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We analyze an ensemble of images from outdoor natural scenes and consisting of pairs of a
standard gray-level luminance image associated with a depth image of the same scene,
delivered by a recently introduced low-cost sensor for joint imaging of depth and lumi-
nance. We specially focus on statistical analysis of multiscale and fractal properties in
the natural images. Two methodologies are implemented for this purpose, and examining
the distribution of contrast upon coarse-graining at increasing scales, and the orientation-
ally averaged power spectrum tied to spatial frequencies. Both methodologies confirm, on
another independent dataset here, the presence of fractal scale invariance in the luminance
natural images, as previously reported. Both methodologies here also reveal the presence
of fractal scale invariance in the novel data formed by depth images from natural scenes.
The multiscale analysis is confronted on luminance images and on the novel depth images
together with an analysis of their statistical correlation. The results, especially the new
results on the multiscale analysis of depth images, consolidate the importance and extend
the multiplicity of aspects of self-similarity and fractal scale invariance properties observa-
ble in the constitution of images from natural scenes. Such results are useful to better
understanding and modeling of the (multiscale) structure of images from natural scenes,
with relevance to image processing algorithms and to visual perception. The approach also
contains potentialities for the fractal characterization of three-dimensional natural struc-
tures and their interaction with light.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Images of natural scenes are important information car-
rying entities [1–5]. They form the basis on which are
implemented many technological image processing opera-
tions, as well as natural information processing operations
as performed by the brain in visual perception. It is there-
fore useful to gain deeper understanding of the constitu-
tion, structures and properties of images of natural
scenes. This is relevant to better modeling or synthesis of
images, to better design of image processing algorithms,
and also to better understanding of visual perception
[4,6–11]. Visual perception and the remarkable capabilities
of the brain for image processing have essentially been
shaped and optimized, throughout evolution and develop-
ment, in the interaction with images of natural scenes [12–
18]. Understanding their constitution and properties there-
of can thus shed light on operating principles at work in vi-
sual perception and useful for image processing and
computational vision.

Among important generic characteristics which have
been reported for images of natural scenes, is their fractal
multiscale organization, manifesting regularity of constitu-
tion across scales under various forms [19–23]. Self-simi-
larity and scale invariance properties have been reported
in the spatial organization of gray-level luminance natural
images. This is manifested by scale-free power-law evolu-
tions present in the frequency spectrum of luminance
images or also in their spatial correlation functions
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[20,24–31]. Such scale-invariant features have also been
found to exist in the temporal organization of time varying
sequences of natural images, as perceived by the visual
system [32]. Also, the colorimetric organization of natural
images has recently been reported to carry self-similarity
and fractal properties [33–36]. Such regularities across
scales observed in various properties of natural images
have been related to constitutive structures and details
occurring uniformly over broad ranges of scales in natural
scenes, with objects of many sizes, edges, occlusions, colors
and shades appearing over wide ranges of depths, magnifi-
cations and lighting conditions [20,37,30]. Such fractal
scaling properties observed in natural images then consti-
tute important guides for the modeling of these images
[38,8,39,40]. Also, for visual perception, this could suggest,
as a design principle for optimal performance, that the vi-
sual system should distribute its capabilities uniformly in a
self-similar way over a broad range of operating scales,
rather than concentrating them in a narrowly focused
range.

In this paper we will investigate another sector where
fractal properties will be observed in images from natural
scenes. We will consider depth images where the scalar
intensity at each pixel gives the distance (the depth) be-
tween the camera plane and the forefront object of the
scene in this spot. Such depth images have recently be-
come easily accessible thanks to new cameras initially
developed for videogames. This is the case with the Kinect
imaging sensor recently released by Microsoft [41], which
incorporates a standard RGB camera associated with a
depth camera. A structured infrared laser light carrying a
pattern of random dots is deformed by the scene and
serves to construct the depth image. There is no need for
any mechanical scanning of the laser thus allowing very
fast acquisition of depth images, typically at a rate of 30
frames per second. This results in a low-cost fast sensor
making readily accessible depth images which can be use-
ful, outside videogames, to many scientific applications
and investigations [42,43,41,44–49]. Here, we will show
the potential of such depth images to contribute to the
analysis of the statistics and fractal properties of images
from natural scenes. The analysis we undertake will show
that depth images from natural scenes also exhibit self-
similarity and scale invariance properties.

In the present study, we will consider a dataset formed
by an ensemble of depth images coregistered with gray-le-
vel luminance images. Two methodologies will be imple-
mented on our dataset for scaling analysis in images,
reproducing those that were employed in [26,27] on stan-
dard gray-level luminance images. The first methodology
analyzes the distribution of contrasts in the images and
its variation upon coarse-graining at increasing scales. This
approach relates to first-order or one-point statistics of the
distribution of intensities over the images. The second
methodology analyzes the orientationally averaged fre-
quency spectrum from images and its variation with fre-
quency tied to spatial scales. This approach relates to
second-order or two-point statistics characterizing the
spatial arrangements of intensities over the images. These
two methodologies will be applied here for the first time to
the multiscale analysis of depth images. This will form the
main original contribution of this paper, to report the first
multiscale analysis on depth images from natural scenes,
and to disclose and analyze the scaling properties that
are observed. Beforehand, the two methodologies will be
applied first to the luminance images of our dataset. This
is especially useful to several purposes: (i) to confirm on
another independent dataset the scaling behaviors previ-
ously reported in luminance images [26,27,20]; (ii) to val-
idate the implementation of the multiscale analysis
methodologies on standard reference (luminance) images
before applying them to the new depth images; (iii) to al-
low for a comparison with the scaling behaviors to be ob-
served on the new depth images. Next, the multiscale
analyses applied to depth images are novel here. The out-
come of the analyses will be confronted on depth images
and on luminance images together with an analysis of their
statistical correlation.
2. Ensemble of natural images

References [26,27] studied self-similarity and scale
invariance from an ensemble of outdoor natural images ta-
ken in the woods of Hacklebarney State Park in central
New Jersey, USA. Here, we analyze a comparable ensemble
of natural images taken in the woods of Brain sur Long-
uenée in the Department of Maine-et-Loire, France. For
each outdoor scene, we collected both a standard RGB im-
age and the corresponding depth image, while the previous
ensemble of [26,27] contained only standard RGB images.
The images from our ensemble (both RGB and depth
images) are of size 640 � 480 pixels, while those of
[26,27] are 256 � 256 pixels. Fig. 1 depicts some typical
examples from our ensemble of images.

The sensor [41,48,49] provides depth images with a
precision in depth of around 1 cm, and the depth range
covered is between 50 cm (closest distance measured by
the sensor) and 550 cm (remotest distance measured by
the sensor). The angular field of view is 58� � 45� and the
focal length 6 mm. In our ensemble of outdoor natural
images illustrated in Fig. 1, the foreground of the scene
was controlled to always lie beyond the closest 50 cm mea-
surable distance. The points lying beyond the remotest
550 cm distance, or some points with a highly diffractive
or absorbing behavior, will usually not reflect enough laser
light to return a depth measurement, and such points are
represented as white pixels in Fig. 1 and excluded from
the subsequent statistics, following a common procedure
in the processing of depth or range images [50,51]. The
depth range that is resolved is of the order of (550 � 50)/
1 = 500 � 512 and accordingly the depth information
delivered by the sensor is codable as a nine-bit value. For
the depth image, this is a little better yet comparable to
the eight-bit gray-level information accessible with a stan-
dard luminance image, or with each of the three planes of a
standard RGB image, as those used in [26,27].

The ensemble of [26,27] consisted of 45 standard RGB
images, while our ensemble consists of 45 pairs of a stan-
dard RGB image and coregistered depth image. Here as in
[26,27], when needed, the RGB image is converted into a
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Fig. 1. Three typical examples from our ensemble of natural images, with for each of the three outdoor scenes, a standard RGB image (left) and the
corresponding depth image (right).
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gray-level image by computing the standard CIE luminance
as Y = 0.30R + 0.59G + 0.11B.

3. Contrast analysis

3.1. Contrast distribution

To report self-similarity and scale invariance, Refs.
[26,27] investigate the behavior of the distribution of gray
levels or contrasts of an image I(x) at pixels x. The statisti-
cal properties are first characterized by means of the histo-
gram P1(I) of the contrasts I. A viewpoint across scales is
then obtained by considering coarse-grained images con-
structed by aggregation through averaging I(x) over non-
overlapping blocks of given size N � N. At each aggregation
scale N, the contrast I is also renormalized to zero mean
and unit variance. The contrast histograms PN(I) are then
compared at each scale N. Exact scale invariance holds
when all the histograms PN(I) superpose at all N.

Upon such aggregation process, some useful reference
behaviors can be assigned to simple image models of ele-
mentary constitutions, as illustrated in Fig. 2. For instance,
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scale invariance trivially occurs when the contrasts over
the image I(x) are Gaussian and independent at each pixel
x, as illustrated in Fig. 2(top). Also, scale invariance usually
breaks down with non-Gaussian contrasts on I(x), or with
spatial dependence between pixels as induced by struc-
tures or objects with a few definite sizes in the images. This
is manifested in the aggregation by the successive histo-
grams PN(I) which do not superpose. This is illustrated with
a non-Gaussian mixture of contrasts resulting from two
different Gaussian distributions in Fig. 2middle), and with
a (non-Gaussian) uniform distribution in Fig. 2(bottom).
Natural images, having more elaborate structures, often
display non-Gaussian contrasts, with dependence between
pixels, yet with scale invariance, as reported in Refs.
[26,27] on standard gray-level luminance images from nat-
ural scenes.

For a statistical characterization of our ensemble of nat-
ural outdoor images, we further proceed as done in [26,27],
by averaging the contrast histograms PN(I) over the 45
images of our ensemble, so as to obtain the ensemble-aver-
aged histogram PNðIÞ characterizing the distribution of
contrasts over the ensemble.

For multiscale analysis of luminance natural images,
Refs. [26,27], instead of directly operating on the original
gray levels of an image I(x), define at each pixel x a local
contrast /(x) as
/ðxÞ ¼ ln
IðxÞ
I0

� �
; ð1Þ
with the constant I0 for each image chosen so that the spa-
tially averaged contrast h/(x)i is zero. The local contrast /
(x) of Eq. (1) is especially insensitive to any overall uniform
change over the image, and also Ref. [27] finds that ‘‘the
use of / instead of I also seems to improve the observed
invariances’’ (page 524). The statistical properties are then
characterized in [26,27] by means of the histogram P1(/) of
the luminance contrasts /, and the successive histograms
PN(/) resulting from aggregation of the contrasts / over
blocks of size N � N with renormalization to zero mean
and unit variance at each N. Fig. 3A represents the ensem-
ble-averaged distribution PNð/Þ for the contrast / accord-
ing to Eq. (1), when the image I(x) is a gray-level
luminance image computed for an outdoor natural scene
as in Fig. 1left). In addition to the ensemble average of
Fig. 3A, in order to appreciate the variability over the
ensemble, Fig. 3B shows a representative configuration
with error bars evaluated over the 45 images of the
ensemble.

For the luminance natural images, the distribution of
contrast in Fig. 3 is found essentially similar at the various
scales N, and is also non-Gaussian. This manifests scale
invariance in the luminance natural images from our
ensemble. Scale invariance was also observed, with the
same methodology, in the ensemble of luminance natural
images of [26,27]. This confirms the tendency of luminance
images from natural scenes to stand as complex informa-
tion-carrying structures, displaying dependencies between
pixels and non-Gaussian distributions of contrast incorpo-
rating self-similarity across scales.
Next, we are now in a position to apply the same
multiscale characterization, for the first time to depth
images of natural scenes as provided by our ensemble,
when the contrast I(x) at each pixel x is the depth of
the scene at this location. When I(x) is a depth image
of an outdoor natural scene as in Fig. 1right), we show
in Fig. 4A the ensemble-averaged distribution PNðIÞ char-
acterizing the depths over the images of our dataset. In
addition to the ensemble average of Fig. 4A, to appreci-
ate the variability, Fig. 4B shows a representative config-
uration with error bars evaluated over the 45 images of
the ensemble.

For the depth images of natural scenes, the distribution
of contrast in Fig. 4 is also found essentially self-similar at
the various scales N. The self-similar evolution displays
slightly more pronounced variability over the ensemble
for the depth images, as manifested by slightly larger error
bars in Fig. 4B, compared to the luminance from Fig. 3B.
This can be related to a lesser number of points available
for the depth statistics due to some excluded points not
returning enough light for a depth measurement, as ex-
plained in Section 2. The overall self-similar behavior in
Fig. 4 demonstrates that scale invariance in natural scenes
also extends to new types of spatial measurements such as
the depth images. Therefore, depth images from natural
scenes also appear as complex information-carrying struc-
tures, with dependencies between pixels (as confirmed by
the power spectrum to come in Section 4) and with distri-
butions of contrast incorporating self-similarity across
scales.

Confrontation of Figs. 3 and 4 shows that the con-
trasts in luminance and in depth display in common a
scale-invariant distribution, although in their detail these
distributions differ between luminance and depth
images. This difference is not unexpected, since the
physical information carried by each type of images,
namely luminance or depth, is essentially distinct. In this
respect, it can be noted that the distribution of contrasts
for the luminance images of Fig. 3 is scale-invariant and
non-Gaussian, and essentially departs from Gaussianity
for the small contrasts which are found more probable
than with a Gaussian distribution. This reveals that nat-
ural images tend to be dominated by small variations of
gray levels of luminance, presumably associated with the
slight variations of shades of an otherwise uniform gray
that would generally characterize each coherent object
or structure present in natural scenes. And this type of
distribution appears as scale-invariant for the gray levels.
Meanwhile, the distribution of depths in the images of
Fig. 4 is scale-invariant and non-Gaussian, and essentially
departs from Gaussianity for the large depths which are
found more probable than with a Gaussian distribution.
This can also be understood as a mark of the coherent
objects or structures present in natural scenes, which
are in general sufficiently separated in space in a way
which makes rather frequent large variations in depth,
however scale-invariant. The complex spatial organiza-
tion of natural scenes, with structures and details pres-
ent over broad ranges of scales, is thus manifested and
recordable from luminance images as well as from depth
images.
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Fig. 2. Three examples of reference images I(x) with simple spatial constitutions (left) and associated histograms PN(I) of the gray levels I upon aggregation
over blocks of size N � N pixels and renormalization to zero mean and unit variance (right): (top) a purely random image with no spatial structure (white
noise) and Gaussian gray levels showing exact scale invariance; (middle) a bright object on a dark background both having narrow quasi non-overlapping
random distributions of gray levels and no scale invariance; (bottom) an image with uniform distribution of gray levels and regular spatial modulation and
no scale invariance. The dashed lines depict theoretical Gaussian distributions.
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3.2. Gradient of contrast

For further investigation of spatial self-similarity and
scale invariance, Refs. [26,27] consider the gradient $I(x)
of the image I(x), and its evolution with the aggregation
scale N. At every scale N, the image I(x) undergoes the
aggregation process over blocks of size N � N followed by
the renormalization to zero mean and unit variance, as
implemented in Section 3.1. The ensuing gradient $I(x)
has a magnitude j$Ij which provides a local scalar, whose
distribution is analyzed according to the aggregation scale
N.

For simple reference images I(x) as in Fig. 2, the distri-
bution of magnitude of the gradient j$Ij is presented in
Fig. 5. The Gaussian random image of Fig. 5(top) is an
example showing exact scale invariance of the magnitude
of the gradient j$Ij. As visible in Fig. 5(top), the distribu-
tions of magnitude of the gradient j$Ij superpose at every
scale N, and they follow a Rayleigh distribution when the
image I(x) is Gaussian [26,27]. On the contrary, for images
incorporating non-Gaussian gray levels associated with
simple spatial structures with a few definite scales, such
as in Fig. 5middle)-(bottom), no scale invariance is de-
tected with the distributions of magnitude of the gradient
j$Ij differing according to the scale N. Natural images, hav-
ing more elaborate structures, usually display specifically
balanced distributions of small and large magnitudes of
gradient, are non-Rayleigh, yet tend to be invariant across
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Fig. 3. Distributions PNð/Þ of luminance contrast / according to Eq. (1) when the image I(x) is a standard gray-level luminance image of an outdoor natural
scene as in Fig. 1 (left). (A): The different curves (solid lines) show the distributions obtained by averaging the contrasts / over N � N pixel blocks and
renormalization to zero mean and unit variance, for various N (solid lines). The distributions appear scale-invariant and non-Gaussian. (B): The
configuration N = 8 with error bars at plus and minus one standard deviation evaluated over the 45 luminance images of the ensemble.
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Fig. 4. Distribution PNðIÞ of depth contrast when the image I(x) is a depth image of an outdoor natural scene as in Fig. 1 (right). (A): The different curves
(solid lines) show the distributions obtained by averaging the depths I over N � N pixel blocks and renormalization to zero mean and unit variance, for
various N. The distributions appear scale-invariant and non-Gaussian. (B): The configuration N = 8 with error bars at plus and minus one standard deviation
evaluated over the 45 depth images of the ensemble.
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spatial scales, as reported in Refs. [26,27] on standard gray-
level luminance images from natural scenes.

For statistical characterization of our ensemble of natu-
ral images, we further proceed as done in [26,27], by aver-
aging the distribution of magnitude of the gradient j$Ij
over the 45 images of our ensemble. For the analysis of
the gradient in luminance also, Refs. [26,27] instead of di-
rectly operating on an original luminance image I(x) find it
more appropriate to operate on the contrast image /(x)
from Eq. (1). The resulting ensemble-averaged distribution
of j$/j characterizing the ensemble is presented in Fig. 6A
for the standard gray-level luminance images as in
Fig. 1left), together with an illustration of the variability
over the ensemble presented in Fig. 6B.

For the luminance natural images, the distribution of
magnitude of the gradient j$/j in Fig. 6 displays a behavior
similar to that of the images from [26,27]. There is an over-
all invariant form of the distribution of the gradient with
the scale N. This distribution, although scale-invariant, sig-
nificantly departs from the Rayleigh form that prevails in a
Gaussian world; and instead this distribution shows an
essentially exponential tail. These properties are observed
in common here and in [26,27], and constitute another
manifestation of elaborate scale-invariant structures pres-
ent in outdoor natural images.

Next, we are in a position to apply for the first time this
multiscale analysis of the gradient when I(x) is a depth im-
age from our ensemble as in Fig. 1right). In such condition,
Fig. 7A represents the ensemble-averaged distribution of
magnitude j$Ij of the gradient for the depth images of
our ensemble as in Fig. 1right), with the variability over
the ensemble illustrated in Fig. 7B.

The evolution curves of j$Ij at the various scales N in
Fig. 7 have been translated in their ordinates to show that
in most part of their tail these curves tend to superpose.
Only at very small values of the gradient j$Ij are some sig-
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Fig. 5. For the same three reference images I(x) as in Fig. 2 in the same
top-down order, the histograms of magnitude of the gradient j$Ij upon
aggregation of I(x) over blocks of size N � N and renormalization to zero
mean and unit variance: (top) purely random image with no spatial
structure (white noise) and Gaussian gray levels showing exact scale
invariance and a Rayleigh distribution for j$Ij; (middle) bright object on a
dark background both having narrow quasi non-overlapping random
distributions of gray levels and no scale invariance in the distribution of
j$Ij; (bottom) image with uniform distribution of gray levels and regular
spatial modulation and no scale invariance in the distribution of j$Ij. The
dashed lines depict the theoretical Rayleigh distribution of j$Ij associated
with a Gaussian gray-level contrast I(x).
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nificant differences observable in the distributions at dis-
tinct scales N in Fig. 7. At small N, neighboring pixels are
expected with high probability to show similar contrasts,
whence the high probability of small gradient j$Ij, which
can be attributed to coherent structures or objects existing
in the scene. Through aggregation at larger N, coherent ob-
jects gradually mix, leading to neighboring pixels with
more heterogeneous contrasts, and less probability of
small gradient j$Ij. This distinctive behavior with N only
concerns very small gradients j$Ij in Fig. 7. Above very
small gradients j$Ij in Fig. 7, the distributions of $Ij tend
to superpose at various N, manifesting scale invariance of
the distribution of j$Ij, except for very small j$Ij.

For the depth images, the distribution of magnitude of
the gradient in Fig. 7, in addition to displaying self-similar-
ity across scales, is also found to strongly depart from the
Rayleigh distribution prevailing in a Gaussian world. This
demonstrates that the gradient distribution also reflects
nontrivial scale invariance in the new type of spatial mea-
surements formed by the depth images. There is therefore
a strong parallel between luminance and depth images
from natural scenes, which both incorporate scale invari-
ance, detectable at the same time in their distributions of
contrast and of gradients.

4. Spectrum analysis

As another approach to report scale invariance and frac-
tal properties, Refs. [26,27] consider the power spectrum
for the images. The power spectrum of an image I(x) is
computed in [26,27] via the periodogram method, through
the squared modulus of the two-dimensional Fourier
transform,

Iðq; hÞ ¼ FT½IðxÞ�j j2 ð2Þ

expressed in polar coordinates in the plane of spatial fre-
quencies. An average is then performed over the angular
coordinate h to yield the orientationally averaged spectrum

IðqÞ ¼ 1
2p

Z 2p

0
Iðq; hÞdh: ð3Þ

Scale invariance or self-similarity over scale is manifested
by an average spectrum IðqÞ displaying a scale-free
power-law evolution of the form IðqÞ ¼ Aqa, with a nega-
tive exponent a for the decay of the spectrum with increas-
ing spatial frequencies q.

Upon such spectral characterization, some useful refer-
ence behaviors can be assigned to simple image models
with elementary constitutions, as illustrated in Fig. 8. For
instance, scale invariance trivially occurs for a purely ran-
dom image (white noise) with no spatial structure, as
shown in Fig. 8(top). The resulting power spectrum IðqÞ
from Eqs. (2) and (3) is flat following a degenerate power
law IðqÞ ¼ Aqa with exponent a = 0, manifesting the trivial
scale invariance of the white noise image with no spatial
structure. Scale invariance breaks down for instance when
a simple low-pass filtering is implemented on the white
noise image, as illustrated in Fig. 8middle). The low-pass
filter induces correlation of the gray levels, over a spatial
range determined by the size of the convolution kernel
associated with the filter. A two-dimensional triangular
kernel (a pyramid) of base size 21 � 21 pixels was used
in Fig. 8middle). The corresponding power spectrum IðqÞ
clearly departs from a uniform power law, with a cut-off
frequency determined by the correlation length of the filter
which introduces a specific spatial scale in the filtered im-
age no longer invariant. Next, an object with definite spa-
tial dimensions well contrasted over a background, as in
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Fig. 6. Distribution of the magnitude of the gradient j$/j for the luminance contrast /(x) from Eq. (1) when the image I(x) is a standard gray-level
luminance image of an outdoor natural scene as in Fig. 1 (left). (A): The different curves (solid lines) show the distributions obtained after averaging the
contrasts / over N � N pixel blocks and renormalization to zero mean and unit variance, for various N. The dashed line depicts the theoretical Rayleigh
distribution of j$/j associated with a Gaussian contrast /(x). (B): The configuration N = 8 with error bars at plus and minus one standard deviation
evaluated over the 45 luminance images of the ensemble.
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Fig. 7. Distribution of the magnitude of the gradient j$Ij when the image I(x) is a depth image of an outdoor natural scene as in Fig. 1 (right). (A): The
different curves show the distributions obtained after averaging the depths I over N � N pixel blocks and renormalization to zero mean and unit variance,
for various N. The dashed line depicts the theoretical Rayleigh distribution of j$Ij associated with a Gaussian depth image I(x). (B): The configuration N = 8
with error bars at plus and minus one standard deviation evaluated over the 45 depth images of the ensemble.
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the image of Fig. 8(bottom), displays a power spectrum
IðqÞ departing from a uniform power law, but with lobes
or features reflecting the typical spatial sizes in the object.
Such a power spectrum manifests the existence of a few
well determined spatial scales dominating the image
which has no scale invariance. Especially, in such non-
scale-invariant images, the power spectrum IðqÞ at low
spatial frequencies q tends to return to the flat spectrum
of the white noise. This indicates that there exists in the
image a characteristic spatial scale (related to a cut-off
frequency) beyond which the gray levels tend to vary
independently, as for a white noise. By contrast, scale-
invariant images do not contain such characteristic spatial
scales. This is indicated by a power spectrum following a
nontrivial power law IðqÞ � qa, with a – = 0, especially
in the low-frequency end, associated with long-range
spatial correlation maintained in the variations of the gray
levels, as a mark of an elaborate constitution. Natural
images often display such behavior, where no dominant
scales in a small number single out, but instead where a
broad range of scales are uniformly represented. This usu-
ally leads to scale-free power-law evolution of the power
spectrum IðqÞ as reported in Refs. [26,27] on standard
gray-level luminance images from natural scenes.

For a statistical characterization of our ensemble of nat-
ural outdoor images, we further proceed as done in [26,27],
by averaging the power spectrum IðqÞ from Eqs. (2) and
(3) over the 45 images of our ensemble, so as to obtain
the ensemble-averaged power spectrum characteristic of
the ensemble.

As in the luminance contrast analysis of Section 3, for
the analysis of the power spectrum, Refs. [26,27] instead
of directly operating on an original luminance image I(x)
in Eq. (2), operate on the contrast image /(x) from Eq.
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Fig. 8. Three examples of reference images I(x) with simple spatial constitutions (left) and associated average power spectra IðqÞ (right): (top) a purely
random image with no spatial structure (white noise) and flat spectrum with power-law exponent a = 0; (middle) a random image with short-range spatial
correlation and spectrum with a frequency cut-off controlled by the correlation length in space, and two power-law exponents a = 0 and a = � 4 on both
sides of the cut-off; (bottom) a uniform object on a uniform background and spectrum with lobes reflecting the typical spatial sizes in the object. The two
slopes a = 0 and a = � 2 are controlled by the sinc squared function theoretically modeling this spectrum.
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(1), to obtain from Eqs. (2) and (3) an orientationally aver-
aged spectrum denoted UðqÞ. In this condition, Fig. 9 rep-
resents the ensemble-averaged power spectrum obtained
from the luminance images as in Fig. 1left) of our ensemble
of outdoor natural scenes.

For the luminance natural images, the power spectrum
in the log–log plot of Fig. 9 is well approximated by a
power law qa with a non-integer fractal exponent
a = � 1.83, over a large range of the spatial frequency q
extending especially in the low-frequency end. The power
law is the mark of scale-free self-similar long-range spatial
correlation associated with the low-frequency end of the
spectrum. An identical behavior is reported for the power
spectrum of the ensemble of luminance natural images
considered in [26,27], especially with a very close fractal
exponent a = � 1.83 in [26,27]. Also, in the power spectrum
of Fig. 9 there is a cut-off in the high-frequency range to a
steeper power law qa with exponent a = � 4.62. The same
cut-off is also observed in [26,27], to a steeper exponent
a = � 4.16. This effect can be assigned to high-frequency
noise superposing to low-frequency correlation present
in the images, both from our ensemble and from that of
[26,27] in a consistent way. This confirms the tendency
of luminance images from natural scenes to carry long-
range scale-invariant dependencies in their spatial
organization.

Next, we apply the power spectrum analysis for the first
time to depth images from outdoor natural scenes. Fig. 10
represents the ensemble-averaged power spectrum ob-
tained from the depth images as in Fig. 1right) of our
ensemble of outdoor natural scenes.

For the depth images of natural scenes, the power spec-
trum of Fig. 10 is well approximated by a power law qa

with a non-integer fractal exponent a = � 2.20, over almost
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Fig. 10. From the depth image I(x), power spectrum IðqÞ from Eqs. (2)
and (3) averaged over the ensemble of depth images I(x) of outdoor
natural scenes as in Fig. 1 (right). The scale-free power law qa with non-
integer fractal exponent a = � 2.20 provides a good model over the spatial
frequencies q accessible. The error bars at plus and minus one standard
deviation are evaluated over the 45 depth images of the ensemble.
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the whole range accessible for the spatial frequency q. This
demonstrates that long-range scale-free correlations are
also present in the new type of spatial measurements
formed by the depth images. Long-range scale-free spatial
dependencies are thus manifested and recordable in depth
images as well as in luminance images from natural scenes.
The specific values of the exponent of the scale-free power-
law spectra from luminance images (Fig. 9) or from depth
images (Fig. 10) are however distinct. Again, this is not
unexpected, since the luminance or depth information car-
ried by each type of images are essentially distinct. We
investigate further in the next section the possible relation
between luminance and depth images.

5. Relation between luminance and depth images

In this study we did not make any assumption on the
possible correlation or relation between luminance and
depth images. Instead, we implemented independent par-
allel analyses of the scaling properties of luminance and
of depth images. Any conceivable correlation between
the two types of images is expected to critically depend
on the lighting conditions. External lighting in the visible
range, through its intensity and orientation, strongly af-
fects the luminance images; but it leaves unaffected the
depth images. Lowering the external lighting to extinction
can completely wipe out any correlation between lumi-
nance and depth images. So any relation between these
two may only be of statistical nature in given lighting con-
ditions. For instance, in standard day-light conditions, Refs.
[51–53] analyzed the correlation between luminance and
depth images. The depth images in [51–53] were con-
structed with a laser scanner, a method with high accuracy
and spatial range, but with a delay of minutes to scan an
image, much longer than the 30 Hz image rate of our sen-
sor here; and [51–53] did not address scaling behaviors in
the images as we do here by direct analysis in the line of
Refs. [26,27]. To gain further insight into the fractal scaling
observed simultaneously here in luminance and in depth
images, we undertook a correlation analysis between the
luminance and depth images from our dataset. The cross-
correlation coefficient between the luminance and corre-
sponding depth images was evaluated as in Refs. [51,53] by

q ¼ hIluminðxÞIdepthðxÞi � hIluminðxÞihIdepthðxÞi
std½IluminðxÞ�std½IdepthðxÞ�

ð4Þ

where h�i stands as an average over the pixels of the
images; and q was computed for each of the 45 pairs of
images of our ensemble. The mean hI(x)i and standard
deviation std[I(x)] were also computed for all the images
I(x) of the ensemble.

To appreciate the impact of the lighting conditions, the
cross-correlation q is plotted in Fig. 11 as a function of the
mean value hIlumin(x)i of the luminance over the 45 pairs of
images of our ensemble.

In Fig. 11, the distribution of the ordinates shows that
the cross-correlation coefficient q generally assumes rela-
tively low values. This manifests that the overall correla-
tion between the luminance and depth images from the
same scene is in general relatively low. Moreover, in
Fig. 11 the abscissas show that the mean luminance
hIlumin(x)i has usually no directed or determined influence
on the cross-correlation q. Increasing the mean luminance
does not consistently make the cross-correlation q larger
or smaller. Such a weak relation is not unexpected for
two distinct physical quantities, with the depth which is
unaffected by the lighting conditions which in turn criti-
cally influence the luminance. Nevertheless, the rather
weak cross-correlation q in Fig. 11 is very often found neg-
ative. This expresses that, most often in our dataset, as the
depth increases the luminance tends to decrease. This is a
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Fig. 11. Cross-correlation coefficient q from Eq. (4) between the lumi-
nance and corresponding depth image, as a function of the mean value
hIlumin(x)i of the luminance image, computed for the 45 pairs of images of
our ensemble.

Fig. 12. Image with the dominant source of illumination coming from the
remote background.
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reasonable behavior for outdoor natural scenes dominated
by leafy foliage, with illumination coming from outside any
bush or tree, resulting usually in decreasing light by pene-
trating deeper into the foliage with increasing depth. These
are the conditions that prevail in our ensemble of natural
images, leading to mainly negative cross-correlation q in
Fig. 11. Most of the values of the cross-correlation q in
Fig. 11 lie in the range of �0.1 to �0.3, which matches
the overall correlation in the neighborhood of �0.18 re-
ported in [51]. Still, a few points in the graph of Fig. 11 sin-
gle out with a relatively high positive cross-correlation q
around 0.2 or 0.3. This corresponds to images in the ensem-
ble with a dominant illumination coming from the remote
background, typically as shown in Fig. 12 with the back-
ground opening at infinity on a bright sky, leading to an
illumination increasing with depth. Such a remote light
source at infinity in the background returns no information
for the depth images, as explained in Section 2. Consis-
tently, most of the scenes of our ensemble of images have
no such dominant illumination source visible in a remote
background, but rather they rest, as in Fig. 1, in a diffuse
illumination coming from the outer boundary of the foliage
structures and receding while going deeper into them.

It is interesting to note that, although the level of cross-
correlation q between luminance and depth images is gen-
erally small, its nonzero value, by its sign, can provide a
hint on the structure of the dominant illumination of the
scene, either coming from the background yielding posi-
tive correlation, of receding with depth yielding negative
correlation.

Another viewpoint is offered by Fig. 13 which shows the
cross-correlation coefficient q from Eq. (4) for pairs of
luminance and depth images obtained from the same
scene successively measured in different illuminations cor-
responding to different day-light conditions. In such cir-
cumstances the depth image is invariant, and the
luminance image evolves with the changing illumination.
The illumination which changes in intensity and orienta-
tion significantly affects the luminance image, especially
through shading and light interception which occurs dif-
ferently in the depth of the foliage and bushes. These
changes in the luminance image induce significant changes
in the cross-correlation q in Fig. 13. However, the cross-
correlation q in Fig. 13 consistently remains small and
mainly negative between the luminance and depth images.
This is the same dominant behavior of the cross-correla-
tion q as reflected by the analysis over the whole ensemble
in Fig. 11.

The cross-correlation q of Figs. 11–13 is computed
across the pixels of the images. A complementary view as-
sesses the cross-correlation across the images of the
ensemble. Such a view is provided by Fig. 14A which de-
picts the mean luminance hIlumin(x)i versus the mean depth
hIdepth(x)i, computed for each of the 45 image pairs of our
ensemble. The scattered plot of Fig. 14A shows no strong
regular relation generally connecting the mean luminance
and mean depth across our ensemble of natural images.

A similar picture emerges from Fig. 14B which depicts
the luminance standard deviation std[Ilumin(x)] versus the
depth standard deviation std[Idepth(x)], for each of the 45
image pairs of our ensemble. These standard deviations
can be seen as measures of the overall texture over a lumi-
nance or a depth image. In a similar way, the scattered plot
of Fig. 14B shows no strong regular relation connecting the
standard deviations or textures in luminance and in depth
across our ensemble of natural images.

It is possible to also evaluate cross-correlation coeffi-
cients between the means hI(x)i and standard deviations
std[I(x)] computed among the 45 luminance images and
45 depth images of our ensemble. The results are pre-
sented in Table 1, and they also consistently point to weak
and negative correlations between luminance and depth
images.

From these observations, it results that the luminance
and depth images from our dataset are in general weakly
correlated. At the same time, the independent evaluations
we conducted here, showed that these two types of images
exhibit in common self-similar scaling organizations. Frac-
tal parameters have been extracted for luminance and for
depth images through independent statistical analysis over
the image ensemble. These fractal parameters are global
parameters emerging from statistical analysis over the
ensemble of images. They come out with different quanti-
tative values for luminance and depth images, consistent
with the facts that these two types of images are weakly



0 10 20 30 40 50 60 70 80 90 100 110
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

mean luminance

co
rre

la
tio

n 
de

pt
h−

lu
m

in
an

ce

Fig. 13. Cross-correlation coefficient q from Eq. (4) between the lumi-
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correlated and represent two distinct physical quantities.
Yet, beyond the quantitative values of the fractal parame-
ters which differ, the qualitative property of a fractal self-
similar organization is an important common trait be-
tween luminance and depth images. This points to a possi-
ble common origin resting in the constitution of the
natural scenes which would encompass fractal structures
and details in a self-similar way across scales. Such fractal
structures in the scene would interact with the incident
light, and project onto an image plane at the location of a
sensing device, sensitive to luminance or to depth, so as
to construct an image with distinctive properties, yet car-
rying a specific mark of the fractal properties of the phys-
ical scene. This leads in the images to self-similar scaling
organizations which appear as high-level structural prop-
erties, not fully captured or predictable by a low-level
measure of dependence like cross-correlation.
6. Discussion

We have used a newly introduced low-cost fast sensor
for depth image measurement to construct an ensemble
of images from outdoor natural scenes. The ensemble con-
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Fig. 14. (A) mean luminance hIlumin(x)i versus mean depth hIdepth(x)i, and (B) stan
of images of our ensemble.
sisted of pairs of a standard luminance image coregistered
with a depth image of the same scene. The resulting depth
images render easily accessible a novel modality of imag-
ing carrying useful potentialities for many purposes in im-
age processing and computer vision. The depth images
were used here to further explore fractal multiscale prop-
erties in images from natural scenes. As a result, we report
here, for the first time to our knowledge, a multiscale anal-
ysis of depth images from natural scenes. We also confront
the multiscale analysis on depth images and on luminance
images. Two methodologies were implemented for the
multiscale analysis, in a close parallel with Refs. [26,27]
which analyzed standard gray-level luminance images
from outdoor natural scenes. Our results here with both
methodologies confirm, on another independent dataset,
the presence of scale invariance in the luminance natural
images, as already reported by Refs. [26,27] and by others
[24,25,20]. Our results with both methodologies also reveal
that scale invariance extends to the novel data formed by
depth images from natural scenes. This is the most prom-
inent original result of this study: to report the first multi-
scale analysis on depth images from natural scenes, and to
disclose and analyze their scaling properties. Scale invari-
ance is found in the distribution of contrast and of its gra-
dient over the images, both for luminance and for depth
images. The precise quantitative laws characterizing the
scaling in these two types of images are distinct, as they re-
fer to two distinct physical quantities (luminance and
depth), but they have in common to share a fractal scale-
invariant self-similar organization. The same is true for
the fractal scale invariance found in the orientationally
averaged power spectrum, which is quantitatively distinct
for luminance and for depth images, but in both cases is
governed by scale-free power-law evolutions with non-
integer fractal exponents. These results consolidate the
importance of fractal scale invariance as a generic prop-
erty, detectable under multiple forms, in the constitution
of images from natural scenes.

We have tested here an ensemble of outdoor natural
scenes with plants, bushes and trees, this especially allow-
ing confrontation with comparable dataset from the litera-
ture [26,27]. Ensembles of other types, with other specific
typologies, could be tested to extend the investigation and
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Table 1
Cross-correlation coefficient between the mean hI(x)i and standard devi-
ation std[I(x)] computed for the 45 pairs of luminance and depth images of
our ensemble.

Luminance

Mean St. dev.

Depth Mean �0.18 �0.23
St. dev. �0.17 �0.08
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to examine how the scaling properties evolve and how
their quantitative parameters relate to the typology of
the images [54]. One could think of various homogeneous
categories of outdoor or indoor scenes, or even underwater
scenes. Various fractal parameters could then be envisaged
to serve for instance to image indexing in large databases.
However, the ensembles of outdoor natural scenes with
woods, bushes and plants as studied here, are specially
important since they have formed for a long period of time
the environment in which the visual system has evolved
and developed [16–18], and in this respect their (scale-
invariant) statistics carry specific relevance. In this sense,
the visual system and its remarkable properties for image
processing may have been optimized for/by the statistics
of natural images; and better knowledge of these complex
statistics, including their fractal aspects, is a guide for bet-
ter understanding of vision.

Also, natural structures like leaves, plants and trees are
known to incorporate fractal arrangements of their own in
their three-dimensional constitution [55–57]. A further
study could be to specifically investigate how the fractal
properties observed in depth and luminance images relate
or give access to such three-dimensional constitutive frac-
tal properties of plants.

In the present study we did not make any assumption
on a possible dependence between luminance and depth
images. Instead, we implemented direct analysis of the sta-
tistics of the luminance and the depth images and their
scaling behaviors, offering useful independent references.
The separate statistical analyses revealed fractal scale
invariances present simultaneously in the luminance and
in the depth images, together with generally weak statisti-
cal correlation between the two types of images. These
scale invariances measured here simultaneously and inde-
pendently in the luminance and in the depth images,
although distinct in their quantitative detail, may however
suggest the possibility of some dependence existing at a
higher level between these two types of images. Analysis
of statistical dependence between the scaling in luminance
and depth images could in this respect be interesting to
prolong, to better understand how luminance information
and the way it spatially distributes over an image can carry
information about depth and the three-dimensional orga-
nization of a physical scene [58,51,52]. This could provide
cues to the visual system for depth reconstruction or infer-
ence from luminance. However, as we have seen, a simple
measure like the cross-correlation manifests only weak
dependence between luminance and depth images. This
in particular excludes simple linear relations to connect
luminance and depth images. Some higher-order measures
of statistical dependence may be necessary to better cap-
ture a possible relation, especially allowing one to connect
the fractal scale-invariance properties common in lumi-
nance and in depth images. Measures like mutual informa-
tion could be appropriate to explore, possibly a directed
version of mutual information, in order to account for the
reality that the depth images are usually not affected by
the illumination conditions, while the luminance images
may be significantly influenced by the depths in the scene
yet in a way not adequately captured by a linear measure
of dependence like the cross-correlation. Such informa-
tional measures could be useful to better assessment of
the information of a physical scene that is conveyed in an
image. Fractal properties seem to be a robust characteris-
tics attached to images of natural scenes. Such fractal prop-
erties, common to several distinct types of images, could
serve as a useful guide to define and follow the informa-
tional content in images, and this could be relevant to effi-
cient strategies for visual perception and computational
vision in a three-dimensional world.

Another direction where our study could carry useful
significance is the analysis and modeling of the interaction
of light with three-dimensional natural structures, espe-
cially those made of foliage, leaves. The depth images stud-
ied here measure the structure of the outer surface visible
for the objects in a scene. This represents the surface that
the scene presents to an incident external light. For natural
scenes with plants and leafy foliage, this outer surface con-
trols the interception of solar radiation by the foliage and is
therefore important for subsequent metabolic and growth
processes in the plant based on photosynthesis. Our analy-
sis of depth images from natural scenes indicates that such
outer surfaces from plants and foliage structures tend to
display a fractal character. Such a fractal organization of
their outer surface may be a feature contributing to high
efficacy of plants for light interception. Several recent stud-
ies suggest the importance of the three-dimensional and
multiscale organization of plants in efficient light intercep-
tion [59–61]. The depth images and their association with
luminance images as investigated here, can contribute to
the analysis and modeling of these processes of light inter-
action and interception by plants. They offer possibilities of
measurement and quantitative characterization in this do-
main. In particular, the fractal organization could represent
an important feature, possibly manifesting distributed
lacunarities to allow light penetration in the deep of the fo-
liage, and spatial structures forming mazes or traps for
enhancing light absorption, together realizing an efficient
combination of diffusers and absorbers in three dimen-
sions. Moreover, the three-dimensional arrangement of fo-
liage, as probed by the depth images, and with fractal
organization, could suggest interesting configurations to
the technology of solar energy collectors. It is being real-
ized that flat planar solar panels may not represent the
most efficient configuration to collect solar energy
[62,63]: they offer only one chance of interaction to the
incident light before specular reflection, and are matched
to only one direction of incidence if one wants to avoid ac-
tive sun tracking. By contrast, three-dimensional struc-
tures, with abilities of light trapping and enhanced
volume of interaction, are being recognized as promising
alternatives for efficient solar collectors [62,63]. In this re-
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spect, the foliage of plants could suggest interesting archi-
tectures for such solar collectors. The depth images inves-
tigated here precisely probe the structure of the outer
surface which controls light interception. They reveal here
a fractal organization which could be an interesting ingre-
dient to test in the technology of solar collectors.

In this way, both the novel technological low-cost imag-
ing sensor demonstrated here, and the depth images it
delivers, together with the new fractal properties uncov-
ered here, are connected to several interesting directions
of development.
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