberg uncertainty relation ;

—_ 2 ~, 2
or with the scalar dispersions AA = ((Az))l/ and AB = ((Bz))l/ ,

1
then AAAB > §|<[A, B]>| Heisenberg uncertainty relation.
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Computation on a qubit

(3) Evolution
(e Ul=U"

Through a unitary (linear) operator U on H; (a 2 X 2 matrix) :

normalized vector |y) € H>, — U |y) normalized vector € H, .

input output
) —= U

= quantum gate
— U[¢)

(always reversible)

1 [1 1
Hadamard gate H= — . 0 1

V2|1 -1
H? =1, & H™! = H = H" Hermitian unitary.
HI0) =1+) and H|I)=1-)

o)=Y

\/E \/i z€{0,1}

. 1 0
Identity gate I, = .

= Hln = (=D%lz) , Yxe{0,1}.
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Pauli gates

w_ . |01 T L N P
“9T ool T ol 7% T o -1l

X2 =Y?=272=1,. Hermitian unitary. XY =-YX=iZ, ZX =iV, etc.

{Iz, XY, Z} a basis for operators on H,.

1
Hadamard gate H = — (X + Z).
¢ \ﬁ( )

X =0, theinversion or Not quantum gate. X|0) = [1), X]|I) =]0).
1[1+i 1-i 1 [ ™4 ein/d

W= VX= o, = = =—| . wa | =W =X,
o -i 1+i} \/i[e"”/“ em/“]

square-root of Not, (or W'), typically quantum gate (no classical analogue).
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In general, the gates U and U lead to the same measurement statistics
at the output, and are thus physically equivalent, in this respect.

Any single-qubit gate can always be expressed as e’U; with
U = exp(—i gﬁ‘ o_") = cos(g)lg - isin(g)ﬁ- g €SuUQ),

with a formal “vector” of 2 X 2 matrices & = [0, oy, 0],
and 71 = [n,, ny, n,]" a real unit vector of R} = det(Uy) =1,

implementing in the Bloch sphere representation
a rotation of the qubit state of an angle & around the axis 77 in R? € SO(3).
Example : W = /&7 = e™*|cos(r/4) I, — i sin(rr/4) o, (€ =n)2, il = &)
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An optical implementation

1 0
0 €%
optically implemented by a Mach-Zehnder interferometer

out
A) phase shift &

|1> A A
ﬁ >
in 0) /

acting on individual photons with two states of polarization |0) and 1)

A one-qubit phase gate U; =

] = /% exp(—iéc,/2)

Y
Y

which are selectively shifted in phase,
to operate as well on any superposition ag[0) + a;|1) — ag|0) + a1e?|1).
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Computation on a pair of qubits
Through a unitary operator U on 7—(5’2 (a4 x4 matrix) :

normalized vector |y) € HE* — U |y) normalized vector € HE> .

input output
= quantum gate — —
(always reversible) |¢> U UW)

Completely defined for instance by the transformation of the four state vectors
of the computational basis {|00), [01)., 10}, [11)}.

But works equally on any linear superposition of quantum states
= quantum parallelism.
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e Example : Controlled-Not gate

Via the XOR binary function: a® b =a whenb =0, or =a whenb =1
invertiblea®x=b&c— x=adb=>bda.

Used to construct a unitary invertible quantum C-Not gate :
(T target, C control)

T - P VCEBT

ICT) — |C,.C®T) CT) Y C,CaT)
00 00 = >
|00) — |00) o o 1 0 00
01) —>[01) u_|0 1T 0o
110y — |11) 100 0 1
111y —> |10) 00 10
(C-Not)? = I; &= (C-Not)~! = C-Not = (C-Not)" Hermitian unitary.
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Computation on a system of L qubits
Through a unitary operator U on H" (a 2% x 2% matrix) :

normalized vector |) € HE" — U |y) normalized vector € HE™

u
= quantum gate : L input qubits ———— L output qubits.

Completely defined for instance by the transformation of the 2% state vectors
of the computational basis ;
but works equally on any linear superposition of them (parallelism).

Universal set of gates :

Any L-qubit quantum gate or circuit U can always be obtained

from two-qubit C-Not gates and single-qubit gates.

And in principle this ensures experimental realizability of any unitary U.

This provides a foundation for quantum computation.
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Continuous-time evolution of a quantum system

By empirical postulation Schrodinger equation (for isolated systems) :

d . . 1%}
7 W) = —éH W) = W (12)) = exp(-%f Hdt) [o(r1)) = U2, 1) o (21))

1

unitary U(z,, 11)
Hermitian operator Hamiltonian H, or energy operator.

Conversely, postulating for |) a linear unitary evolution U(t, #;)
between any two times #; and t,, especially [y (t + dt)) = U(t + dt, 1) [y (1)),
recovers the Schrodinger equation.
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“I believe that science is not simply a matter of exploring new horizons. One must also make the new
knowledge readily available, and we have in this work a beautiful example of such a pedagogical effort.”
Claude Cohen-Tannoudji, in foreword to the book “Introduction to Quantum Optics”
by G. Grynberg, A. Aspect, C. Fabre ; Cambridge University Press 2010.

26/130

Summary (so far) : Foundation on 3 general postulates or principles :

e State : Unit-norm vector |) = ZnNzl a, |n)y € Hy complex Hilbert space.
Realizable with L two-dimensional qubits, with 2L > N.

Multipartite states in tensor-product space = quantum entanglement.

e Measurement : Random and destructive, in Hy via
a set of M orthogonal projectors I1,,, = H;Hm, satisfying Z%:l I, = Iy,
with M outcomes of probability P(m) = ||Hm |zp>||2 = WL, |) ,

IL, [)

and post-measurement state [/pos) = —————

1L |

. . U
e Evolution : Linear unitary : |y) —— U [¢)

Realizable from one-qubit gates and the two-qubit C-Not gate.
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In particular :

N o
e State : i) =Z ayn)y = W) = f Y(x)|x) dx continuously infinite dimension. (p.10)
n=1 -

1 1
Measurement of [AB) = —(|00) +[11)) = —(|0)®|0) + [1)®|1)) € Hr @ H, (p.12)
° \/f( ) \/f( ) 2 2 P
IT; = 100)<00| = [0) (0| ® |0} (O]
I, = [01)¢01] =0)¢0|® 1)1 4
with 2 |01 <01| = [0) (O] ® [1) (1] _ Zﬂm=l4=12®12,

II; = [10)<10] = [1) (1| ®|0)<O] m=1
Iy, = [11(1L =)l |1) (1]
Il = [0)0®l 2

or with ! AV = Zn;n:b@lz:h.
m, = |{eh &

U d j
e Evolution : [y) — Uy) = 7 )y = —%H [y = |@(22)) = U(tz, t1) [r(t1)) ,  (p-25)
. i (2 . Ho
with U(r2,11) = exp (—% f Hdt) . Trivial H = Hold = [y(12)) = exp(—z7(t2 - )) (1)) .
3
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No cloning theorem (1982)

(, Possibility of a circuit (a unitary U) that would take any state |i/), associated with

an auxiliary register |0), to transform the input [i/) |0) into the cloned output [i) /) ?

V) —» > [V)

u
11310y —— U(ly1)10)) = 1) 1) (would be). U?

|0) —> —>[4)

U
12)10) —— U(¥2) [0)) = [¥2) [¥r2) (would be).

Linear superposition |y) = a; [y1) + a2 [y2)

u
)10 —— Uy 10) = U(a1 [y1)10) + a2 [v2) 0))
=ay ) ) + az 2) [2)

since U linear.

But [y) [p) = [9) ® ) = (a1 1) + @2 o)) (a1 ) + @2 )

= al ) ) + aran 1) [a) + aras o) ) + a3 [a) a)
# U(ly)|0)) in general. = No cloning U possible.
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Quantum parallelism

For a system of L qubits,
a quantum gate or circuit is any unitary operator U from 7—(§’L onto ‘HfL.

The quantum gate U is completely defined
by its action on the 2% basis states of ﬂf’L : {I)?) ,x €0, I}L},
just like a classical gate.

Yet, the quantum gate U can be operated
on any linear superposition of the basis states {l)? y, X € {0, I}L}.

This is quantum parallelism, with no classical analogue.

log,(10) = 3.32 = log2(1015) ~ 49.83 & 10" = 2%
So 1000 Tbits can be stored in a register of 50 qubits ! ‘
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Parallel evaluation of a function (1/4)

A classical Boolean function f(-) from L bits to 1 bit
e f0,1}f —— f(¥)e{0,1}.

Used to construct a unitary operator Uy as an invertible f-controlled gate :

T T~
Uy
y D f(7)—

_»y

with binary output y @ f(¥) = f(¥) wheny =0, or= f(¥) wheny = 1,
(invertible as [y® f(X)]® f(X) =y® f(X)D f(X) =y 0 =y).
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Parallel evaluation of a function (2/4)

Toffoli gate or Controlled-Controlled-Not gate or CC-Not quantum gate :

la @ be)

|€) —= =)

(CC-Not)? = Iy &= (CC-Not)"! = CC-Not = (CC-Not)" Hermitian unitary.

Any classical Boolean function f(¥) (invertible or non) on L bits
can always be implemented (simulated) by means of 3-qubit Toffoli gates.

1) P [zty) 1) P ) 10) P |z Ay)
|z) |z) |z) ) |2) |z)
ly) ) 1) 1y y)
NAND NOT AND
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Parallel evaluation of a function (3/4)

y @ f(@)—

For every basis state |¥), with ¥ € {0, 1} :

Us
)y = 0) ————— ) 1f(X)

Ryl = 1) ————— |f> e

><

7 =@+ [f@)] = 1))
1) [If(f» -[r@)| =y e

X} +) —————— |¥)
—

1) 1-)

&l

Parallel evaluation of a function (4/4)

[+ 7 .
Uy

ly) —y y© f(7)—

1\
|+)®F = (75 ) Z |¥)  superposition of all basis states,
e{0,1)t

Uy

)% ®10) ——

B
(—) Z XY f(D)) superposition of all values f(%).
V2 Re(0, 1)L

Uf 1 L
4L @ |-y ———— (—) %) =) (=1)/@
%) 2

(, How to extract, to measure, useful informations from superpositions ?
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Deutsch-Jozsa algorithm (1992) : Parallel test of a function (1/5) Deutsch-Jozsa algorithm (2/5)
A classical Boolean function f0) 0.1 — {01 |_|_>®L £ ol 7 T - H®L L 4 >
2L values — 2 values, U
can be constant (all inputs into O or 1) or balanced (equal numbers of 0, 1 in output). f
Classically : Between 2 and > + 1 evaluations of f(-) to decide. ? T ?
Quantumly : One evaluation of f(-) is enough (on a suitable superposition). ‘¢1> |¢2> |77D3>
1\
Lemma1: Hlx) = i(|o>+(—1>*|1>) Z( %), Yxelol) Input state 1) = [+)*|-) = (—) €Y 1=)
\/E €{0,1} \5 Xe(0,1}L
L
®L |2\ _ . X7 2 L 1
— H* |®¥) =H|x)® ®H|xL>—( ) Z( D2y, Vixe{o, 1}, Internal state |¢/2>:(—) Z 1) |-) (1)@
(0,1} \/5 .
Xe{0,1}
with scalar product ¥Z = x;z; + -+ + xzz;, modulo 2. (quantum Hadamard transfo.)
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Deutsch-Jozsa algorithm (3/5)

Output state |yr3) = (H®L ® Iz) )

1 )L
=\ HEE [2) =) (=)

L
:(%) > EDFERDI YD by Lemma

Xe{0,1}L 70,1}

1 L
or Is) = W)1-) . with |w>:(§) > W@y

Ze{0, 1}

and the scalar weight w(?) = Z (—1)f ez

Xe{0,1}-
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Deutsch-Jozsa algorithm (4/5)
1 e
So ) = ¢ DT w@R)  with w@) = ) (-1

7€{0,1} Xe{0,1}t
For [7) = [0) = |0)®:  then w(Z=0) = Z (—1)f@ |
Xe{0,1}L

e When £(-) constant : w(Z=0) = 2L(=1Y/O® = 421 — in ) the amplitude of [0 ) is
+1, and since ) is with unit norm = ) = + |6), and all other w(Z # 6) =0.
= When |¢) is measured, L states |0) are found.

e When f(-) balanced : w(Z = 0 ) = 0 = |¢) is not or does not contain state I6 ).
=— When |¢) is measured, at least one state |1) is found.

— Illustrates quantum ressources of parallelism, coherent superposition, interference.

(When f() is neither constant nor balanced, |¢) contains a little bit of |6 ).)
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Deutsch-Jozsa algorithm (5/5)
[1] D. Deutsch; “Quantum theory, the Church-Turing principle and the universal quantum
computer”; Proceedings of the Royal Society of London A 400 (1985) 97-117.

The case L = 2 qubits.

[2] D. Deutsch, R. Jozsa; “Rapid solution of problems by quantum computation”; Proceedings of
the Royal Society of London A 439 (1992) 553-558.

Extension to arbitrary L > 2 qubits.

[3] E. Bernstein, U. Vazirani; “Quantum complexity theory”; SIAM Journal on Computing 26
(1997) 1411-1473.

Extension to f(X) = dx or f(X) = dX® b, to find binary L-word @ — by producing output
) =la).

[4] R. Cleve, A. Ekert, C. Macchiavello, M. Mosca; “Quantum algorithms revisited”; Proceedings
of the Royal Society of London A 454 (1998) 339-354.
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Superdense coding (Bennett 1992) : exploiting entanglement
1
Alice and Bob share a qubit pair in entangled state [AB) = 6000) + |1 1)) = |Boo)-

Alice chooses two classical bits, used to encode by applying to her qubit A
one of {I,, X, 1Y, Z}, delivering the qubit A’ sent to Bob.

. Alice Bob
2 chits iz | qbit 4’ > hite I, ®1,|AB) = |Boo)
— -5 COILS X®L |AB) = |Bo)
Y ecoder |F—FA—=
A ) — Z®1,|AB) = |B1o)

iY®Iz |AB> = |ﬁ11>
|AB) 2 entangled qubits

Bob receives this qubit A’. For decoding, Bob measures |A’ B) in the Bell basis
{Iﬁ()o) ,1Bo1) 5 1B10) 1811 )}, from which he recovers the two classical bits.
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Teleportation (Bennett 1993) : of an arbitrary qubit state (1/3)
Qubit Q in an arbitrary state /o) = @ [0) + a; [1).
1
Alice and Bob share a qubit pair in entangled state [AB) = 7(|OO> + |11>) = |Boo)-
2

o) Alice 9 cpigg Bob
Measurement
in Bell basis y X
A {18:)} ‘ L

|AB)

T

1) )

Alice measures the pair of qubits QA in the Bell basis (so [i/o) is locally destroyed),
and the two resulting cbits x, y are sent to Bob.
Bob on his qubit B applies the gates X¥ and Z* which reconstructs [fy).
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Teleportation (2/3)

Sl -&l-

[¥1) = o) 1Boo) |2010) (100) + 111)) + @y [1) ([00) + [11))]

[ao 1000) + g [011) + a7 [100) + |111>],

factorizable as |y ) = %[ 100y + [11))(ex0 [0) + vy [1)) +
01) + [10))(ex0 [1) + 1 10)) +
00) — [11))

( )
(@0 10y = a1 1)) +
( )

101) = [10))(@o [1) — @1 10) ] ;
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Teleportation (3/3)
1
Y1) = E[wm (0105 + @1 1)) + 1Bor) (e [1) + a1 10)) +
1B10) (@0 10) = a1 1)) + B11) (a0 1) — @y |0>)] :
The first two qubits QA measured in Bell basis {|3,,)} yield the two cbits xy,

used to transform the third qubit B by X” then Z*, which reconstructs [¢).

1 1

When QA is measured in |Byo) then Bisin a(|0) + a;|1) 2,2, o)
X 1

When QA is measured in |By;) then Bisin ag|l) + a;|0) — - 2, o)
1 Z

When QA is measured in |819) then Bisin ag|0) — a;|1) NN o)

X Z
When QA is measured in [811) then Bisin ag|l) — a;]0) — - — [¢p).
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Princeps references on superdense coding ...

[1] C. H. Bennett, S. J. Wiesner; “Communication via one- and two-particle operators on
Einstein-Podolsky-Rosen states™; Physical Review Letters 69 (1992) 2881-2884.

[2] K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger; “Dense coding in experimental
quantum communication”; Physical Review Letters 76 (1996) 4656—4659.

... and teleportation
[3] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters; “Teleporting an
unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels’;

Physical Review Letters 70 (1993) 1895-1899.

[4] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger;
“Experimental quantum teleportation”; Nature 390 (1997) 575-579.
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Grover quantum search algorithm (1/4)  Phys. Rev. Ler. 79 (1997) 325.

e [terative algorithm that finds an item out of N in an unsorted dataset,
with O(VN) queries instead of O(N) classically.

e A dataset contains N items numbered as n € {1,2,--- N}.

One wants to find one (only one here, but extensible) item n = ny
satisfying some criterion or property,

indicated by the test function or oracle f(-) responding as f(n) = dppn, .

With an unsorted dataset, finding ny requires

classically O(N) interrogations of the oracle or evaluations of f(-),
while O(VN) are enough quantumly.
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Grover quantum search algorithm (2/4)

e Quantumly, an N-dimensional quantum system in Hy with orthonormal basis {|1),- -, |N)},
where the N basis states |n), for n € {1,2,--- N}, represent the N items of the dataset.

From a quantum implementation of the test function f(-), it is possible to obtain a quantum oracle
as the unitary operator Uy realizing Uy |n) = (=17 |0y for any n € {1,2,--- N}.

Thus, the quantum oracle returns its response by reversing the sign of |n) when 7 is the solution no,
while no change of sign occurs to |z) when 7 is not the solution.

Equivalently Uy = Iy — 2 [ng){no|, although |np) need not be known, but only f(-) evaluable.

The quantum oracle is able to respond to a superposition of input query states |n) in a single
interrogation, for instance to a superposition like |y) = N -1/2 ZZV: ).

Upon measuring i), any specific item |n1) would be obtained as measurement outcome with the
probability [{n;|) |> = 1/N , since {(n|y) = 1/ VN for any nj € {1,2,--- N}.

Instead, as measurement outcome, we would like to obtain the solution |ng) with probability 1.
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Grover quantum search algorithm (3/4) Inp)
1 N
elet n,)= N ,#Z,,:O |n) normalized state L |ng)

= gy = N"V2 3N In) is in plane (lno) , In.)).

e With the oracle Uy = Iy — 2 |ng){ngl = Ug|n.) = |n,) and Ug |ng) = — |ng).
So in plane (|n0> ,|n l)), the operator Uy performs a reflection about |n, ).
e Let |y, ) normalized state L [if) in plane (|n0> s Inl)).

e Define the unitary operator Uy, = 2 ) (Y| — Iy = Uy ) = [y and Uy [, ) = — o).

So in plane (Ino) N )), the operator Uy, performs a reflection about [i/).

e In plane (Ino) ,|n l)), the composition of two reflections is a rotation Uy, Uy = G (Grover
2
amplification operator). It verifies G |ng) = Uy Ug lno) = —Uy Ing) = Ino) — W ).
The rotation angle 8 between [ng) and G |ng), via the scalar product of |ng) and G |ng), verifies
02

2
COS(0)2<HQ|G|HO>:1—Nzl—ijezﬁ at N > 1.
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Grover quantum search algorithm (4/4)

2
e In plane (Ino) , InL)), the rotation G = U, Uy is with angle 6 ~ ? .
N

2 4 2
* Gly) = UyUo ) = Uy(Iv) - = Ino)) = (1 - N) ) + = Ino-

So after rotation by 6 the rotated state G i) is closer to |ng).

e G |y) remains in plane (|n0> s |nJ_>), and any state in plane (|n0> , |nl>) by G is rotated by 6.
So G2 |y) rotates |if) by 26 toward |ng), and G* |y) rotates i) by k6 toward |ng).

e The angle ® of |) and |ng) is such that cos(®) = (ngly) = 1/ VN =0-= acos(l/ \/IV)

® N
eSoK = rl ~ g acos(l/ \/IV) iterations of G rotate |y/) onto |ng).

At most O = (when N > 1) = at most K ~ %\/IT/

ST

e So when the state GX |y} ~ |ng) is measured, the probability is almost 1 to obtain |ng) .
= The searched item |ng) is found with O(VN) interrogations instead of O(N) classically.
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Other quantum algorithms

e Shor factoring algorithm (1994) :
Finds the prime factors of an integer with a complexity polynomial in its size,

instead of exponential classically.

15 = 3 x 5, with spin-1/2 nuclei (Vandersypen et al., Nature 2001).

21 = 3 x 7, with photons (Martin-Lépez et al., Nature Photonics 2012).

35 =5x%7, onIBM Q processor (Amico ef al., Phys. Rev. A 2019).

e https://quantumalgorithmzoo.org

“A comprehensive catalog of quantum algorithms ...”

Quantum cryptography
e The problem of cryptography

Message X, a string of bits.
Cryptographic key K, a completely random string of bits with proba. 1/2 and 1/2.

The cryptogram or encrypted message C(X, K) = X @ K (encrypted string of bits).
This is Vernam cipher or one-time pad,
with provably perfect security, since mutual information /(C; X) = H(X) - H(X|C) = 0.

Problem : establishing a secret (private) key
between emitter (Alice) and receiver (Bob).

With quantum signals,
any measurement by an eavesdropper (Eve) disturbs the system,

and hence reveals the eavesdropping, and also certifies perfect security conditions.
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e BB8&4 protocol (Bennett & Brassard 1984) ) e B92 protocol with two nonorthogonal states (Bennett 1992) |+)
¢ Alic.e.has a st.ring of 4.N random bits. She encodes with ¢ To encode the bit a Alice uses a qubit in state [0) if a =0
a qubit in a basis state either from {|0), |1)} or {|+),|—)} . .
randomly chosen for each bit. [+ and in state [+) =( 10) + |1>)/ V2 if a=1. /4 0)

0

4 Then Bob chooses to measure each received qubit either in ¢ Bob, depending on a random bit @’ he generates,
basis {|0), |1)} or {|+),]|—)} so as to decode each transmitted bit. /4 measures each received qubit either in basis {|0), 1)} ifa’ =0

10) orin {|+),|-)} if @’ = 1. From his measurement, Bob obtains the result b = 0 or 1.

¢ When the whole string of 4N bits has been transmitted,

Alice and Bob publicly disclose the sequence of their basis choices
to identify where they coincide. -
¢ Alice and Bob keep only the positions where their basis choices coincide,

and they obtain a shared secret key of length approximately 2N.

+ If Eve intercepts Alice’s qubit, she cannot make a copy (no-cloning theorem).

She has to measure (and destroy) it, and forward to Bob a qubit in her known measured
state. Roughly half of the time Eve forwards an incorrect state.

From this Bob half of the time decodes an incorrect bit value.

4 From their 2N coinciding bits, Alice and Bob classically exchange N bits at random.
In case of eavesdropping, around N/4 of these N test bits will differ.
If all N test bits coincide, then the remaining N bits form the shared secret key.
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¢ Then Bob publishes his series of b, and agrees with Alice to keep only those pairs
{a,a’} for whichb =1,

this providing the final secret key a for Alice and 1 —a’ = a for Bob.

This is granted because a =a’ = b =0 andhence b=1=—=a#d =1-a.

¢ A fraction of this secret key can be publicly exchanged between Alice and Bob
to verify they exactly coincide, since in case of eavesdropping by interception and
resend by Eve, mismatch ensues with probability 1/4.

N. Gisin, et al.; “Quantum cryptography”; Reviews of Modern Physics 74 (2002) 145-195.

52/130




e Protocol by broadcast of an entangled qubit pair il ez 0nka A Bt

+ With an entangled pair, Alice and Bob do not need a quantum channel between them I D Q
two, and can exchange only classical information to establish their private secret key. .
Each one of Alice an Bob just needs a quantum channel from a common server ID Quanthue

dispatching entangled qubit pairs prepared in one stereotyped quantum state. Redefining the felds of Random Nurribers,

Quantum-Safe Crypto & Photon Counting

QUANTUM-SAFE CRYPTO — PHOTON COUNTING — RANDOMNESS
ID Quantique (IDQ) is the world leader in quantum-safe crypto solutions, designed to protect data for the

¢ Alice and BOb measure their respective qublt Of the pair in the baSiS {|0> , |1>}’ and they long-term future. The company provides quantum-safe netv.uork encryption, éecure quantum key
always Obtain the same I'esult either 0 or 1 at random Wlth equal probabilities 1/2 generation and quantum key distribution solutions and services to the financial industry, enterprises and

4 Alice and Bob share a sequence of entangled qubit pairs all prepared in the same
entangled (Bell) state |AB) = (|00) + |11))/ V2 .

Cerberis QKD Server
+ To prevent eavesdropping, Alice and Bob can switch independently at random to

measuring in the basis {|+) ,|—)}, where one also has |[AB) = (|++) + |——))/ V2.

So when Alice and Bob measure in the same basis, they always obtain the same results,
either O or 1.

Cerberis from IDQ is a standalone rack-mountable
QKD server; providing secure quantum keys based
on the BB84 and SARG protocols. Integrated with
IDQ’s Centauris Ethernet and Fiber Channel
encryptors, Cerberis has been deployed by
governments, enterprises and financial institutions
. . . . . . since 2007

¢ Then Alice and Bob publicly disclose the sequence of their basis choices.

The positions where the choices coincide provide the shared secret key. R —

SARG protocols with auto-compensating

+ A fraction of this secret key is extracted to check exact coincidence, since in case of
eavesdropping by interception and resend, mismatch ensues with probability 1/4.

interferometric set-up. Widely deployed in the
academic community for quantum cryptography
research , quantum hacking and certification, and

5 3/1 3() ) - technology evaluations. 54/1 3()

i GdR CNRS IASIS, Groupe de travail |QuantInG) Cours 3/5 du 10 octobre 2024.

‘IDQ

FROM VISION TO TECHNOLOGY

repusuic Information quantique,
iy calcul quantique :
Geneva Government =27 Une introduction pour le traitement du signal.

Secure Data Transfer for Elections

Gigabit Ethernet Encryption with Quantum Key Distribution Frangois CHAPEAU-BLONDEAU
LARIS, Université d’ Angers, France.

REDEFINING SECURITY

“We have to provide The Challenge
optimal security

e Switzerland epitomises the concept of direct democracy. Citizens of Geneva are
conditions for the

called on to vote multiple times every year, on anything from elections for the

cQOUntilng of ballots.... national and cantonal parliaments to local referendums. The challenge for the universite
uantum Hv h h Geneva government is to ensure maximum security to protect the data authenticity [ a l l g e r S
cryptography has the and integrity, while at the same time managing the process efficiently. They also

ability to verify that

have to guarantee the axiom of One Citizen One Vote.
the data has not been

corrupted in transit The Solution « . - . . - . . e s

between entry & ik T iy G esearesl Edesronfid e s e I believe that science is not simply a matt.er ot‘ exploring new.l?oruons. One‘must also make .the new )

storage” IDQ's hybrid encryption solution, using state of the art Layer 2 encryption knowledge readily available, and we have in this work a beautiful example of such a pedagogical effort.
combined with Gliantiim Key Distribtifion (GKDJ! The Cerberis solution secures a Claude Cohen-Tannoudji, in foreword to the book “Introduction to Quantum Optics”

Robert Hensler, ex- point-to-point Gigabit Ethernet link used to send ballot information for the federal by G. Grynberg, A. Aspect, C. Fabre ; Cambridge University Press 2010

55/130 56/130




Summary of “Cours 2/5”
e No cloning possible of an arbitrary unknown quantum state [) into |y) [i/).
e Parallel computation : Any (classical) Boolean function from N, bits into Ny, bits

can always be implemented by a quantum circuit (from the Toffoli gate),
and executed in parallel on superposed quantum states.

e Deutsch-Jozsa algorithm (1992) :
classifies Boolean functions from a single parallel evaluation.

e Superdense coding (1992) & teleportation (1993) :
exploit a shared stereotyped entanglement for enhanced communication.

e Grover quantum search algorithm (1997) : searches an unsorted database of N items
with O(VN) queries instead of O(N) classically.

e Shor factoring algorithm (1994) : Finds the prime factors of an integer with a
complexity polynomial in its size, instead of exponential classically.

e Quantum cryptography : No-cloning theorem and destructive quantum measurement

to guarantee secret key distribution (BB84 protocol, or distributed entanglement).
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Quantum correlations by entanglement

KUNGL.

NOBELPRISET | FYSIK 2022 VETENSKAPS-
AKADEMIEN

W2’ THE NOBEL PRIZE IN PHYSICS 2022

EDISH ACADEMY OF SCIENCES

(9.
» e
Anton Zeilinger

s University of Vienna,
Ecole Polytechnique, France USA Austria

John F. Clauser
J.F. Clauser & Assoc.,

Alain Aspect
Université Paris-Saclay &

“for experiment med sammanfiétade fotoner som pavisat brott mot Bell-olikheter och
banat vég for kvantinformationsvetenskap”

“for experiments with entangled photons, establishing the violation of Bell inequalities and
#nobelprize pioneering quantum information science”
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Quantum correlations by entanglement (1/5)

For any four random binary variables A, A,, B, B, with values +1,
I'=(A1 —A2)B) — (A1 + A2)By = A1B) — A2B) — A1By — Ay By = £2,
because since A;, A, = +1, either (A — Ay)B; =0or (A; + Ay)B, =0,
and in each case the remaining term is +2.

So for any probability distribution on (A, A, By, B,), the average

(T) = (A1B) — A,B) — A\ B, - AyBy) = (A B1) = (A2By) — (A1 Bo) — (A, B))
necessarily verifies =2 <(I') < 2. Bell inequalities (1964).
The binary variables at +1 will be obtained (by Alice and Bob)
from the results when measuring an entangled qubit pair.

[1] A. Einstein, B. Podolsky, N. Rosen ; “Can quantum-mechanical description of physical reality
be considered complete ?”’; Physical Review 47, 777-780 (1935).

[2]J. S. Bell ; “On the Einstein—Podolsky—Rosen paradox”; Physics 1, 195-200 (1964).

[3] J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt; “Proposed experiment to test local
hidden-variable theories”; Physical Review Letters 23, 880-884 (1969).
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Quantum correlations by entanglement (2/5)

Alice or Bob gets results 1 by measuring qubit observable Q(6) = sin(6)X + cos(6)Z,
having eigenvalues +1, equivalent to a qubit measurement in the eigenbasis
{10.(0)) = [cos(6/2). sin(@/]" . 11-(0)) = [~sin(6/2). cos(0/]" | .

Alice measures at 8 = @ to obtain A = +1, and Bob measures at 8 = 3 to obtain B = +1,
with the joint probabilities P(A = 1, B = £1) = |[(1.(@) ® 1.(8) | 1//A3>|2 .

1

\/E
‘\P1 A - 5 P2/+1
/ @ e B \

-1 -1

Alice and Bob share a qubit pair AB in the entangled state | 45) = (lOl) - IIO)) .

+1

I 3
Y
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Quantum correlations by entanglement (3/5)

= Joint probabilities

PA=+1,B=+1)=P(A=-1,B=-1) = %[1 — cos( - )] »

PA=+1,B=-1)=PA=-1,B=+1) = %[1 + cos(e - )] »

and by summation the marginal probabilities

1
PA=+1)=PA=-1)=PB=+1)=PB=-1)= 5
and the correlation (AB) = —cos(a —f3) ,

or alternatively (from p. 15): (AB) = (Yap | Q@) ® Q(B) | Yap) = —cos(a — ).

Quantum correlations by entanglement (4/5)

To obtain four binary variables 1,
Alice randomly switches between measuring A; when 6 = @ or A, when 6 = a5,
Bob randomly switches between measuring B; when 8 = 8, or B, when 6 = (3,.

For (I') = (A1By) — (A,By) — (A1 B,) — (A, B,) one obtains
([) = —cos(a; —B1) + cos(az — B1) + cos(a; — Ba) + cos(az — Ba).

The choice a; =0, o, =n/2 and By =3n/4, B, = n/4 leads to
(I'y = —cos(3n/4) + cos(n/4) + cos(n/4) + cos(m/4) =2 V2>2.

Bell inequalities are violated by quantum correlations !!

Experimentally verified (Aspect et al., Phys. Rev. Let. 1981, 1982.) Nobel 2022

[4] A. Aspect, P. Grangier, G. Roger ; “Experimental test of realistic theories via Bell’s theorem”;
Physical Review Letters 47, 460-463 (1981).
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3 Physica A 414 (2014) 204-215
Quantum correlations by entanglement (5/5)
Contents lists available at ScienceDirect
e Einstein-Podolsky-Rosen : Quantum mechanics might be incomplete (1935). Physica A
[1] A. Einstein, B. Podolsky, N. Rosen ; “Can quantum-mechanical description of physical reality Jouriial i page WiwCelsvisr coniosate/glyes
be considered complete ?”’; Physical Review 47, 777-780 (1935).
. . . . ... . Tsallis entropy for assessing quantum correlation with ——
e If hidden variables exist = Bell inequalities are satisfied (1964). Bell e fnequalitiasin ERR afperiient ®
X . L. X . Francois Chapeau-Blondeau*
[ A, Aspect experlments N Bell lnequalltles are Vlolated by Reallty ( 1 982), Laboratoire Angevin de Recherche en Ingénierie des Systémes (LARIS), Université d’Angers, 62 avenue Notre Dame du Lac,
49000 Angers, France
= No possibility of hidden-variables theories underneath quantum mechanics.
HIGHLIGHTS
o, . . . » A new Bell-type inequality for nonlocal correlation in quantum systems is derived.
e Quantities that cannot be simultaneously measured (incompatible) < The Teallsentropy s used a5 generaized metric of stausical dependence.
» It is applied to classical outcomes of quantum measurements, as in the EPR setting.
. . . . » Superiority and cor ity of the ized Bell inequality is demonstrared.
haVe 1’10 Slmu]taneOuS physlcal exlstence Or reallty, e It ilz able t?]’detm nonlocal quantum correlation from a Iarggr satrgfubsewables.
. . . . . ARTICLE INFO ABSTRACT
e Correlations between variables obtained from measurements of incompatible e e o e —
.. 1 d l . 1 . gg:x:g :;;E:’Siéﬁur‘:‘:m —— depar;gence ?etween [h.E ?Ia:sicaé;;tmmgs of T;;S‘umme'nu par]ljun?md uF a ‘[]i‘:jaﬁ‘i[[:
quantum quantltles On entang e SyStemS’ may escape C aSSlca ConStralntS : Aumlable (U Wiy 2010 ?[andard cgfrelat.inn-[:'ajsed Bell inequaiizes, and with other kn:vlwn I?;]I—type inequalities
. . . —p— based on the Shapnon entropy fm"which ?( cpnsti[utes a generalization. For an optimal
: aresource for lnformatlon processlng_ Tsalliseniropy range _Df the Tsallis order, the new inequality is able to detect non!uca] quantum. c_ufrela—
Quantum correlation tion with measurements from a larger set of quantum obs?wables. In this respect {t is more
Bell inequalities p_nwarfuI and also complementary compared to the previously known Bell-type inequali-
EPR experiment ties.
Quantum information © 2014 Elsevier BV. All rights reserved.
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GHZ states (1/5)
3-qubit entangled states.

(1989, Greenberger, Horne, Zeilinger) Nobel 2022

Three players, each receiving a binary input x; = 0/1, for j = 1,2, 3,
with four possible input configurations x;x,x3 € {000,011, 101,110}. 21 —*D——) Y1

e
e

Game is won if the players collectively respond according to the input—output matches :

Each player j responds by a binary output y;(x;) = 0/1,

function only of its own input x;, for j = 1,2, 3.

X1%x3 = 000 ————— > y;y,y; suchthat yy®y, ®@y; =0 (conserve parity),

x1xx3 € {011,101, 110} — y;y,y3 suchthat yy @y, ®y; =1 (reverse parity).

To select their responses y;(x;), the players can agree on a collective strategy before,

but not after, they have received their inputs x;.

GHZ states (2/5)

A strategy winning on all four input configurations
would consist in three binary functions y;(x;) meeting the four constraints :

¥1(0) ® y2(0) ® y3(0) = 0 . L,
110 @ 35D @ ya(]) = 1 > H

D) @y:0) @ ys(1) = 1 v Heu
yi(D) @y (1)@ y3(0) = 1 s __)D__)yg

0 © 0@ 0 =1, bysummation of the four constraints,
= 0 =1, so the four constraints are incompatible.
So no (classical) strategy exists that would win on all four input configurations.
Any (classical) strategy is bound to fail on some input configuration(s).

We show a strategy using quantum resources winning on all four input configurations,
(by escaping local realism, y;(0) = 0/1 and y;(1) = 0/1 not existing simultaneously).
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GHZ states (3/5) GHZ states (4/5)
Before the game starts, each player receives one qubit from a qubit triplet prepared in the 2) When x;x,x3 = 011, only player 1 measures in {|0), [1)}.
entangled state (GHZ state) 1 1 1
W) = |¢123> _ 5(|000> _ 011y = |101) — |110>). ) = 5(|000>—|011>—|101>— 110)) = 5 10)(100) = [11)) = 11 (101) +[10))|.
. 1 1
And the players agree on the common (prior) strategy : Since |0) = @("") + |‘>)’ 1) = @("") - |‘>) =
if x; = 0, player j obtains y; as the outcome of measuring its qubit in basis {|0), [1)}, |
if x; = 1, player j obtains y; as the outcome of measuring its qubit in basis {|+),|-)}. 100) = 11) = 5 (|+> + |_>)(|+> + H) - (|+> - |_>)(|+> - H)]
1
= 5[(|++> =) =)+ =) = () = ) = -0 + |——>)]
We prove this is a winning strategy on all four input configurations : = [+=) + |—+) ;
1
1) When x;x,x; = 000, the three players measure in {|0), |1)} 01) + 110y = 2 (|+> * |_>)(|+> a |_>) * (|+> a |_>)(|+> * |_>)] =k ==
=0i tched.
= 719528 7s = D1s maiche = ) = %(|0+—>+|0—+>—|1++>+|1——>) — y, @y, ®y; = | matched.
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GHZ states (5/5)

3) When x;x,x3 = 101, only player 2 measures in {|0), |1)}.

) = %(|000> ~[011) = 101) = |110)) %[|-0~>(|0~0>— - D) =1y (j0- 1)+ 11 '0>)}

%[|-0-> (1+ =)+ 1= ) = 1Y (1 +) = |- —>)]

= %(H‘O—) + |—0+> - |+1+> + |—1—>) =y @yz @)’3 =1 matched.

4) When x;x,x3 = 110, only player 3 measures in {|0), |1)}.

vy = %(|000> = [011) = 101) - [110)) = %[(|00>— 111))10) - (jo1) + |10>)|1>]

= %[(I+—> + |—+>) |0y — (|++> - |——>) |1>]

- %(|+_0>+|_+0>_|++1>+|“1>) =y ®y, ®y; = | matched.
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So far,

well defined state vectors (pure state),

unitarily evolved,

to represent closed or isolated quantum systems.

APRFRLRS RPRIRIRS

Next to come,

-

)

open quantum systems,

interacting with an uncontrolled environment,

inducing uncertainty to the quantum state (mixed state),
and evolving non-unitarily,

under decoherence.
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Density operator (1/3)

Quantum system in (pure) state [i;) € Hy, measured in an orthonormal basis {|n)}n’\’:1 :

= probability Pr{ |n>‘|w] = |(nly;) = () Yilny . (nonlinear in the state [1f;))

J possible states [i/;) with probabilities p j, with Z pj= 1 :

j=1

Zp, Pr{ |n>\|w,>} (nl Zp, W) 1) Iy = Calplny

= Pr{|n)} =

with density operator o= Z pily; )(z// | e L(Hy).

j=1

and Pr{|n)} = (n|p|n) = tr(o |n) (n|) = tr(p11,) . (linear in the state p)

The quantum system is in a mixed state, corresponding to the statistical ensemble

{(p N j))}, described by the density operator p.

Lemma : For any operator A with trace tr(A) = 3, (n| A|n), one has
(A l) (@) =X, (nl Alw) (@lny = 3, (gln) (nl Al = (I, In) nl)A L) = (I Alw) .
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Density operator (2/3)
The statistical ensemble of states {(p N j))} has density operator p = Z il il

= p = p' Hermitian ; J

Y1), Wlolsy = X, pil ) P > 0= p > 0 positive ;
trace tr(p) = 2. p; tr(Y ) (¥,1) = X pj = 1.

On Hy, eigen decomposition p = Z A, 1) {4, , with
n=1

eigenvalues {4,,} a probability distribution,
eigenstates {|4,)} an orthonormal basis of Hy.

N
Purity tr(p®) = Z A2 = 1 for a pure state, and tr(p?) < 1 for a mixed state.

n=1

A valid density operator on Hy = any positive operator p with unit trace,

provides a general representation for the state of a quantum system in Hy.

State evolution |if;) — Uy;) = {(pj, |1,//j>)} - {(pj, U |l,bj>>} = p — UpUT .
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Density operator (3/3 another motivation)
A bipartite system AB in a pure (entangled) state |AB) € H* @ H?E.

Only A is accessible for measurement, with the set of projectors {Hm ® 18 }

Probability of outcome m :
P(m) = (AB|T1,, ® I? | AB) = trs5(I,, ® I |AB) (AB|) = tr trg(I1,, ® I |AB) (AB).

Mathematically try(TT,, ® I? |AB) (AB|) = II,, trs(|AB) (AB|) = I1,,p,.
with ps = trB(IAB) (ABI) a density operator (positive unit-trace) on H4,

which alone determines the measurement probabilities P(m) = try (HmpA).

= A density operator p, arises to describe a system A
entangled to an unobserved (unaccessed) environment B.
System A entangled to its environment B has no definite pure state of its own,
but an uncertain or mixed state describable by p4.
Classical analog : Joint (A, B) with hidden B described by marginal distribution P(A) = Yz P(A, B) .
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Noisy preparation 1)

Noise-free preparation of a qubit |) = |0).

Noisy preparation [|¢) = cos(€)|0) + sin(€) |1) )
with probability density pg(€) (assumed even). S 0)

o

N

Density operator p = j; pe(&) ) (wl dé

w

N

= p = (cos”(©)10) 0] + (sin*(©)) [1) (1.

probability density pé(E_,)

o

-04-03-02-01 0 01 02 03 04
angle &

Measurement : Pr{lO) |p} = (0[pl0) = <cosz(§)> s

Pr{I1) o} = (1lplD) = (sin(©)) .
Similar to the statistical ensemble {((cos?(£)),10)), ((sin’(£)). 1))} .
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Average of an observable

A quantum system in Hy has observable Q € L(H ) vector space of operators on Hy.

e In pure state [i;) : from p.15:
average (Q); = (W,IQly;) = t(Q ) W)

nonlinear in |¢;), but linear in [y ;) (/] .

e In statistical ensemble {(pj, Izﬁj))} of density operator p = Z Pl il :
J

average (@) = ). py(@); = . pyte(Q) W) = u(Q Y il i) = @),
J J J
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Density operator for the qubit
{0'0 =Dh,oy 0, O'Z} a basis of L(H;) (with Pauli operators from p. 19),
orthogonal for the Hilbert-Schmidt inner product tr(A"B).
1 1
Any p = E(IZ + 170y + 1oy + rzo'z) = E(IZ +7- o_").
= tr(p) = 1.

ol :pT = =Ty, Iy = Fys Tp =1 = Iy Iy, T real.

1
Eigenvalues A, = 5(1 = [I7]l) > 0 = |7l < 1.

I7]| = 1 for pure states,
||I7]] <1 for mixed states.

7 = [ry, 1y, r;]7 Bloch vector for p,
in Bloch ball of R3.
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Observables of the qubit

Any operator on H, has general form A = ayl, +d - &,
with determinant det(A) = aj — @*, two eigenvalues ag + Va2,

and two projectors on the two eigenstates |+d ) (+d| = E(Iz +d- &/ Vﬁ’z).

For A = Q an observable, Q Hermitian requires ap € R and @ = [a,, ay,a.]" € R®.

1 =2
Probabilities Pr{|l=d)} = (xd|p|+a) = tr(|=d) (| p) = 5(1 + ?ﬁ)
a

1
when measuring a qubit in state p = E(Ig +7- 5'). (= ap has no effect on Pr{|+d )} ).
An important observable measurable on the qubitis Q = d- & with ||d@]| = 1,

known as a spin measurement in the direction @ of IR?, |
yielding as possible outcomes the two eigenvalues +||@ || = 1, with Pr{+1} = —(1 + 7 3).

Lemma : For any 7 and @ in R>, one has : (7-@)(@-&) = (Fa)L +i(Fxa)- .
A consequence : A’ = qjlp + @ - & = AA’ = (apaj + dd ) + (apd + apd +id x d’)- & .
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Generalized measurement of a state ) € Hy

e Standard von Neumann projective measurement : Defined by

a set of N orthogonal projectors I1,, = |n) (n| € L(H ), satisfying Zle HZH,, =1y,

with N outcomes of probability P(n) = ||I1, |¢//>||2 = W, l) = tr(ly) (I T, )
O w) - LW _

I VP

Moreover YN, P(n) = 1,V |y) &= YN I}, = Iy.

n=1

and post-measurement state |¢} ") =

. o TLpIl,
For a mixed state p € £(Hy) : probability P(n) = tr(pIT}T,) and ph™" = % = |n) (nl .
n
e Generalized measurement : Defined by
a set of M measurement operators M,, € L(H ) satisfying Z,IZI:] Mj,,Mm =1y,

with M outcomes of probability P(m) = ||M,, |¢p)||2 = WIMLM,, Iy = tr(h/’) Wl Mjan)a
M. ) _ Malg)
M )| PGm)

Moreover Y™ . P(m) = 1,Y|y) = Y™ MM, = Iy.

m=1 m=1

and post-measurement state |¢h"') =

; « MuoM)
For a mixed state p € L(H ) : probability P(m) = tr(pM,I” Mm) and PP = P
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Justification for the generalized measurement
State |yv) € Hy coupled to an auxiliary M-dimensional space H, by

U M
1) ® leg) ———— Ul) @ leg) = > My g} ®Im) ,
m=1

M

o, an orthonormal basis of H),.

with arbitrary state |eg) € Hy and {|m)}
Operator U from HyQH), onto Hy®H), is a valid unitary, as it conserves inner product :

M M M
(Ul @ leo),Ulpa)y ®1eo) = D > WMy My lra) Gmlm'y = il " MMy ) = Wrilua) -
m=1

m=1m'=1

Nothing is done in Hy, while in H,, a standard VN projective measurement
by M projectors Iy ® |m) (m| on the pre-measurement state U [/) ® ey) ,

yields M,, [) ® |m) of squared norm ||M,, |¢) ® |m>”2 = WM, M, ) = P(m) ,
|

P(m)

and post-measurement state ® |m) separable between Hy and H)y,.

The standard VN projective measurement in Hy, with M outcomes, realizes the
generalized measurement in )y (thanks to the entanglement by U).
79/130

GdR CNRS IASIS, Groupe de travail |QuantInG) Cours 4/5 du 16 janvier 2025.

Information quantique,
calcul quantique :
Une introduction pour le traitement du signal.

Frangcois CHAPEAU-BLONDEAU
LARIS, Université d’ Angers, France.

universite
eV angers

“I believe that science is not simply a matter of exploring new horizons. One must also make the new
knowledge readily available, and we have in this work a beautiful example of such a pedagogical effort.”
Claude Cohen-Tannoudji, in foreword to the book “Introduction to Quantum Optics”
by G. Grynberg, A. Aspect, C. Fabre ; Cambridge University Press 2010.
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as the International Year of Quantum Science and Technology (IYQ)
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VCEUX DU PRESIDENT DE LA REPUBLIQUE AUX FRANGAIS.

Mes chers compatriotes,

Pour que nos enfants vivent mieux que nous, il faut aussi que s’'inventent en France et en Europe les
technologies et les entreprises qui fagonneront le monde de demain, notre avenir, notre croissance :
l'intelligence artificielle, les révolutions du quantique, de I'énergie, de la biologie pour ne citer que
quelques-uns de ces chantiers.

Tres belle, trés heureuse année 2025 a vous et a vos proches.
Vive la République.
Vive la France.

Summary of “Cours 3/5”

o EPR & GHZ experiments : Correlations between variables obtained from
measurements of incompatible quantum quantities on entangled systems,
may escape classical constraints. = a resource for information processing.

e Density operator : positive unit-trace p = 3.; p; ;) (¥;| or pa = trB(lAB) (ABl).
For qubit p = (I + 7+ ¢)/2 within R*: |||| = 1 pure states, ||7]| < 1 mixed states.

o Generalized measurement : Defined by
a set of M measurement operators M,, € L(H ) satisfying Zle M/M,, = Iy,
with M outcomes of probability P(m) = ||Mm |;p)||2 = (Yl M M,, ) = tr(lW) Wl M;Mm) ,
M, M,
and post-measurement state |¢h," ) = W) = W :
M. ]| VPm)

. . MM,
For a mixed state p € L(H ) : probability P(m) = tr(pM,Ian) and pb™' = ——— .
P(m)
Standard von Neumann projective measurement :
N orthogonal projectors M,, = I1,, = |n) (n| acting in Hy.
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Purification of a mixed state
A quantum system A of N-dimensional space H* = Hy prepared in the statistical
J
7 .
ensemble {(pj, |l//,/>)}j:1 is represented by the density operator p, = Z Pl yl.
=1

J
Auxiliary system B of J-dimensional space H® = H; and orthonormal basis {I j>}j=1'

J
The bipartite system AB prepared in the pure entangled state |[AB) = Z Pl ®17)

realizes a purification of p4 since tr,;(lAB) (ABl) =04 . 5=

Classical analog : Joint (A, B) with hidden B described by marginal distribution P(A) = } 5 P(A, B) .

— Statistical ensemble and reduction by partial tracing are two alternative
representations always available for a given density operator.

Uncertainty on A, with a pure turned into a mixed state, by its entanglement
with unaccessed environment B = quantum decoherence or quantum noise.
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Positive operator-valued measure (POVM)

M

For the generalized measurement {M,,}_, acting in Hy,

when the post-measurement states p%OSt = MmpML/ P(m) are not needed,

the probabilities P(m) = tr(pM,T,,Mm) = tr(pEm) , are determined by the M

M
positive operators E,, = MM, of L(H ~), satisfying Z En=

m=1

The set {E,,}_, defines a POVM, with M elements E,,.

When a POVM {Em}”:;’:l is fixed, the set of M measurement operators
n = VE,, verifies anMm = E,, and offers one possibility for a physical
implementation of the measurement.

Often, the optimization of statistical performance criteria from the measurement
results, fixes or imposes or constrains, the POVM only.
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A generalized measurement and POVM for the qubit

\/7 |em><em| andPOVM {E :%|em><em|},

and M > 2,

Operators of L(H,) :
for m=0,1,...M — 1,
with  |e,,) = cos(zn%) 0) + sin(Zﬂ%) Iy -
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Open quantum systems and quantum noise (1/3)

A quantum system Q interacting (so as to entangle) with its environment £
represents an open quantum system.

When the environment E is uncontrolled and unobserved, its entanglement to Q induces
uncertainty on the state of Q, or decoherence, acting also as a quantum noise.
As aresult, Q undergoes a nonunitary evolution.

At the onset of the interaction, Q is in state p € L(H ) and E in state |ey).

The compound QF can be considered as a closed or isolated system,

starting in the joint state p ® |eg) (eol ,

and undergoing a unitary evolution by Ugg as p ® leg) {eg| — UQE(p ® leg) (eOI)UTQE

At the end of the interaction, a density operator can be obtained for Q
by the partial trace over the environment £ as N(p) = trE(UQE(p ® leg) (eol)Uz)E) .
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Open quantum systems and quantum noise (2/3)

To compute trg(-) let {Iek>},{i1 an orthonormal basis for the environment E, giving
K

L(Hy) 3 p— Np) = ) (e]Ugx(p ® leo) Ceol)Upgler) € L(Hw) .

k=1
Define K operators A, from Hy onto Hy as the partial inner product

Ay = (ex] Ugg leo) € L(Hy) .

This is equivalent to Ay |Q) = (ex|Uge 10) ® lep) for any |Q) € Hy,
or (QIALQ) = (ex ®(Q'|Ugr 10) ®leo) , and AwpA] = (ex|Uor(p ® leo) (eol)Uylex) -

K
yielding N(p) = Z AkpAZ . (operator-sum representation of the evolution of p)

The A, are the Kraus operators.

Since trQ(N(p)) = trQ(trE( )) =1,Vp= Z AT A =1y and N() is trace-preserving.
k=1
They come with an isometric freedom. They need not be more than N” for any quantum

evolution p — N(p) from L(Hy) into L(Hy), whatever the size of the envrionment E.
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Open quantum systems and quantum noise (3/3)

General evolution p € L(Hy) —> N(p) € L(Hy) of an open quantum system Q

by quantum operation p — N(p) = >, AkpAz (superoperator), with . A',LAk = Iy,
representing a (nonunitary) completely positive trace-preserving linear map,

requiring no more than N* Kraus operators A; of L(Hy).

When Q is closed : Only one A; = U for unitary evolution p — UTpU.

Probabilistic interpretation : the action of the quantum operation is equivalent to
randomly replacing the state p by the state AkpAZ / tr(AkpAz) = Ok

with probability tr(AkpAZ) = pr, l.e.toreplace p by the statistical ensemble {(pk, pk)}
having density operator ), pwor = Dk AkpAz =N().

The Kraus operators A, can be guessed or postulated empirically,
according to the type of environment and its effect envisaged
on the quantum system of interest Q.
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Quantum noise on the qubit (1/6) 0

1
For an arbitrary qubit state defined by p = = (Iz + 7 5’)
. N 2
with [[F]] <1,

the evolution p — N(p) = 3, AwoA/ ,

since every Ay = byl + dy - &,
is equivalent to the affine map 7+— A7+ ¢,

with A a 3x3 real matrix and & a real vector in R,
mapping the Bloch ball onto itself.

No more than N? = 4 Kraus operators Ay of L(H,)
are required.
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Quantum noise on the qubit (2/6)

Important quantum noises on a qubit in state p can be represented by random
applications of some of the 4 Pauli operators {I,, 0, o, o} on the qubit, e.g.

Bit-flip noise : flips the qubit state with probability p by applying o, or leaves the
qubit unchanged with probability 1 — p :
Kraus A; = /1 —=pl, and A, = /po,, 1 0 0

pr— N@p)=(-pp+popr, Fr—oAF=|0 1-2p

Examples : o Electronic spin in the earth magnetic field incurring random flips.

e Noisy preparation of the qubit (page 74):

|0 +— 10) with probability (cos?(#)) = 1 - p,

0y — [1) = o, 0) with probability (sin*(€)) = p,
representable as a bit-flip noise with probability p = <sin2(§)> .
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Quantum noise on the qubit (3/6)

Phase-flip noise : flips the qubit phase with probability p by applying o, or leaves the
qubit unchanged with probability 1 — p :

Kraus Ay = 4/1 =pl, and A, = \/po, 1-2p 0 0
pr— Np)=(1-pp+prpo., FroAf=| 0 1-2p 0 |7
0 0 1

Example :
Noisy photonic interferometer (page 21) : with a fluctuating phase shift &
= noise-free interferometer around an average phase shift & ,
supplemented by a phase-flip noise with probability p = <sin2[(§ -8/ 2]> .

Bit-phase-flip noise : A; = \/1 - pL, and A, = \po, .

Also Pauli operator oy = io 0, = —io,0y.
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Quantum noise on the qubit (4/6)

Depolarizing noise : leaves the qubit unchanged with probability 1 — p, or apply any
of o, o or o, with equal probability p/3 :

Kraus Ay = 1 =pl, Ay = +/p/30., A3 =+/p/30, and Ay = /p/30.,

p = Nip) = (1= plp+ £(op0 + 00} + oporl).

AS
o
~

Can be seen as an equiprobable combination of random bit-flip by o,
or phase-flip by o, or bit-phase flip by o, = io,0,.
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Quantum noise on the qubit (5/6)

Amplitude damping noise : relaxes the excited state |1) to the ground state |0) with
probability vy (for instance by losing a photon) :

p > N(p) = AipA] + AspAl,

with A, = & = /710)(1]  taking |1) to |0) with probability v,
0 0

and A = =10)¢0] + /1 —y|1){1] which leaves |0) unchanged and
0 1-vy

reduces the probability amplitude of resting in state |1).
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Quantum noise on the qubit (6/6)

Generalized amplitude damping noise : interaction of the qubit with a thermal bath at

temperature 7 : ; . . .
p > N(p) = AipA; + AopA, + AzpAs + AapA,

ith A \P ! 0 A P \ [0,1]
W1 1= NP B 2 = \P p.y €1V, 1],
0 Ji-v 0 0
1-y O 0 0
Az =+/1-p . ANg=+1-p ,
0 1 vy O
Ji—v 0 0 0
= F+— AF+C= 0 JI—v 0 7+ 0
0 0 -y @p-1y
Damping [0,1] 3y = 1 — /™ — 1 as the interaction time t — co with the bath of the qubit relaxing to

equilibrium ps, = p|0) (0] + (1 — p)[1) (1], with equilibrium probabilities p = exp[—Ey/(kgT)]/Z and

1 — p=expl-E;/(kgT)]/Z with Z = exp[-Ey/(kgT)] + exp[—E/(kgpT)] governed by the Boltzmann distribution
between the two energy levels Ej of |0) and E| > Ej of |1).

T=0=2p=1=2p=10)0]. T —oc0=p=1/2= pe — (|0)O]+ (1){1])/2 =1,/2.
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Noise on multiple qubits

On qubit pair AB the noise can often be assumed to act independently on each qubit A, B.
For qubit A, on ps € L(H>) noise N4(-) with K Kraus operators A, € L(H>).

For qubit B, on pp € L(H>) noise Np(-) with K’ Kraus operators A}, € L(H>).

For pair AB, on psp € L((Hfz) noise Nyp(+) with KK’ Kraus operators Ay ® A/, acting as
K K

o = Nt = Mo Nt = 37 3 (A o (A 0 ).

=1 k=1
For separable pap = pa ® pp then p; = Nap(pap) = Na(pa) ® Np(pp).

For entangled p4p, decomposition of N4p(p4p) in standard basis of L(?—(fz) via
Nas(100) €011) = Na5(10) Ol @ 10) (1) = Aa(10) (0l) @ N5(10) <11),

and similarly for the 16 (separable) basis operators of L(?—[fz).

Otherwise, correlated noise on AB requires a joint noise model N,p(+)
with Kraus operators acting jointly in H$2, and

not factorizable as tensor products of Kraus operators acting separately in H, .
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More on quantum noise, noisy qubits :

4500 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 8, AUGUST 2015

Optimization of Quantum States for Signaling
Across an Arbitrary Qubit Noise Channel
With Minimum-Error Detection

Francois Chapeau-Blondeau

@ IEEE TRANSACTIONS ON

INFORMATION
THEORY

Abstract— For discrimination between two signaling states of a  inevitable error: and such a general situation is frequent since
qubit, the optimal detector minimizing the probability of error is  quantum noise and decoherence are prone to break the orthog-
applied to the situation where detection has to be performed from onality of two initial quantum states. A ineful eeneral
a noisy qubit affected by an arbitrary quantum noise separately —__ ~ = 0 0 e .:Mr.:amg..,

PHYSICAL REVIEW A 91, 052310 (2015)

Optimized probing states for qubit phase estimation with general quantum noise

Francois Chapeau-Blondeau
Laboratoire Angevin de Recherche en Ingénierie des Systémes (LARIS), Université d’Angers,
02 avenue Notre Dame du Lac, 49000 Angers, France
(Received 27 March 2015: published 12 May 2015)

We exploit the theory of quantum estimation to investigate quantum state estimation in the presence of
noise. The quantum Fisher information is used to assess the estimation performance. For the qubit in Bloch
representation, general expressions are derived for the quantum score and then for the quantum Fisher information.
From this latter expression, it is proved that the Fisher information always increases with the purity of the
measured qubit state. An arbitrary quantum noise affecting the qubit is taken into account for its impact on

Quantum state detection or discrimination
for quantum signaling, quantum communication, quantum storage

A quantum system can be in one of two alternative states py or p;
with prior probabilities Py and P; = 1 — Py.

Question : What is the best measuring POVM {E, E;} to decide
with a maximal probability of success Py, ?

Answer : One has Py, = Py tl‘(p()E()) + Py tr(plEl) =Py +tr(TE)),
with the test operator T = P1p; — Pypg = Zﬁ:’zl A |1 XA,
Then Py, is maximized by E(l’pt = Z 4,

A,>0
the projector on the eigensubspace of T with positive eigenvalues A,,.

The optimal measurement {E‘l)pt, E =1y - E‘])pt}

(Helstrom 1976)

N

. . 1
achieves the maximum Py = 5(1 + Z I/l,,l).
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Discrimination from noisy qubits

Quantum noise on a qubit in state p implements the transformation p — N(p).

With a noisy qubit, discrimination from N(pg) and N(p;).

— Impact e of the preparation {pg, o1} (the signaling states),
e and of the quantum noise N(:) (its type and level),

on the performance Pg3* of the optimal detector,

F. Chapeau-Blondeau, “Détection quantique optimale sur un qubit bruité ”,
25eme Colloque GRETSI sur le Traitement du Signal et des Images, Lyon, France, 8—11 sept. 2015.

in relation to stochastic resonance and enhancement by noise.

F. Chapeau-Blondeau ; “Quantum state discrimination and enhancement by noise”;
Physics Letters A 378 (2014) 2128-2136.

N. Gillard, E. Belin, F. Chapeau-Blondeau ; “Qubit state detection and enhancement
by quantum thermal noise” ; Electronics Letters 54 (2018) 38-39.
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Quantum state discrimination and enhancement by noise @Cmssmﬂ(

Frangois Chapeau-Blondeau

Laboratoire Angevin de Recherche en Ingénierie des Systémes (LARIS), Université d'Angers, 62 avenue Notre Dame du Lac, 49000 Angers, France

ARTICLE INFO ABSTRACT

Article history: Discrimination between two quantum states is addressed as a quantum detection process where a
Received 12 February 2014 measurement with two outcomes is performed and a conclusive binary decision results about the
Received in revised form 15 May 2014 state. The performance is assessed by the overall probability of decision error. Based on the theory of
ﬁ:ﬁﬁgﬁg ;z““::y;(}n:[:y 2014 quantun_l de‘ecect-iun. 'El"lE optimal meas_,uremem ‘.md its pgrfcnnance are exhibiled_in general. cunditiuns.
Communicated by CR. Doering An applhc_anon is realized Ol:l thle gutn‘t, for which ggnenc models of quantum r_m]se can be investigated

for their impact on state discrimination from a noisy qubit. The quantum noise acts through random

Keywords: application of Pauli operators on the qubit prior to its measurement. For discrimination from a noisy
Quantum state discrimination qubit, various situations are exhibited where reinforcement of the action of the quantum noise can
Quantum noise be associated with enhanced performance. Such implications of the quantum noise are analyzed and

Quantum detection
Signal detection
Enhancement by noise
Stochastic resonance

interpreted in relation to stochastic resonance and enhancement by noise in information processing.
@© 2014 Elsevier B.V. All rights reserved.
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Discrimination between J > 2 quantum states
A quantum system can be in one of J alternative states p;, for j = 1to J,

with prior probabilities P; with 3.7, P; = 1.

J
Problem : What is the best measuring POVM {Em}m:1
to decide with a maximal probability of success Py ?

with J outcomes

J
— Maximize Py, = Z P;tr(p,E;) according to the J operators E;,
=1

J
subjectto 0 <E; <Iy and Z E;=1Iy.
J=1

For J > 2 this problem is only partially solved, in some special cases.
(S. M. Barnett, S. Croke, Adv. Optics & Photonics, vol. 1, pp. 238-278, 2009).
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Error-free discrimination between J = 2 states

Two alternative states p, or p; of Hy, with priors Py and P; = 1 — Py,
are not full-rank in Hy, e.g. supp(p;) C Hy < [supp(p;)]* = ker(p;) D {0}

If Sy = supp(pg)N = ker(p;) # {6}, error-free discrimination of py is possible.

If S; = supp(p;)N = ker(py) # {0}, error-free discrimination of p; is possible.

Necessity to find a three-outcome measurement {Eq, E, E .}
ensuring that when E; is measured, the preparation is certainly p;, for j = 0,1 :

Find 0 <Eo< Iy s.t. Eg=dpll; “proportional” to IT; projector on ker(p;) = tr(o;E¢)=0,
and 0 <E; < 1Ty s.t. E;=d,Il, “proportional” to I, projector on ker(py) = tr(ooE;)=0,
and Eg + Ey < Iy & [Eg +E| + Eune = Iy with 0 < Eupe < Iy},
maximizing Py, = Py tr(Egpo) + Py tr(E p1) (= min Pynec = 1 — Pgue)

This problem is only partially solved, in some special cases,

(Kleinmann et al., J. Mathematical Physics, vol. 51, pp. 032201,1-25, 2010).
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Error-free discrimination between J > 2 states
J alternative states p; of Hy, with prior probabilities P;, for j=1,---,J;
typically every p; is with defective rank < N (except at most one full rank).
L
For all j = 1to J, define S; = supp(p;) N {ﬂ ker(pg)}.
]
For each nontrivial S; # {6 }, then p; can be measured where none other p, can be.
= Error-free discrimination of p; is possible,
by E; such that 0 <E;< Iy and E; “proportional” to the projector on K,
so that when E; is measured the preparation is certainly p; = tr(p,E;)=0, V{ # j.

dim(‘7( j)

To parametrize E;, find an orthonormal basis {|u£)} el

qu(j,
then E; = Y°"% o/ Y (/] = @/ 1, with 1, project K
en E; =3 " alu) () =alll;, wi ; projector on K.

Find the E; (the d@/) with )} ; E; < Iy maximizing Py = X; P; tr(E; p)).

This problem is only partially solved, in some special cases, (Kleinmann, J. Math. Phys. 2010).
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More on quantum detection or discrimination :

Neyman-Pearson detection, minimax detection, minimal Bayesian cost detection,

have been considered in the quantum domain,

but all relevant aspects are not yet completely solved.

General considerations and overviews can be found in:
e C. W. Helstrom, “Quantum Detection and Estimation Theory”, Academic Press, 1976.

o Y. C. Eldar, A. Megretski, G. C. Verghese, “Designing optimal quantum detectors via semidefinite
programming”, IEEE Transactions on Information Theory, vol. 49, pp. 1007-1012, 2003.

e J. A. Bergou, “Discrimination of quantum states”, Journal of Modern Optics, vol. 57,
pp- 160-180, 2010.

e J. Bae, L.-C. Kwek, “Quantum state discrimination and its applications”, Journal of Physics A,
vol. 48, pp. 083001,1-35, 2015.
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Quantum estimation

for high-sensitivity high-precision quantum sensing & metrology (magneto-
metry, gravitometry, accelerometers, atomic clocks, frequency standards, etc)

A quantum system has its state ps € L(Hy)

dependent on an unknown parameter & .

A generalized measurement by a POVM with M elements E,, for
m=1,2,...M,

can be used to measure pg in order to estimate &.

process

input

output
Often: P —_— 72()

_> -
pe =Te(p)
An input excitation signal p,

to probe a £-dependent quantum process 7 ¢(-) ,
producing the &-dependent output signal pg to be processed to estimate & .

[1] M. G. A. Paris (Ed.); “Quantum State Estimation™; Lecture Notes in Physics, vol. 649, Springer (2004).
[2] V. Giovannetti, ef al.; “Advances in quantum metrology”’; Nature Photonics 5, 222-229 (2011).

[3] C. L. Degen, et al.; “Quantum sensing”’; Reviews of Modern Physics 89, 035002,1-39 (2017). 103/130

e Classically, from some measured data ¥ with probability distribution P(¥; &),
any estimator g()? ) for ¢ has a mean-squared error <(’.§— &)%)

2
lower bounded via the classical Fisher information F.(¢) = <[65 In P(X; f)] > ,

— 1
ensuring ((£ — &)%) > Cramér-Rao bound ~ ,
g le=¢ F@

with the maximum likelihood estimator saturating the CR bound, at long ¥.

e Quantumly, when measuring p ,
from the resulting data m with probability distribution P(m ; &) = tr(p:E,,),

2
one has F.(¢) upper bounded by the quantum Fisher information F,(£) :<[Dfp§] > ,
(with O, symmetric logarithmic derivative) ensuring F.(&) < Fy (&),

[{Ael0epelda)

(6 A¢ ) A — /ln)2
Ae+ A Z —— ({;Kaf/ld/ln”z ,

F =2
and F (&) [Z; LT

via eigendecomposmon{ s I/l,,)} of pe.

[4] O. E. Barndorff-Nielsen, R. D. Gill; “Fisher information in quantum statistics”;

Journal of Physics A 33, 4481-4490 (2000).
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GdR CNRS IASIS, Groupe de travail |QuantInG) Cours 5/5 du 27 février 2025.

Information quantique,
calcul quantique :
Une introduction pour le traitement du signal.

Frangcois CHAPEAU-BLONDEAU
LARIS, Université d’ Angers, France.

universite
el angers

“I believe that science is not simply a matter of exploring new horizons. One must also make the new
knowledge readily available, and we have in this work a beautiful example of such a pedagogical effort.”
Claude Cohen-Tannoudji, in foreword to the book “Introduction to Quantum Optics”
by G. Grynberg, A. Aspect, C. Fabre ; Cambridge University Press 2010.
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Wrap-up at the onset of “Cours 5/5”

3 fundamental principles : e State : unit-norm vector |) = Y, @, [n) € Hy,

or positive unit-trace operator p = 3.; p; ;) (| = trE(lQE) (QEI) e L(Hy).
e Process : Closed evolution: |) —> U |y) linear unitary, from Uz, 1) = exp (—% f Iszt)
f
or open evolution: p — N(p) = trE(UQE(p ® leg) <€0|)ULE) = AkpAZ .

e Measurement : a set of M operators M,, € L(H ) satisfying Z,"Zzl MiM,, =1y,
post _ MmpMjn

= on p € L(H ) : probability P(m) = tr(pMLMm) and post o, P(m)
m

e Computation : Deutsch-Jozsa parallelism, superdense coding, teleportation,
Grover search, Shor factoring, cryptography, non-classical correlation, - - -

e Information processing :
— Detection, discrimation, of quantum signals in noise ;
— Estimation, identification, of parameter, state, process ;

— Communication, source and channel codings ;
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Qubit phase estimation

A photon (qubit) in an interferometer undergoing the unitary transformation

1 0
Ug = 0 e"‘f} (see p. 21) out
phase shift & >
I
= exp(—i§ﬁ~5') atii =&, 1) ‘
2 n
|z -
— Te(p) = Usp Uy P 10)

1 1
Input p = E(Iz + 7 5—) > output pg = E(Iz + 7 6"), 7 is 7 rotated by & // 7.

Fisher F,(¢;p) = (i1 X 7)* maximized at Fp™ =1 by apure state p of 7 L 7.

1
= optimal input ) = [+) = —(10) + 1)) = p = pop = ) W1 = [+) (+].

Optimal quantum measurement :

Spin observable Q = @ - ¢, with in R? the measurement vector [|d ]| = 1,
e 1 N
— measurement probabilities Pr{+1} = 5(1 + @ rf) =P,

- =

@:P)? | OcP) | (it % ?g)]2
P, P_ 1= (@7)
When p = pope = |[+)(+] of 7 Ll = 7 L7, then F.(¢) is maximized

at Fo(§) = F™ =1byany & L.

to reach the classical Fisher F.(¢) =

= optimal measurement : von Neumann in basis {|+) , |—)} ,

_lxcos(§)

P..
2 +

to yield Pr{j+)} = [(Ugy)|

V2
[5] F. Chapeau-Blondeau; “Optimizing qubit phase estimation”; Physical Review A 94, 022334,1-14 (2016).
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Optimal classical estimator from the measurement results : Qubit phase estimation with quantum noise
- : : P1 | noise
e [ successive experiments deliver a sequence of Input probe P —> U E > N >
L, outcomes |+) and L_ = L — L, outcomes |—). (> P¢
&-dependent unitary Ug delivers p1(§) = Ug p U;
e From the measured data (L, L_), leadi N ) N ( ) N(U U%) -
. . . -~ = eading to the noisy output = = = .
the value of £ is estimated by an estimator & = &(L,, L_). & y output pz p1E) £P e )
Maximum likelihood estimator (L., L-) = arg mglx Pr(L,,L_; &) With N(-) bit-flip, or phase-flip, or depolarizing noise,
: o 1 . .
_ L, _ _ 2L, — 1 the input exitation |) = —(lO) + |1)) remains optimal, (but not with thermal noise)
— P, = T = & = arccos (2P+ - 1) = arccos 7 . \2
but the output measurement in {|+> , |—)} is no longer optimal.
[6] F. Chapeau-Blondeau; “Optimized probing states for qubit phase estimation with general quantum noise”;
Physical Review A 91, 052310,1-13 (2015).
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Entanglement-assisted quantum estimation

Ue L Ue ()

)]

1
Optimal input |y) = [+) = —(|0)+|1)) maximizes quantum Fisher at F,(§) = F7™ = 1.

V2

Two consecutive independent inputs as [i) = |[+)®[+) reach quantum Fisher information

at Fy(§) = 2F,™ = 2, by additivity of the Fisher information for independent inputs.
From L independent inputs : shot-noise scaling of F,(§) ~ L.

Two optimally entangled inputs as [) = (|00>+|1 1)) reach quantum Fisher at

1
V2
Fy(&) = 4F;™ =4 by superadditivity of quantum Fisher for entangled inputs.
From L optimally entangled inputs : Heisenberg scaling of F, (&) ~ L.
[7] F. Chapeau-Blondeau; “Entanglement-assisted quantum parameter estimation from a noisy qubit pair:

A Fisher information analysis™; Physics Letters A 381 (2017) 1369-1378.
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Entanglement-assisted quantum estimation

U {3

) Pe

.
>

1
The entangled input |i/) = @ (|00)+|11)) with one active qubit and one passive qubit,

can improve over the configuration with only one active probing qubit.
[8] N. Gillard er al., “Estimation quantique en présence de bruit améliorée par I’intrication”, GRETSI 2017.

In the presence of noise, for quantum estimation, optimal entangled probing signals
and their processing, are not (yet) fully characterized in all configurations.

e Multiple-parameter estimation, via quantum Fisher information matrix F, (5 ) =

[F I (5 )] e Linear in the multiple parameters is tomography (estimation) of a complete

quantum state, or a quantum process. ® Bayesian quantum estimation is feasible.

[9] M. G. Paris; “Quantum estimation for quantum technology”; Int. J. Quantum Information 7 (2009) 125-137.
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Estimation of multiple quantum parameters
A quantum system with state pz € L(Hy) dependent on an unknown vector parameter
g = [£1,&,---]" has a quantum Fisher information matrix Fq(g? ) = [F/(,f)(f )] with

S (Al jpg |1 An) (AnlOkpz 12e)
matrix elements F?Z)(f) =2 Z o < .
J!
tn /li + /1n
M
Measuring p; by means of an arbitrary POVM {Em}m=1 leads to the probability
distribution P(m ; g? ) =tr(E,, pg) having classical Fisher information matrix
F, C(.{-‘ ) = [Fj(,f)(.f )] with matrix elements F;,f)(f ) = Z . -
m P(m;¢&)
upper bounded via the matrix inequality F. ({? ) <F (,(5 ) .

Exploit any flexibility on p; to maximize (not univocal) quantum Fisher F, q(g? )
Select the POVM {E,,}™ . to maximize classical Fisher Fc(g).

m=1

—

-

From (classical) measurement results : ML estimator Q?ML = arg max P({mg} € ) .
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Quantum tomography, of state p, or of process 7 (-)

A multiparametric estimation task, usually linear in the parameters, consisting in
estimating the coordinates of a density operator p, or of a process superoperator 7 (:),
in some useful basis.

1 1
e Example : A qubit state p = E(IZ + 7 o‘") = E(Iz + 10y + 1oy + rZO'Z) .
{0y, 0y, 0} three mutually L qubit observables = r, = (o7,) = tr(po ), r, = (07,

r, = (0o,) separately estimable in three independent single-parameter estimations.

Or globally, by measuring a POVM {E,,l}"";":1 on L independent repetitions to yield L,
M
outcomes m and the ML estimator 'EML({L,,,}) = arg max Z L, log(tr(Emp)) .
0 m=1

e A quantum process p +— 7 (p) = p’ from L(H) onto L(H’) can be completely
characterized by specifying how 7 (-) transforms a basis of L(#), for example by
successively estimating each 7~ (I n (kl) , each via quantum state tomography.

e Many variants % basis, measurement. e This remains a rather considerable effort.
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Information of a quantum system

How much information can be stored in a quantum system ?

A pure quantum state |y) = Ziv | @y In) € Hy with continuously-valued coordinates «,,

can store an arbitrary number J of discrete values {x }j -

As soon as a qubit state [i/) = cos(0/2)]0) + € sin(8/2) 1) € H,
via J configurations ;) with 6 = 8; = (j — 1)n/J for j=1to J, and ¢ fixed.

With a probability distribution {p J} over the set {x J}

Jl’

— information content by Shannon entropy H(X) = — Z pjlog(p;) <log(J) .

J=1

With a uniform distribution {p; = 1/J } , the entropy H(X) = log(J) J—> + 00

— 400

= An arbitrary large information can be stored in a quantum system of dimension N,
as soon as N = 2 with a qubit.

But how much information can be retrieved out ?
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How much information can be retrieved out of a quantum system ?
For a quantum system of dimension N in Hy, with a state p (pure or mixed),
a generalized measurement by the POVM with K elements E;, fork = 1,2,... K

Measurement outcome Y with K possible values y, = k, fork =1,2,... K,
of probabilities Pr{Y = y;} = tr(pE;) .

K

- Z Pr{Y = y} log(Pr{Y = yk}) .
k=1
K

= = D t(pEy) log(tr(oEy)

k=1

Shannon output entropy H(Y) =

For any given state p (pure or mixed), K-element POVMs can always be found achieving
the limit H(Y) ~ log(K) at large K. (ex.: p=1/2 and E; = (2/K) |ex) {ex])

In this respect, when K — oo with H(Y) — oo,

an arbitrary large information can be drawn out of a quantum system of dimension N,
as soon as N = 2 with a qubit.
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But how much of the input information can be retrieved out ?

With a quantum system of dimension N in Hy, each classical state x; is coded
by a quantum state |i;) € Hy or p; € L(Hy) ,for j=1,2,...J.

A generalized measurement by the POVM with K elements E;, fork =1,2,...K

Measurement outcome Y with K possible values y, = k,fork =1,2,... K,
of conditional probabilities Pr{Y = y;|X = x;} = tr(p,;Ey) ,
J

= ZPT{Y = wlX = x;}p; = tr(pEy) ,

and total probabilities Pr{Y = y;}
J =1

with p = Z pjp; the average state.
=1
The input—output mutual information I(X;Y) = H(Y) - HY|X) < X(p) ,
J
with the Holevo information X(p) = S (o) — Z piS(p;) <log(N),

=1
and von Neumann entropy S(p) = — tr[p log(p)] < log(N) .
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The von Neumann entropy
For a quantum system of dimension N with density operator p on Hy :

S (p) = —ufplog(p)]

N

o unit-trace positive has diagonal form p = Z A [,
N n=1

whence S(p) = = > 4,log(4,) € [0,log(N)] .

n=1

e S(p) =0 for apure state p = [Y){Y],
e S(p) =log(N) atequiprobability when 4, = 1/N and p = Iy/N .

Holevo information : X(p) = X({(p;.p)}) = S(p) - Z piS(p;) €10,log(N)] .

e X(p) = 0 for one pj= 1 of a pure state pPj = WJ)(le

e X(p) = log(N) for N equiprobable p; = 1/N orthogonal pure states |y/;) = | ).
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The accessible information
For a given input ensemble {(p;,p;)} :
the accessible information [,..(X;Y) = ggeﬁ I(X;Y).

For states p; in L(Hy), there always exists such an optimal POVM under the
form {Ex = ay |k ){(¢rl }, with @ € [0, 1], fork = 1to K, and N < K < N?,

this by Theorem 3 of E. B. Davies; “Information and quantum measurement’;
IEEE Transactions on Information Theory 24 (1978) 596-599.

But, there is no general characterization of optimal POVM. [Sasaki, PRA 59 (1999) 3325]
There are hardly some known expressions for some special ensembles {(p;, p;)}.

SOMIM (Search for Optimal Measurements by an Iterative Method) for numerical
maximization by steepest-ascent that follows the gradient in the POVM space, and also

uses conjugate gradients for speed-up. [arXiv:0805.2847]

But an upper bound 7,..(X;Y) < X({(Pj,pj)}) :
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Compression of a quantum information source (1/2)

A quantum source emits symbols p; € L(Hy) with probabilities p;, for j = 1to J.

J
With p =ijpj of N-ary quantum entropy S y(p) = —tr[p logN(p)] <logy(N)=1,
=1

J
and Holevo information XN({(pj,Pj)}) =Sn(p) - Z P;iSn(pj) <logy(N)=1.
=1

For lossless coding of the source, the average number of N-dimensional quantum
systems required per source symbol is lower bounded by X N({(p i P j)}) .

For pure states p; = |yr;) (|, the lower bound Xy(p;,p;) = S y(p) is achievable,
with consecutive blocks of L quantum systems from Hy encodable by LS y(p) < L
quantum systems from Hy with asymptotically vanishing loss at L — co.

B. Schumacher; “Quantum coding”; Physical Review A 51 (1995) 2738-2747.

R. Jozsa, B. Schumacher; “A new proof of the quantum noiseless coding theorem™;
Journal of Modern Optics 41 (1994) 2343-2349.
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Compression of a quantum information source (2/2)

For mixed states p;, the compression rate is lower bounded by XN({(P,',P]')}) <Sy()
but this lower bound X N({(P,/,P j)}) is not known to be generally achievable.

The compression rate S y(p) is however always achievable (by purification of the p; and
optimal compression of these purified states).

Depending on the mixed p;’s, and the criterion of faithfulness, there may exist an
achievable lower bound between X N({(p s P j)}) and S y(p). (Wilde 2021, §18.4)

The problem of general characterization of an achievable lower bound for the
compression rate of mixed states still remains open. (Wilde 2021, §18.5)

M. Horodecki; “Limits for compression of quantum information carried by ensembles of mixed
states”’; Physical Review A 57 (1998) 3364—-3369.

H. Barnum, C. M. Caves, C. A. Fuchs, R. Jozsa, B. Schumacher; “On quantum coding for
ensembles of mixed states”; Journal of Physics A 34 (2001) 6767—6785.

M. Koashi, N. Imoto; “Compressibility of quantum mixed-state signals™; Physical Review Letters
87 (2001) 017902,1-4.
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Classical information over a quantum channel (1/3)

X=xj,p)) —pi—| N —>N(pj):p}ﬂ K-element POVM |—Y =y,

J J
Mutual info. I(X;Y) SX({(pj,p})}) =S —Z p;iS (o)) with p’ :ijp;- )
=1 =1

Yet, X ({( D p’l.)}) 1s a maximum achievable rate, for error-free communication,
by coding independent consecutive input symbols in blocks of length L.,q — oo,

and measuring the output with a collective POVM on L 4-long blocks

(and the suboptimal square-root measurement POVM is enough).

X ({( Djs p;.)}) characterizes the best achievable rate without the need
to refer to any specific POVM and any L.,4-long blocks.
B. Schumacher, M. D. Westmoreland; “Sending classical information via noisy quantum channels”;
Physical Review A 56 (1997) 131-138.

A. S. Holevo; “The capacity of the quantum channel with general signal states”;

IEEE Transactions on Information Theory 44 (1998) 269-273.
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Classical information over a quantum channel (2/3)

For given N(-) therefore X,,.x = {?%X}X ({(N P p ])})
i
is the overall maximum and achievable rate for error-free communication
of classical information over a noisy quantum channel,
or the Holevo information capacity of the quantum channel,
for product states or successive independent uses of the channel,
and collective decoding over L.,q-long blocks, at L,oq — oo.

The maximum rate X, can be achieved by J € [N, N*] pure input states

P = 1)) (| with ) € Hy
Shor, J. Math. Phys. 43 (2002) 4334. Shor, Com. Math. Phys. 246 (2004) 453.

(not necessarily easy to characterize).
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Xmax(Nl ®N2) 2/\/max(/\/l) +Xmax(N2) .

Classical information over a quantum channel (3/3)

For product states or consecutive independent uses of a channel,
the Holevo capacity is additive Xax(N1 ® N2) = Xinax(N1) + Ximax(N2) .

For non-product states or consecutive non-independent but entangled uses of the
channel, due to a convexity property, the Holevo capacity is always superadditive
[Wilde 2016, Eq. (20.126)]

For many channels it is found additive, X, (N1 ® N2) = Xinax(N1) + X nax (N2)
so that entanglement does not improve over the product-state capacity.

Yet for some channels it has been found strictly superadditive,

Ximax (N1 ® N2) > Xinax(N1) + Xmax(N2) meaning that entanglement does improve over

the product-state capacity.
M. B. Hastings; “Superadditivity of communication capacity using entangled inputs”;
Nature Physics 5 (2009) 255-257.
— The classical capacity C(N) of a channel N is generally the “regularized”
. o1
Holevo capacity C(N) = Lhrn z)( max (N ®L) . (HSW theorem)
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Quantum information over a quantum channel (1/2)

Reliable transmission of the quantum states is targeted
(no classical coding / decoding (measurement) ; needs quantum distortion criteria).

e Primal channel, from Q t0 Q : pp +— pj

K K K
N(po) = trx(Ugr(pg ® leo) (eohUjy) = (Z D Awpoh, @lew) (exl ] = > Ao, .
k=1
E:

k=1 k=1
e Dual channel, from Q into environment Po F Pg =
K K
N(po) = tro(Uor(po ®leo) CeoDUpy;) = D > tr(AepoAy, ) lew) el -
k=1 k'=1

Entropy exchange or final quantum entropy of the environment : S ¢ (00, N) = S (p}) .

Sex(pQ’ N) .

(Intrinsic) channel coherent information : I.,(N) = r}l)ax I:o(po, N) .
9]

Coherent information : Ie,(pg, N) = S (o) = S (o) = S(N(pQ)) -

Generally 1.,(pg, N) non-concave (¢f), maximized at I.,(N) > 0 by a mixed state p, .
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Quantum information over a quantum channel (2/2)
Superadditivity in two channel uses : I.,(N; ® N>) > I.o(N}) + I.o(N2).

For two separable product states : I.o(N| ® N3) = I.,(N1) + I.,(N2),
but for two entangled states I.o(N; ® N3) > I.,(N1) + I.,(N>) is possible.

1
= Quantum capacity Q(N) = Llim i3 ICO(N®L) . (LSD theorem)
On(N) < logy(N) =1 is the maximum rate R at which L input qudits with dimension N,
can be encoded into L/R > L qudits with same dimension N,
so that from the L/R corrupted qudits at the output,
the L input qudits can be recovered with perfect fidelity, when L — oo.

S. Lloyd; “Capacity of the noisy quantum channel’; Physical Review A 55 (1997) 1613-1622.
P. W. Shor; “The quantum channel capacity and coherent information”;
Lecture Notes MSRI Workshop on Quantum Computation, San Francisco (2002) 1-18.
L. Devetak, “The private classical capacity and quantum capacity of a quantum channel”;
IEEE Transactions on Information Theory 51 (2005) 44-55.

Today remain unknown many Q(N), C(N), the capacity-achieving codings - - - 126/130
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Premium systems

Public systems Retired systems

IBM Q systems

* IBM Q Tokyo *® IBM Q Melbourne IBM Q Austin
IBM Q systems are named after IBM office

locations around the globe. * IBM Q Tenerife

IBM Q Riischlikon

® IBM Q Yorktown

‘Quantum computers are rapidly emerging. Pursued for decades in

About IBM Q quantum eseareiataorcetyEe hachioes ars el st biguet sstors

d eVi ces capable. While quantum is still in its infancy, significant progress is being
made across the entire quantum computing technology stack. Today, IBM
has several real quantum devices and simulators available for use through
the cloud. These devices are accessed and used through Qiskit, and open
source quantum software development kit, and IBM Q Experience, which
offers a virtual interface for coding a quantum computer.

IBM quantum processors online https://research.ibm.com/quantum-computing 2019
5 qubits on IBM Q Tenerife and on IBM Q Yorktown,
14 qubits on IBM Q Melbourne.
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Online IBM quantum processors

https://quantum. ibm.com

151 Quantum Computing
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e F. Chapeau-Blondeau; “Modeling and simulation of a quantum thermal noise on the qubit”; Fluctuation and
Noise Letters 21, 2250060,1-17 (2022).

e N. Delanoue, F. Chapeau-Blondeau ; “Identification sur un systeme quantique bruité : Théorie et démonstration
expérimentale sur un processeur quantique.” ; Actes des 6emes Journées Démonstrateurs en Automatique du Club
EEA (Electronique Electrotechnique Automatique), Angers, France, 21-22 juin 2022.

o F. Chapeau-Blondeau, N. Delanoue ; “Détection quantique en présence de bruit : analyse théorique et étude

expérimentale sur un processeur quantique.” ; Actes du 29¢me Colloque GRETSI sur le Traitement du Signal et
des Images, Grenoble, France, 28 aott — 1 sept. 2023.
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Merci de votre attention.

Merci aux organisateurs,
et a la Maison de la Bretagne, a Paris 15¢éme, pour son accueil.
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Si vous avez compris ...
c’est que je me suis mal exprimé !

“Nobody really understands quantum mechanics.”
R. P. Feynman




