Quantum information, quantum computation :

An introduction.

François Chapeau-Blondeau LARIS, Université d'Angers, France
\qquad

Tbelieve that science is not simply a matter of exploring new horizons. One must also make the new
knowledge readily available, and we have in this work a beautiful example of such appedagogical effort."
Claude Conen-Tanondiji in foreword to the book "Introuction to Ouantum Optics" ande Conen-1annoudji, in foreword to the book "Introduction to Quantum Op

1/102

Quantum system

Represented by a state vector $|\psi\rangle$
in a complex Hilbert space \mathcal{H},
with unit norm $\langle\psi \mid \psi\rangle=\|\psi\|^{2}=1$.

In dimension 2 : the qubit (photon, electron, atom, ...)
State $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$
in some orthonormal basis $\{|0\rangle,|1\rangle\}$ of \mathcal{H}_{2},
with complex $\alpha, \beta \in \mathbb{C}$ such that $|\alpha|^{2}+|\beta|^{2}=\langle\psi \mid \psi\rangle=\|\psi\|^{2}=1$.
$|\psi\rangle=\left[\begin{array}{l}\alpha \\ \beta\end{array}\right], \quad|\psi\rangle^{\dagger}=\langle\psi|=\left[\alpha^{*}, \beta^{*}\right] \quad \Longrightarrow\langle\psi \mid \psi\rangle=\|\psi\|^{2}=|\alpha|^{2}+|\beta|^{2} \quad$ scalar.
$|\psi\rangle\langle\psi|=\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]\left[\alpha^{*}, \beta^{*}\right]=\left[\begin{array}{ll}\alpha \alpha^{*} & \alpha \beta^{*} \\ \alpha^{*} \beta & \beta \beta^{*}\end{array}\right]=\Pi_{\psi}$ orthogonal projector on $|\psi\rangle$.

Measurement of the qubit

When a qubit in state $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$
is measured in the orthonormal basis $\{|0\rangle,|1\rangle\}$,
\Longrightarrow only 2 possible outcomes (Born rule)
state $|0\rangle$ with probability $|\alpha|^{2}=|\langle 0 \mid \psi\rangle|^{2}=\langle 0 \mid \psi\rangle\langle\psi \mid 0\rangle=\langle 0| \Pi_{\psi}|0\rangle$, or state $|1\rangle$ with probability $|\beta|^{2}=|\langle 1 \mid \psi\rangle|^{2}=\langle 1 \mid \psi\rangle\langle\psi \mid 1\rangle=\langle 1| \Pi_{\psi}|1\rangle$.

Measurement : usually

- a probabilistic process,
- as a destructive projection of the state $|\psi\rangle$ in an orthonormal basis,
- with statistics evaluable over repeated experiments with same preparation $|\psi\rangle$.

Bloch sphere representation of the qubit
Qubit in state
$|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ with $|\alpha|^{2}+|\beta|^{2}=1$.
$\Longleftrightarrow|\psi\rangle=\cos (\theta / 2)|0\rangle+e^{i \varphi} \sin (\theta / 2)|1\rangle$
with $\theta \in[0, \pi]$,

$$
\varphi \in[0,2 \pi[.
$$

Two states \perp in \mathcal{H}_{2} are antipodal on sphere

As a quantum object

the qubit has infinitely many accessible values
in its two continuous degrees of freedom (θ, φ),
yet when it is measured it can only be found in one of two states (just like a classical bit).

Some recent textbooks

M. Nielsen \& I. Chuang

2000, 676 pages

E. Desurvire

2009, 691 pages
arXiv:1106.1445v5 [quant-ph] M. Wilde, "Fioclassical to

Hadamard basis

Another orthonormal basis of \mathcal{H}_{2}

\Longleftrightarrow Computational orthonormal basis

$$
\left\{|0\rangle=\frac{1}{\sqrt{2}}(|+\rangle+|-\rangle) ; \quad|1\rangle=\frac{1}{\sqrt{2}}(|+\rangle-|-\rangle)\right\}
$$

Experiments

Stern-Gerlach apparatus for particles with two states of spin (electron, atom).

Two states of polarization of a photon : (Nicol prism, Glan-Thompson, polarizing beam splitter, ...)

In dimension N (finite) (extensible to infinite dimension)
State $|\psi\rangle=\sum_{n=1}^{N} \alpha_{n}|n\rangle$, in some orthonormal basis $\{|1\rangle,|2\rangle, \ldots|N\rangle\}$ of \mathcal{H}_{N},
with $\alpha_{n} \in \mathbb{C}, \quad$ and $\sum_{n=1}^{N}\left|\alpha_{n}\right|^{2}=\langle\psi \mid \psi\rangle=1$.
Proba. $\operatorname{Pr}\{|n\rangle\}=\left|\alpha_{n}\right|^{2}$ in a projective measurement of $|\psi\rangle$ in basis $\{|n\rangle\}$.
Inner product $\langle k \mid \psi\rangle=\sum_{n=1}^{N} \alpha_{n} \overbrace{\langle k \mid n\rangle}^{\delta_{k n}}=\alpha_{k}$ coordinate.
$\mathrm{S}=\sum_{n=1}^{N}|n\rangle\langle n|=\mathrm{I}_{N}$ identity of \mathcal{H}_{N} (closure or completeness relation),
since, $\forall|\psi\rangle: \mathrm{S}|\psi\rangle=\sum_{n=1}^{N}|n\rangle \overbrace{\langle n \mid \psi\rangle}^{\alpha_{n}}=\sum_{n=1}^{N} \alpha_{n}|n\rangle=|\psi\rangle \Longrightarrow \mathrm{S}=\mathrm{I}_{N}$.

Multiple qubits

A system (a word) of N qubits has a state in $\mathcal{H}_{2}^{\otimes N}$,
a tensor-product vector space with dimension 2^{N},
and orthonormal basis $\left\{\left|x_{1} x_{2} \cdots x_{N}\right\rangle\right\}_{\vec{x} \in\{0,1\}^{N}}$.
Example $N=2$:
Generally $|\psi\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle\left(2^{N}\right.$ coord.).
Or, as a special separable state ($2 N$ coord.)
$|\phi\rangle=\left(\alpha_{1}|0\rangle+\beta_{1}|1\rangle\right) \otimes\left(\alpha_{2}|0\rangle+\beta_{2}|1\rangle\right)$
$=\alpha_{1} \alpha_{2}|00\rangle+\alpha_{1} \beta_{2}|01\rangle+\beta_{1} \alpha_{2}|10\rangle+\beta_{1} \beta_{2}|11\rangle$.
A multipartite state which is not separable is entangled.
An entangled state behaves as a nonlocal whole: what is done on one part may influence the other part, no matter how distant they are.

Entangled states

- Example of a separable state of two qubits $A B$:
$|A B\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)=\frac{1}{2}(|00\rangle+|01\rangle+|10\rangle+|11\rangle)$.
When measured in the basis $\{|0\rangle,|1\rangle\}$, each qubit A and B can be found in state $|0\rangle$ or $|1\rangle$ independently with probability $1 / 2$.

$$
\operatorname{Pr}\{A \text { in }|0\rangle\}=\operatorname{Pr}\{|A B\rangle=|00\rangle\}+\operatorname{Pr}\{|A B\rangle=|01\rangle\}=1 / 4+1 / 4=1 / 2 .
$$

- Example of an entangled state of two qubits $A B$
$|A B\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) . \quad \operatorname{Pr}\{A$ in $|0\rangle\}=\operatorname{Pr}\{|A B\rangle=|00\rangle\}=1 / 2$.
When measured in the basis $\{|0\rangle,|1\rangle\}$, each qubit A and B can be found in state $|0\rangle$ or $|1\rangle$ with probability $1 / 2$ (randomly, no predetermination before measurement).
But if A is found in $|0\rangle$ necessarily B is found in $|0\rangle$,
and if A is found in $|1\rangle$ necessarily B is found in $|1\rangle$,
no matter how distant the two qubits are before measurement.

Bell basis

A pair of qubits in $\mathcal{H}_{2}^{\otimes 2}$ is a quantum system with dimension $2^{2}=4$, with original (computational) orthonormal basis $\{|00\rangle,|01\rangle,|10\rangle,|11\rangle\}$.

Another useful orthonormal basis of $\mathcal{H}_{2}^{\otimes 2}$ is the Bell basis
$\left\{\left|\beta_{00}\right\rangle,\left|\beta_{01}\right\rangle,\left|\beta_{10}\right\rangle,\left|\beta_{11}\right\rangle\right\}$,

$$
\text { with } \begin{aligned}
\left|\beta_{00}\right\rangle & =\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\
\left|\beta_{01}\right\rangle & =\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle) \\
\left|\beta_{10}\right\rangle & =\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle) \\
\left|\beta_{11}\right\rangle & =\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle) .
\end{aligned}
$$

Heisenberg uncertainty relation (1/2)

For two operators A and B : commutator $[A, B]=A B-B A$, anticommutator $\{A, B\}=A B+B A$
so that $A B=\frac{1}{2}[A, B]+\frac{1}{2}\{A, B\}$.
When A and B Hermitian : $[A, B]$ is antiHermitian and $\{A, B\}$ is Hermitian, and for any $|\psi\rangle$ then $\langle\psi|[\mathrm{A}, \mathrm{B}]|\psi\rangle \in i \mathbb{R}$ and $\langle\psi|\{\mathrm{A}, \mathrm{B}\}|\psi\rangle \in \mathbb{R}$; then $\langle\psi| \mathrm{AB}|\psi\rangle=\frac{1}{2} \underbrace{\langle\psi|[\mathrm{A}, \mathrm{B}]|\psi\rangle}_{\text {imagnary (part) }}+\frac{1}{2} \underbrace{\langle\psi|\{\mathrm{A}, \mathrm{B}]|\psi\rangle}_{\text {real (part) }} \Longrightarrow|\langle\psi| \mathrm{AB}| \psi\rangle\left.\right|^{2} \geq \frac{1}{4}|\langle\psi|[\mathrm{A}, \mathrm{B}]| \psi\rangle\left.\right|^{2} ;$
and for two vectors $\mathrm{A}|\psi\rangle$ and $\mathrm{B}|\psi\rangle$, the Cauchy-Schwarz inequality is $|\langle\psi| \mathrm{AB}| \psi\rangle\left.\right|^{2} \leq\langle\psi| \mathrm{A}^{2}|\psi\rangle\langle\psi| \mathrm{B}^{2}|\psi\rangle$,
so that $\left.\langle\psi| \mathrm{A}^{2}|\psi\rangle\langle\psi| \mathrm{B}^{2}|\psi\rangle \geq \frac{1}{4}|\langle\psi|[\mathrm{A}, \mathrm{B}]| \psi\right\rangle\left.\right|^{2}$.
13/102

Pauli gates

$\mathrm{X}=\sigma_{x}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], \quad \mathrm{Y}=\sigma_{y}=\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right], \quad \mathrm{Z}=\sigma_{z}=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$.
$X^{2}=Y^{2}=Z^{2}=I_{2} . \quad$ Hermitian unitary. $X Y=-Y X=i Z, Z X=i Y$, etc.
$\left\{\mathrm{I}_{2}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}\right\}$ a basis for operators on \mathcal{H}_{2}.
Hadamard gate $H=\frac{1}{\sqrt{2}}(X+Z)$.
$\mathrm{X}=\sigma_{x} \quad$ the inversion or Not quantum gate. $\quad \mathrm{X}|0\rangle=|1\rangle, \quad \mathrm{X}|1\rangle=|0\rangle$.
$\mathrm{W}=\sqrt{\mathrm{X}}=\sqrt{\sigma_{x}}=\frac{1}{2}\left[\begin{array}{cc}1+i & 1-i \\ 1-i & 1+i\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}e^{i \pi / 4} & e^{-i \pi / 4} \\ e^{-i \pi / 4} & e^{i \pi / 4}\end{array}\right] \Longrightarrow \mathrm{W}^{2}=\mathrm{X}$,
is the square-root of Not, a typically quantum gate (no classical analog).

An optical implementation

A one-qubit phase gate $U_{\xi}=\left[\begin{array}{cc}1 & 0 \\ 0 & e^{i \xi}\end{array}\right]=e^{i \xi / 2} \exp \left(-i \xi \sigma_{z} / 2\right)$
optically implemented by a Mach-Zehnder interferometer

acting on individual photons with two states of polarization $|0\rangle$ and $|1\rangle$
which are selectively shifted in phase,
to operate as well on any superposition $\alpha|0\rangle+\beta|1\rangle \longrightarrow \alpha|0\rangle+\beta e^{i \xi}|1\rangle$.

Computation on a system of N qubits

Through a unitary operator U on $\mathcal{H}_{2}^{\otimes N}\left(\right.$ a $2^{N} \times 2^{N}$ matrix $)$:
normalized vector $|\psi\rangle \in \mathcal{H}_{2}^{\otimes N} \longrightarrow \mathrm{U}|\psi\rangle$ normalized vector $\in \mathcal{H}_{2}^{\otimes N}$.
\equiv quantum gate : N input qubits $\xrightarrow{U} N$ output qubits.
Completely defined for instance by the transformation of the 2^{N} state vectors of the computational basis ;
but works equally on any superposition of them (parallelism).
Any N-qubit quantum gate or circuit may always be composed from two-qubit C-Not gates and single-qubit gates (universality). And in principle this ensures experimental realizability.

This forms the grounding of quantum computation.

Parallel evaluation of a function (1/3)

A classical function $f(\cdot)$ from N bits to 1 bit

$$
\vec{x} \in\{0,1\}^{N} \longrightarrow f(\vec{x}) \in\{0,1\} .
$$

Used to construct a unitary operator U_{f} as an invertible f-controlled gate :

with binary output $y \oplus f(\vec{x})=f(\vec{x})$ when $y=0$, or $=\overline{f(\vec{x})}$ when $y=1$, (invertible as $[y \oplus f(\vec{x})] \oplus f(\vec{x})=y \oplus f(\vec{x}) \oplus f(\vec{x})=y \oplus 0=y$).

Computation on a pair of qubits

Through a unitary operator U on $\mathcal{H}_{2}^{\otimes 2}$ (a 4×4 matrix) :
normalized vector $|\psi\rangle \in \mathcal{H}_{2}^{\otimes 2} \longrightarrow \mathrm{U}|\psi\rangle$ normalized vector $\in \mathcal{H}_{2}^{\otimes 2}$
\equiv quantum gate
(always reversible)

Completely defined for instance by the transformation of the four state vectors of the computational basis $\{|00\rangle,|01\rangle,|10\rangle,|11\rangle\}$.

But works equally on any superposition of quantum states \Longrightarrow quantum parallelism.

No cloning theorem (1982)

¿ Possibility of a circuit (a unitary U) that would take any state $|\psi\rangle$, associated to an auxiliary register $|s\rangle$, to transform the input $|\psi\rangle|s\rangle$ into the cloned output $|\psi\rangle|\psi\rangle$?
$\left|\psi_{1}\right\rangle|s\rangle \xrightarrow{U} U\left(\left|\psi_{1}\right\rangle|s\rangle\right)=\left|\psi_{1}\right\rangle\left|\psi_{1}\right\rangle$ (would be).
$\left|\psi_{2}\right\rangle|s\rangle \xrightarrow{U} U\left(\left|\psi_{2}\right\rangle|s\rangle\right)=\left|\psi_{2}\right\rangle\left|\psi_{2}\right\rangle$ (would be).
Linear superposition $|\psi\rangle=\alpha_{1}\left|\psi_{1}\right\rangle+\alpha_{2}\left|\psi_{2}\right\rangle$
$|\psi\rangle|s\rangle \xrightarrow{\mathrm{U}} \mathrm{U}(|\psi\rangle|s\rangle)=\mathrm{U}\left(\alpha_{1}\left|\psi_{1}\right\rangle|s\rangle+\alpha_{2}\left|\psi_{2}\right\rangle|s\rangle\right)$

$$
=\alpha_{1}\left|\psi_{1}\right\rangle\left|\psi_{1}\right\rangle+\alpha_{2}\left|\psi_{2}\right\rangle\left|\psi_{2}\right\rangle \quad \text { since U linear. }
$$

$\operatorname{But}|\psi\rangle|\psi\rangle=|\psi\rangle \otimes|\psi\rangle=\left(\alpha_{1}\left|\psi_{1}\right\rangle+\alpha_{2}\left|\psi_{2}\right\rangle\right)\left(\alpha_{1}\left|\psi_{1}\right\rangle+\alpha_{2}\left|\psi_{2}\right\rangle\right)$
$=\alpha_{1}^{2}\left|\psi_{1}\right\rangle\left|\psi_{1}\right\rangle+\alpha_{1} \alpha_{2}\left|\psi_{1}\right\rangle\left|\psi_{2}\right\rangle+\alpha_{1} \alpha_{2}\left|\psi_{2}\right\rangle\left|\psi_{1}\right\rangle+\alpha_{2}^{2}\left|\psi_{2}\right\rangle\left|\psi_{2}\right\rangle$
$\neq \mathrm{U}(|\psi\rangle|s\rangle) \quad$ in general. \Longrightarrow No cloning U possible.

Parallel evaluation of a function (2/3)

For every basis state $|\vec{x}\rangle$, with $\vec{x} \in\{0,1\}^{N}$:
$|\vec{x}\rangle|y=0\rangle \xrightarrow{U_{f}}|\vec{x}\rangle|f(\vec{x})\rangle$
$|\vec{x}\rangle|y=1\rangle \longrightarrow|\vec{x}| \overrightarrow{f(\vec{x})}\rangle$
$|\vec{x}\rangle|+\rangle$ \qquad $|\vec{x}\rangle \frac{1}{\sqrt{2}}[|f(\vec{x})\rangle+|\overrightarrow{f(\vec{x})}\rangle]=|\vec{x}\rangle|+\rangle$
$|\vec{x}\rangle|-\rangle \longrightarrow|\vec{x}\rangle \frac{1}{\sqrt{2}}[|f(\vec{x})\rangle-|\overline{f(\vec{x})}\rangle]=|\vec{x}\rangle|-\rangle(-1)^{f(\vec{x})}$

- Example : Controlled-Not gate

Via the XOR binary function : $a \oplus b=a$ when $b=0$, or $=\bar{a}$ when $b=1$;
invertible $a \oplus x=b \Longleftrightarrow x=a \oplus b=b \oplus a$.
Used to construct a unitary invertible quantum C-Not gate :
(T target, C control)
$|C T\rangle \longrightarrow|C, C \oplus T\rangle$
$|00\rangle \longrightarrow|00\rangle$
$|01\rangle \longrightarrow|01\rangle$
$|10\rangle \longrightarrow|11\rangle$
$|11\rangle \longrightarrow \mid 10$

$(\mathrm{C}-\mathrm{Not})^{2}=\mathrm{I}_{2} \Longleftrightarrow(\mathrm{C}-\mathrm{Not})^{-1}=\mathrm{C}-\mathrm{Not}=(\mathrm{C}-\mathrm{Not})^{\dagger}$ Hermitian unitary.

Quantum parallelism

For a system of N qubits,
a quantum gate is any unitary operator U from $\mathcal{H}_{2}^{\otimes N}$ onto $\mathcal{H}_{2}^{\otimes N}$.
The quantum gate U is completely defined
by its action on the 2^{N} basis states of $\mathcal{H}_{2}^{\otimes N}:\left\{|\vec{x}\rangle, \vec{x} \in\{0,1\}^{N}\right\}$,
just like a classical gate.

Yet, the quantum gate U can be operated
on any linear superposition of the basis states $\left\{|\vec{x}\rangle, \vec{x} \in\{0,1\}^{N}\right\}$.
This is quantum parallelism, with no classical analog

¿ How to extract, to measure, useful informations from superpositions?

Deutsch-Jozsa algorithm (1992) : Parallel test of a function (1/5

A classical function

$$
f(\cdot) \left\lvert\, \begin{array}{ccc}
\{0,1\}^{N} & \longrightarrow & \{0,1\} \\
2^{N} \text { values } & \longrightarrow & 2 \text { values },
\end{array}\right.
$$

can be constant (all inputs into 0 or 1) or balanced (equal numbers of 0,1 in output).
Classically : Between 2 and $\frac{2^{N}}{2}+1$ evaluations of $f(\cdot)$ to decide.
Quantumly : One evaluation of $f(\cdot)$ is enough (on a suitable superposition).

Lemma 1: $\mathrm{H}|x\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{x}|1\rangle\right)=\frac{1}{\sqrt{2}} \sum_{z \in[0,1\rangle}(-1)^{x z}|z\rangle, \quad \forall x \in\{0,1\}$
$\Longrightarrow \mathrm{H}^{\otimes N}|\vec{x}\rangle=\mathrm{H}\left|x_{1}\right\rangle \otimes \cdots \otimes \mathrm{H}\left|x_{N}\right\rangle=\left(\frac{1}{\sqrt{2}}\right)_{z=\left\{0,\left.1\right|^{N}\right.}^{N} \sum(-1)^{\vec{z}}|\vec{z}\rangle, \quad \forall \vec{x} \in\{0,1\}^{N}$,
with scalar product $\vec{x} \vec{z}=x_{1} z_{1}+\cdots+x_{N} z_{N}$ modulo 2. (quant. Hadamard transfo.)
28/102

Deutsch-Jozsa algorithm (4/5)

So $|\psi\rangle=\frac{1}{2^{N}} \sum_{\vec{z} \in\{0,1\}^{N}} u(\vec{z})|\vec{z}\rangle \quad$ with $u(\vec{z})=\sum_{\vec{x} \in\{0,1\}^{N}}(-1)^{f(\vec{x})+\vec{x} \vec{z}}$.
For $|\vec{z}\rangle=|\overrightarrow{0}\rangle=|0\rangle^{\otimes N} \quad$ then $u(\vec{z}=\overrightarrow{0})=\sum_{\vec{x} \in\left\{0,11^{N}\right.}(-1)^{f(\vec{x})}$.

- When $f(\cdot)$ constant : $u(\vec{z}=\overrightarrow{0})=2^{N}(-1)^{f(\overrightarrow{0})}= \pm 2^{N} \Longrightarrow$ in $|\psi\rangle$ the amplitude of $|\overrightarrow{0}\rangle$ is ± 1, and since $|\psi\rangle$ is with unit norm $\Longrightarrow|\psi\rangle= \pm|\overrightarrow{0}\rangle$, and all other $u(\vec{z} \neq \overrightarrow{0})=0$. \Longrightarrow When $|\psi\rangle$ is measured, N states $|0\rangle$ are found.
- When $f(\cdot)$ balanced : $u(\vec{z}=\overrightarrow{0})=0 \Longrightarrow|\psi\rangle$ is not or does not contain state $|\overrightarrow{0}\rangle$. \Longrightarrow When $|\psi\rangle$ is measured, at least one state $|1\rangle$ is found.
\rightarrow Illustrates quantum ressources of parallelism, coherent superposition, interference. (When $f(\cdot)$ is neither constant nor balanced, $|\psi\rangle$ contains a little bit of $|\overrightarrow{0}\rangle$.)

31/102

Deutsch-Jozsa algorithm (5/5)

[1] D. Deutsch; "Quantum theory, the Church-Turing principle and the universal quantum computer"; Proceedings of the Royal Society of London A 400 (1985) 97-117.
The case $N=2$.
[2] D. Deutsch, R. Jozsa; "Rapid solution of problems by quantum computation"; Proceedings of the Royal Society of London A 439 (1993) 553-558.
Extension to arbitrary $N \geq 2$.
[3] E. Bernstein, U. Vazirani; "Quantum complexity theory"; SIAM Journal on Computing 26 (1997) 1411-1473.

Extension to $f(\vec{x})=\vec{a} \vec{x}$ or $f(\vec{x})=\vec{a} \vec{x} \oplus \vec{b}$, to find binary N-word $\vec{a} \longrightarrow$ by producing output $|\psi\rangle=|\vec{a}\rangle$.
[4] R. Cleve, A. Ekert, C. Macchiavello, M. Mosca; "Quantum algorithms revisited"; Proceedings of the Royal Society of London A 454 (1998) 339-354.

Teleportation (Bennett 1993) : of an unknown qubit state (1/3)
Qubit Q in unknown arbitrary state $\left|\psi_{Q}\right\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle$.
Alice and Bob share a qubit pair in entangled state $|A B\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\left|\beta_{00}\right\rangle$.

Alice measures the pair of qubits $Q A$ in the Bell basis (so $\left|\psi_{Q}\right\rangle$ is locally destroyed), and the two resulting cbits x, y are sent to Bob.
Bob on his qubit B applies the gates X^{y} and Z^{x} which reconstructs $\left|\psi_{Q}\right\rangle$.

Teleportation (2/3)

$\left|\psi_{1}\right\rangle=\left|\psi_{Q}\right\rangle\left\langle\beta_{00}\right\rangle=\frac{1}{\sqrt{2}}\left[\alpha_{0}|0\rangle(|00\rangle+|11\rangle)+\alpha_{1}|1\rangle(|00\rangle+|11\rangle)\right]$

$$
=\frac{1}{\sqrt{2}}\left[\alpha_{0}|000\rangle+\alpha_{0}|011\rangle+\alpha_{1}|100\rangle+\alpha_{1}|111\rangle\right],
$$

factorizable as $\left|\psi_{1}\right\rangle=\frac{1}{2}\left[\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)\left(\alpha_{0}|0\rangle+\alpha_{1}|1\rangle\right)+\right.$

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)\left(\alpha_{0}|1\rangle+\alpha_{1}|0\rangle\right)+ \\
& \frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)\left(\alpha_{0}|0\rangle-\alpha_{1}|1\rangle\right)+ \\
& \left.\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)\left(\alpha_{0}|1\rangle-\alpha_{1}|0\rangle\right)\right]
\end{aligned}
$$

Deutsch-Jozsa algorithm (3/5)

Output state $\left|\psi_{3}\right\rangle=\left(\mathrm{H}^{\otimes N} \otimes \mathrm{I}_{2}\right)\left|\psi_{2}\right\rangle$

$$
\begin{aligned}
& =\left(\frac{1}{\sqrt{2}}\right)_{\vec{x} \in\{0,1\}^{N}}^{N} H^{\otimes N}|\vec{x}\rangle|-\rangle(-1)^{f(\vec{x})} \\
& =\left(\frac{1}{2}\right)_{\vec{x} \in\{0,1\}^{N}}^{N} \sum_{\vec{z} \in\left\{0,\left.1\right|^{N}\right.}(-1)^{\vec{x} \vec{z}}|\vec{z}\rangle|-\rangle(-1)^{f(\vec{x})} \quad \text { by Lemma 1, }
\end{aligned}
$$

or $\left|\psi_{3}\right\rangle=|\psi\rangle|-\rangle$,
with $\quad|\psi\rangle=\left(\frac{1}{2}\right)_{\vec{z} \in\left\{0,\left.1\right|^{N}\right.}^{N} u(\vec{z})|\vec{z}\rangle$

$$
\text { and the scalar weight } u(\vec{z})=\sum_{\vec{x} \in\left[0,11^{N}\right.}(-1)^{f(\vec{x}+\vec{x} \vec{z}}
$$

Superdense coding (Bennett 1992) : exploiting entanglement

Alice and Bob share a qubit pair in entangled state $|A B\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\left|\beta_{00}\right\rangle$.
Alice chooses two classical bits, used to encode by applying to her qubit A one of $\left\{\mathrm{I}_{2}, \mathrm{X}, i \mathrm{Y}, \mathrm{Z}\right\}$, delivering the qubit A^{\prime} sent to Bob.

Bob receives this qubit A^{\prime}. For decoding, Bob measures $\left|A^{\prime} B\right\rangle$ in the Bell basis $\left\{\left|\beta_{00}\right\rangle,\left|\beta_{01}\right\rangle,\left|\beta_{10}\right\rangle,\left|\beta_{11}\right\rangle\right\}$, from which he recovers the two classical bits.

Teleportation (3/3)

$\left|\psi_{1}\right\rangle=\frac{1}{2}\left[\left|\beta_{00}\right\rangle\left(\alpha_{0}|0\rangle+\alpha_{1}|1\rangle\right)+\left|\beta_{01}\right\rangle\left(\alpha_{0}|1\rangle+\alpha_{1}|0\rangle\right)+\right.$

$$
\left.\left|\beta_{10}\right\rangle\left(\alpha_{0}|0\rangle-\alpha_{1}|1\rangle\right)+\left|\beta_{11}\right\rangle\left(\alpha_{0}|1\rangle-\alpha_{1}|0\rangle\right)\right] .
$$

The first two qubits $Q A$ measured in Bell basis $\left\{\left|\beta_{x y}\right\rangle\right\}$ yield the two cbits $x y$, used to transform the third qubit B by X^{y} then Z^{x}, which reconstructs $\left|\psi_{Q}\right\rangle$.

When $Q A$ is measured in $\left|\beta_{00}\right\rangle$ then B is in $\alpha_{0}|0\rangle+\alpha_{1}|1\rangle \xrightarrow{\mathrm{I}_{2}} \cdot \xrightarrow{\mathrm{I}_{2}}\left|\psi_{Q}\right\rangle$
When $Q A$ is measured in $\left|\beta_{01}\right\rangle$ then B is in $\alpha_{0}|1\rangle+\alpha_{1}|0\rangle \xrightarrow{\mathrm{X}} \cdot \xrightarrow{\mathrm{I}_{2}}\left|\psi_{Q}\right\rangle$
When $Q A$ is measured in $\left|\beta_{10}\right\rangle$ then B is in $\alpha_{0}|0\rangle-\alpha_{1}|1\rangle \xrightarrow{\mathrm{I}_{2}} \cdot \xrightarrow{\mathrm{Z}}\left|\psi_{Q}\right\rangle$
When $Q A$ is measured in $\left|\beta_{11}\right\rangle$ then B is in $\alpha_{0}|1\rangle-\alpha_{1}|0\rangle \xrightarrow{\mathrm{X}} \cdot \xrightarrow{\mathrm{Z}}\left|\psi_{Q}\right\rangle$.

Princeps references on superdense coding ...

(1) C. H. Bennett, S. J. Wiesner; "Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states"; Physical Review Letters 69 (1992) 2881-2884.
[2] K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger; "Dense coding in experimental quantum communication"; Physical Review Letters 76 (1996) 4656-4659.

... and teleportation

[3] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters; "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels"; Physical Review Letters 70 (1993) 1895-1899.

Grover quantum search algorithm (1/3) Phys. Rev. Let. 79 (1997) 325.

- Finds an item out of N in an unsorted database,
in $O(\sqrt{N})$ complexity instead of $O(N)$ classically,
- An N-dimensional quantum system in \mathcal{H}_{N} with orthonormal basis $\{|1\rangle, \cdots,|N\rangle\}$, the basis states $|n\rangle, n=1, \ldots N$, representing the N items stored in the database.
- A set of N real values $\left\{\omega_{1}, \cdots, \omega_{N}\right\}$ representing the address of each item $|n\rangle$ in the database. Query item $|n\rangle \longrightarrow$ retrieved address ω_{n}.
- The unsorted database corresponds to the preparation in state $|\psi\rangle=\frac{1}{\sqrt{N}} \sum_{n=1}^{N}|n\rangle$.
- A query of the database, in order to obtain the address $\omega_{n_{0}}$ of a specific item $\left|n_{0}\right\rangle$,
can be performed by a measurement of the observable $\Omega=\sum_{n=1}^{N} \omega_{n}|n\rangle\langle n|$.
- Any specific item $\left|n_{0}\right\rangle$ would be obtained as measurement outcome with its eigenvalue (address) $\omega_{n_{0}}$, with the probability $\left|\left\langle n_{0} \mid \psi\right\rangle\right|^{2}=1 / N \quad$ (since $\left\langle n_{0} \mid \psi\right\rangle=1 / \sqrt{N}$),
\Longrightarrow on average $O(N)$ repeated queries required to pull out $\left(\left|n_{0}\right\rangle, \omega_{n_{0}}\right)$.

Other quantum algorithms

- Shor factoring algorithm (1997)

Factors any integer in polynomial complexity (instead of exponential classically).
$15=3 \times 5$, with spin- $1 / 2$ nuclei (Vandersypen et al., Nature 2001).
$21=3 \times 7$, with photons (Martín-López et al., Nature Photonics 2012).

- http://math.nist.gov/quantum/zoo/
"A comprehensive catalog of quantum algorithms ..."
- B92 protocol with two nonorthogonal states (Bennett 1992)
- To encode the bit a Alice uses a qubit in state $|0\rangle$ if $a=0$ and in state $|+\rangle=(|0\rangle+|1\rangle) / \sqrt{2}$ if $a=1$.

- Bob, depending on a random bit a^{\prime} he generates,
measures each received qubit either in basis $\{0\rangle,|1\rangle\}$ if $a^{\prime}=0$
or in $\{|+\rangle,|-\rangle\}$ if $a^{\prime}=1$. From his measurement, Bob obtains the result $b=0$ or 1 .
- Then Bob publishes his series of b, and agrees with Alice to keep only those pairs $\left\{a, a^{\prime}\right\}$ for which $b=1$,
this providing the final secret key a for Alice and $1-a^{\prime}=a$ for Bob.
This is granted because $a=a^{\prime} \Longrightarrow b=0$ and hence $b=1 \Longrightarrow a \neq a^{\prime}=1-a$.
- A fraction of this secret key can be publicly exchanged between Alice and Bob to verify they exactly coincide, since in case of eavesdropping by interception and resend by Eve, mismatch ensues with probability $1 / 4$.
N. Gisin, et al.; "Quantum cryptography"; Reviews of Modern Physics 74 (2002) 145-195.

Grover quantum search algorithm (2/3)

- For this specifici item $\left|n_{0}\right\rangle$ that we want to retrieve (obtain its address $\omega_{n_{0}}$), it is possible to amplify this uniform probability $\left|\left\langle n_{0} \mid \psi\right\rangle\right|^{2}=1 / N$.
- Let $\left|n_{\perp}\right\rangle=\frac{1}{\sqrt{N-1}} \sum_{n \neq n_{0}}^{N}|n\rangle$ normalized state $\perp\left|n_{0}\right\rangle \Longrightarrow|\psi\rangle$ in plane $\left(\left|n_{0}\right\rangle,\left|n_{\perp}\right\rangle\right)$.

- Define unitary operator $\mathrm{U}_{0}=\mathrm{I}_{N}-2\left|n_{0}\right\rangle\left\langle n_{0}\right| \Longrightarrow \mathrm{U}_{0}\left|n_{\perp}\right\rangle=\left|n_{\perp}\right\rangle$ and $\mathrm{U}_{0}\left|n_{0}\right\rangle=-\left|n_{0}\right\rangle$. So in plane $\left(\left|n_{0}\right\rangle,\left|n_{\perp}\right\rangle\right)$, the operator U_{0} performs a reflection about $\left|n_{\perp}\right\rangle$. (U_{0} oracle), - Let $\left|\psi_{\perp}\right\rangle$ normalized state $\perp|\psi\rangle$ in plane $\left(\left|n_{0}\right\rangle,\left|n_{\perp}\right\rangle\right)$.
- Define the unitary operator $U_{\psi}=2|\psi\rangle\langle\psi|-I_{N} \Longrightarrow \mathrm{U}_{\psi}|\psi\rangle=|\psi\rangle$ and $U_{\psi}\left|\psi{ }_{\perp}\right\rangle=-\left|\psi_{\perp}\right\rangle$. So in plane $\left(\left|n_{0}\right\rangle,\left|n_{\perp}\right\rangle\right)$, the operator U_{ψ} performs a reflection about $|\psi\rangle$.
- In plane $\left(\left|n_{0}\right\rangle,\left|n_{\perp}\right\rangle\right)$, the composition of two reflections is a rotation $U_{\psi} U_{0}=G$ (Grover
amplification operator). It verifies $\mathrm{G}\left|n_{0}\right\rangle=\mathrm{U}_{\psi} \mathrm{U}_{0}\left|n_{0}\right\rangle=-\mathrm{U}_{\psi}\left|n_{0}\right\rangle=\left|n_{0}\right\rangle-\frac{2}{\sqrt{N}}|\psi\rangle$.
The rotation angle θ between $\left|n_{0}\right\rangle$ and $\mathrm{G}\left|n_{0}\right\rangle$, via the scalar product of $\left|n_{0}\right\rangle$ and $\mathrm{G}\left|n_{0}\right\rangle$, verifies
$\cos (\theta)=\left\langle n_{0}\right| \mathbf{G}\left|n_{0}\right\rangle=1-\frac{2}{N} \approx 1-\frac{\theta^{2}}{2} \Longrightarrow \theta \approx \frac{2}{\sqrt{N}}$ at $N \gg 1$.

Quantum cryptography

- The problem of cryptography

Message X, a string of bits.
Cryptographic key K, a completely random string of bits with proba. $1 / 2$ and $1 / 2$.
The cryptogram or encrypted message $C(X, K)=X \oplus K$ (encrypted string of bits).
This is Vernam cipher or one-time pad,
with provably perfect security, since mutual information $I(C ; X)=H(X)-H(X \mid C)=0$
Problem : establishing a secret (private) key
between emitter (Alice) and receiver (Bob)

With quantum signals,
any measurement by an eavesdropper (Eve) perturbs the system,
and hence reveals the eavesdropping, and also identifies perfect security conditions.

- Protocol by broadcast of an entangled qubit pair
- With an entangled pair, Alice and Bob do not need a quantum channel between them two, and can exchange only classical information to establish their private secret key. dispatching entangled qubit pairs prepared in one stereotyped quantum state.
- Alice and Bob share a sequence of entangled qubit pairs all prepared in the same entangled (Bell) state $|A B\rangle=(|00\rangle+|11\rangle) / \sqrt{2}$.
Alice and Bob measure their respective qubit of the pair in the basis $\{|0\rangle,|1\rangle\}$, and they always obtain the same result, either 0 or 1 at random with equal probabilities $1 / 2$.

To prevent eavesdropping, Alice and Bob can switch independently at random to neasuring in the basis $\{|+\rangle,|-\rangle\}$, where one also has $|A B\rangle=(|++\rangle+|--\rangle) / \sqrt{2}$. so when Alice and Bob measure in the same basis, they always obtain the same results, either 0 or 1 .
Then Alice and Bob publicly disclose the sequence of their basis choices.
The positions where the choices coincide provide the shared secret key.

- A fraction of this secret key is extracted to check exact coincidence, since in case of eavesdropping by interception and resend, mismatch ensues with probability $1 / 4$.

IDQ

ID Quantique

\qquad
DOANTM:SARECRYTTO - PHoToN CoUnINN - PANDOMNESS

Ceberis oxD Sever

Clavis² ${ }^{2}$ ov Patatorm

 yonernments. ente

EDEFIING SECURITY

Geneva Government

Secure Data Transfer for Elections
Gigabit Ethernet Encryption with Quantum Key Distribution

Quantum correlations (1/2)

Alice and Bob share a pair of qubits in the entangled (Bell) state $\left|\psi_{\mathrm{AB}}\right\rangle=\frac{|01\rangle-|10\rangle}{\sqrt{2}}$
Alice or Bob on its qubit can measure observables of the form $\Omega(\theta)=\sin (\theta) \mathrm{X}+\cos (\theta) \mathrm{Z}$, having eigenvalues ± 1
Alice measures $\Omega(\alpha)$ to obtain $A= \pm 1$, and Bob measures $\Omega(\beta)$ to obtain $B= \pm 1$, then we have the average $\langle A B\rangle=\left\langle\psi_{\mathrm{AB}}\right| \Omega(\alpha) \otimes \Omega(\beta)\left|\psi_{\mathrm{AB}}\right\rangle=-\cos (\alpha-\beta)$.

For any four random binary variables $A_{1}, A_{2}, B_{1}, B_{2}$ with values ± 1,
$\Gamma=\left(A_{1}+A_{2}\right) B_{1}-\left(A_{1}-A_{2}\right) B_{2}=A_{1} B_{1}+A_{2} B_{1}+A_{2} B_{2}-A_{1} B_{2}= \pm 2$,
because since $A_{1}, A_{2}= \pm 1$, either $\left(A_{1}+A_{2}\right) B_{1}=0$ or $\left(A_{1}-A_{2}\right) B_{2}=0$, and in each case the remaining term is ± 2.
So for any probability distribution on $\left(A_{1}, A_{2}, B_{1}, B_{2}\right)$, necessarily $\langle\Gamma\rangle=\left\langle A_{1} B_{1}+A_{2} B_{1}+A_{2} B_{2}-A_{1} B_{2}\right\rangle=\left\langle A_{1} B_{1}\right\rangle+\left\langle A_{2} B_{1}\right\rangle+\left\langle A_{2} B_{2}\right\rangle-\left\langle A_{1} B_{2}\right\rangle$ verifies $-2 \leq\langle\Gamma\rangle \leq 2$. Bell inequalities (1964).

Quantum correlations (2/2)

A long series of experiments repeated on identical copies of $\left|\psi_{\mathrm{AB}}\right\rangle$: EPR experiment (Einstein, Podolsky, Rosen, 1935).
Alice chooses to randomly switch between measuring $\mathrm{A}_{1} \equiv \Omega\left(\alpha_{1}\right)$ or $\mathrm{A}_{2} \equiv \Omega\left(\alpha_{2}\right)$, and Bob chooses to randomly switch between measuring $\mathrm{B}_{1} \equiv \Omega\left(\beta_{1}\right)$ or $\mathrm{B}_{2} \equiv \Omega\left(\beta_{2}\right)$.

For $\langle\Gamma\rangle=\left\langle A_{1} B_{1}\right\rangle+\left\langle A_{2} B_{1}\right\rangle+\left\langle A_{2} B_{2}\right\rangle-\left\langle A_{1} B_{2}\right\rangle$ one obtains
$\langle\Gamma\rangle=-\cos \left(\alpha_{1}-\beta_{1}\right)-\cos \left(\alpha_{2}-\beta_{1}\right)-\cos \left(\alpha_{2}-\beta_{2}\right)+\cos \left(\alpha_{1}-\beta_{2}\right)$.
The choice $\alpha_{1}=0, \alpha_{2}=\pi / 2$ and $\beta_{1}=\pi / 4, \beta_{2}=3 \pi / 4$ leads to
$\langle\Gamma\rangle=-\cos (\pi / 4)-\cos (\pi / 4)-\cos (\pi / 4)+\cos (3 \pi / 4)=-2 \sqrt{2}<-2$.
Bell inequalities are violated by quantum measurements.
Experimentally verified (Aspect et al., Phys. Rev. Let. 1981, 1982)
Local realism and separability (classical) replaced by
a nonlocal nonseparable reality (quantum).

GHZ states (1/5) (1989, Greenberger, Horne, Zeilinger)

3-qubit entangled states

Three players, each receiving a binary input $x_{j}=0 / 1$, for $j=1,2,3$, with four possible input configurations $x_{1} x_{2} x_{3} \in\{000,011,101,110\}$.

Each player j responds by a binary output $y_{j}\left(x_{j}\right)=0 / 1$, function only of its own input x_{j}, for $j=1,2,3$.

Game is won if the players collectively respond according to the input-output matches :

$$
x_{1} x_{2} x_{3}=000 \longrightarrow y_{1} y_{2} y_{3} \text { such that } y_{1} \oplus y_{2} \oplus y_{3}=0 \quad \text { (conserve parity), }
$$

$$
x_{1} x_{2} x_{3} \in\{011,101,110\} \longrightarrow y_{1} y_{2} y_{3} \text { such that } y_{1} \oplus y_{2} \oplus y_{3}=1 \quad \text { (reverse parity). }
$$

To select their responses $y_{j}\left(x_{j}\right)$, the players can agree on a collective strategy before, but not after, they have received their inputs x_{j}

GHZ states (2/5)

A strategy winning on all four input configuration
would consist in three binary functions $y_{j}\left(x_{j}\right)$ meeting the four constraints
$y_{1}(0) \oplus y_{2}(0) \oplus y_{3}(0)=0$
$y_{1}(0) \oplus y_{2}(1) \oplus y_{3}(1)=1$
$y_{1}(1) \oplus y_{2}(0) \oplus y_{3}(1)=1$
$y_{1}(1) \oplus y_{2}(1) \oplus y_{3}(0)=1$

$0 \oplus 0 \oplus 0=1, \quad$ by summation of the four constraints, \Longrightarrow
$0=1$, so the four constraints are incompatible.

So no (classical) strategy exists that would win on all four input configurations. Any (classical) strategy is bound to fail on some input configuration(s).

We show a strategy using quantum resources winning on all four input configurations, (by escaping local realism, $y_{j}(0)=0 / 1$ and $y_{j}(1)=0 / 1$ not existing simultaneously).

GHZ states (3/5)
Before the game starts, each player receives one qubit from a qubit triplet prepared in the entangled state (GHZ state)

$$
|\psi\rangle=\left|\psi_{123}\right\rangle=\frac{1}{2}(|000\rangle-|011\rangle-|101\rangle-|110\rangle) .
$$

And the players agree on the common (prior) strategy
if $x_{j}=0$, player j obtains y_{j} as the outcome of measuring its qubit in basis $\{|0\rangle,|1\rangle\}$, if $x_{j}=1$, player j obtains y_{j} as the outcome of measuring its qubit in basis $\{|+\rangle,|-\rangle\}$.

We prove this is a winning strategy on all four input configurations

1) When $x_{1} x_{2} x_{3}=000$, the three players measure in $\{|0\rangle,|1\rangle\}$
$\Longrightarrow y_{1} \oplus y_{2} \oplus y_{3}=0$ is matched.

GHZ states (4/5)

2) When $x_{1} x_{2} x_{3}=011$, only player 1 measures in $\{|0\rangle,|1\rangle\}$.
$|\psi\rangle=\frac{1}{2}(|000\rangle-|011\rangle-|101\rangle-|110\rangle)=\frac{1}{2}[|0\rangle(|00\rangle-|11\rangle)-|1\rangle(|01\rangle+|10\rangle)]$.
Since $|0\rangle=\frac{1}{\sqrt{2}}(|+\rangle+|-\rangle), \quad|1\rangle=\frac{1}{\sqrt{2}}(|+\rangle-|-\rangle) \Longrightarrow$
$|00\rangle-|11\rangle=\frac{1}{2}[(|+\rangle+|-\rangle)(|+\rangle+|-\rangle)-(|+\rangle-|-\rangle)(|+\rangle-|-\rangle)]$
$=\frac{1}{2}[(|++\rangle+|+-\rangle+|-+\rangle+|--\rangle)-(|++\rangle-|+-\rangle-|-+\rangle+|--\rangle)]$

$|01\rangle+|10\rangle=\frac{1}{2}[(|+\rangle+|-\rangle)(|+\rangle-|-\rangle)+(|+\rangle-|-\rangle)(|+\rangle+|-\rangle)]=|++\rangle-|--\rangle ;$

$$
\Longrightarrow|\psi\rangle=\frac{1}{2}(|0+-\rangle+|0-+\rangle-|1++\rangle+|1--\rangle) \Longrightarrow y_{1} \oplus y_{2} \oplus y_{3}=1 \text { matched. }
$$

GHZ states (5/5)

3) When $x_{1} x_{2} x_{3}=101$, only player 2 measures in $\{|0\rangle,|1\rangle\}$.
$\left.|\psi\rangle=\frac{1}{2}(|000\rangle-|011\rangle-|101\rangle-|110\rangle)=\frac{1}{2}[|\cdot \cdot\rangle\rangle(|0 \cdot 0\rangle-|1 \cdot 1\rangle)-|\cdot 1 \cdot\rangle(|0 \cdot 1\rangle+|1 \cdot 0\rangle)\right]$

$$
=\frac{1}{2}[|\cdot \cdot \cdot\rangle(|+\cdot-\rangle+|-\cdot+\rangle)-|\cdot \cdot \cdot\rangle(|+\cdot+\rangle-|-\cdot-\rangle)]
$$

$=\frac{1}{2}(|+0-\rangle+|-0+\rangle-|+1+\rangle+|-1-\rangle) \Longrightarrow y_{1} \oplus y_{2} \oplus y_{3}=1$ matched.
4) When $x_{1} x_{2} x_{3}=110$, only player 3 measures in $\{|0\rangle,|1\rangle\}$.
$|\psi\rangle=\frac{1}{2}(|000\rangle-|011\rangle-|101\rangle-|110\rangle)=\frac{1}{2}[|\cdot 0\rangle(|00 \cdot\rangle-|11 \cdot\rangle)-|\cdot \cdot 1\rangle(|01 \cdot\rangle+|10 \cdot\rangle)]$

$$
=\frac{1}{2}[|\cdot 0\rangle(|+-\cdot\rangle+|-+\cdot\rangle)-|\cdot 1\rangle(|++\cdot\rangle-|--\cdot\rangle)]
$$

$$
=\frac{1}{2}(|+-0\rangle+|-+0\rangle-|++1\rangle+|--1\rangle) \Longrightarrow y_{1} \oplus y_{2} \oplus y_{3}=1 \text { matched. }
$$

Density operator (1/2)

Quantum system in (pure) state $\left|\psi_{j}\right\rangle$, measured in an orthonormal basis $\{|n\rangle\}$:
\Longrightarrow probability $\operatorname{Pr}\left\{|n\rangle\left|\left|\psi_{j}\right\rangle\right\}=\left|\left\langle n \mid \psi_{j}\right\rangle\right|^{2}=\left\langle n \mid \psi_{j}\right\rangle\left\langle\psi_{j} \mid n\right\rangle\right.$.
Several possible states $\left|\psi_{j}\right\rangle$ with probabilities $p_{j}\left(\right.$ with $\left.\sum_{j} p_{j}=1\right)$:
$\Longrightarrow \operatorname{Pr}\{|n\rangle\}=\sum_{j} p_{j} \operatorname{Pr}\left\{|n\rangle\left|\psi_{j}\right\rangle\right\}=\langle n|\left(\sum_{j} p_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\right)|n\rangle=\langle n| \rho|n\rangle$,
with density operator $\rho=\sum_{j} p_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|$.
and $\operatorname{Pr}\{|n\rangle\}=\langle n| \rho|n\rangle=\operatorname{tr}(\rho|n\rangle\langle n|)=\operatorname{tr}\left(\rho \Pi_{n}\right)$.
The quantum system is in a mixed state, corresponding to the statistical ensemble $\left\{p_{j},\left|\psi_{j}\right\rangle\right\}$, described by the density operator ρ.

Lemma : For any operator A with trace $\operatorname{tr}(\mathrm{A})=\sum_{n}\langle n| \mathrm{A}|n\rangle$, one has
$\operatorname{tr}(\mathrm{A}|\psi\rangle\langle\phi|)=\sum_{n}\langle n| \mathrm{A}|\psi\rangle\langle\phi \mid n\rangle=\sum_{n}\langle\phi \mid n\rangle\langle n| \mathrm{A}|\psi\rangle=\langle\phi|\left(\sum_{n}|n\rangle\langle n|\right) \mathrm{A}|\psi\rangle=\langle\phi| \mathrm{A}|\psi\rangle$.

Density operator (2/2)

Density operator $\rho=\sum_{j} p_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|$
$\Longrightarrow \rho=\rho^{\dagger}$ Hermitian ;
$\forall|\psi\rangle,\langle\psi| \rho|\psi\rangle=\sum_{j} p_{j}\left|\left\langle\psi \mid \psi_{j}\right\rangle\right|^{2} \geq 0 \Longrightarrow \rho \geq 0$ positive ;
$\operatorname{trace} \operatorname{tr}(\rho)=\sum_{j} p_{j} \operatorname{tr}\left(\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\right)=\sum_{j} p_{j}=1$.
On \mathcal{H}_{N}, eigen decomposition $\rho=\sum_{n=1}^{N} \lambda_{n}\left|\lambda_{n}\right\rangle\left\langle\lambda_{n}\right|$, with
eigenvalues $\left\{\lambda_{n}\right\}$ a probability distribution,
eigenstates $\left\{\left|\lambda_{n}\right\rangle\right\}$ an orthonormal basis of \mathcal{H}_{N}.
Purity $\operatorname{tr}\left(\rho^{2}\right)=\sum_{n=1}^{N} \lambda_{n}^{2}=1$ for a pure state, and $\operatorname{tr}\left(\rho^{2}\right)<1$ for a mixed state.
A valid density operator on $\mathcal{H}_{N} \equiv$ any positive operator ρ with unit trace,
provides a general representation for the state of a quantum system in \mathcal{H}_{N}.
State evolution $\left|\psi_{j}\right\rangle \rightarrow \mathrm{U}\left|\psi_{j}\right\rangle \Longrightarrow \rho \rightarrow \mathrm{U} \rho \mathrm{U}^{\dagger}$.

Average of an observable

A quantum system in \mathcal{H}_{N} has observable Ω of diagonal form $\Omega=\sum_{n=1}^{N} \omega_{n}\left|\omega_{n}\right\rangle\left\langle\omega_{n}\right|$.
When the quantum system is in state ρ, measuring Ω amounts to performing
a projective measurement on ρ in the orthonormal eigenbasis $\left\{\left|\omega_{1}\right\rangle, \ldots\left|\omega_{N}\right\rangle\right\}$ of \mathcal{H}_{N}, with the N orthogonal projectors $\left|\omega_{n}\right\rangle\left\langle\omega_{n}\right|$, for $n=1$ to N.

The outcome yields the eigenvalue $\omega_{n} \in \mathbb{R}$ with probability
$\operatorname{Pr}\left\{\omega_{n}\right\}=\left\langle\omega_{n}\right| \rho\left|\omega_{n}\right\rangle=\operatorname{tr}\left(\rho\left|\omega_{n}\right\rangle\left\langle\omega_{n}\right|\right)$.
Over repeated measurements of Ω on the system prepared in the same state ρ, the average value of Ω is

$$
\langle\Omega\rangle=\sum_{n=1}^{N} \omega_{n} \operatorname{Pr}\left\{\omega_{n}\right\}=\sum_{n=1}^{N} \omega_{n} \operatorname{tr}\left(\rho\left|\omega_{n}\right\rangle\left\langle\omega_{n}\right|\right)=\operatorname{tr}\left(\rho \sum_{n=1}^{N} \omega_{n}\left|\omega_{n}\right\rangle\left\langle\omega_{n}\right|\right)
$$

$$
=\operatorname{tr}(\rho \Omega)
$$

Density operator for the qubit

$\left\{\sigma_{0}=\mathrm{I}_{2}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right\}$ a basis of $\mathcal{L}\left(\mathcal{H}_{2}\right)$ (vector space of operators on \mathcal{H}_{2}), orthogonal for the Hilbert-Schmidt inner product $\operatorname{tr}\left(\mathrm{A}^{\dagger} \mathrm{B}\right)$.
Any $\rho=\frac{1}{2}\left(\mathrm{I}_{2}+r_{x} \sigma_{x}+r_{y} \sigma_{y}+r_{z} \sigma_{z}\right)=\frac{1}{2}\left(\mathrm{I}_{2}+\vec{r} \vec{\sigma}\right)$.

$$
\Longrightarrow \operatorname{tr}(\rho)=1
$$

$\rho=\rho^{\dagger} \Longrightarrow r_{x}=r_{x}^{*}, r_{y}=r_{y}^{*}, r_{z}=r_{z}^{*} \Longrightarrow r_{x}, r_{y}, r_{z}$ real.
Eigenvalues $\lambda_{ \pm}=\frac{1}{2}(1 \pm\|\vec{r}\|) \geq 0 \Longrightarrow\|\vec{r}\| \leq 1$.
$\|\vec{r}\|<1$ for mixed states,
$\|\vec{r}\|=1$ for pure states.
$\vec{r}=\left[r_{x}, r_{y}, r_{z}\right]^{\top}$ in Bloch ball of \mathbb{R}^{3}.

Observables on the qubit

Any operator on \mathcal{H}_{2} has general form $\Omega=a_{0} \mathrm{I}_{2}+\vec{a} \vec{\sigma}$,
with determinant $\operatorname{det}(\Omega)=a_{0}^{2}-\vec{a}^{2}$, two eigenvalues $a_{0} \pm \sqrt{\vec{a}^{2}}$,
and two projectors on the two eigenstates $| \pm \vec{a}\rangle\langle \pm \vec{a}|=\frac{1}{2}\left(\mathrm{I}_{2} \pm \vec{a} \vec{\sigma} / \sqrt{\vec{a}^{2}}\right)$.
For an observable, Ω Hermitian requires $a_{0} \in \mathbb{R}$ and $\vec{a}=\left[a_{x}, a_{y}, a_{z}\right]^{\top} \in \mathbb{R}^{3}$.
Probabilites $\operatorname{Pr}\{| \pm \vec{a}\rangle\}=\frac{1}{2}\left(1 \pm \vec{r} \frac{\vec{a}}{\|\vec{a}\|}\right)$ when measuring a qubit in state $\rho=\frac{1}{2}\left(\mathrm{I}_{2}+\vec{r} \vec{\sigma}\right)$.

An important observable measurable on the qubit is $\Omega=\vec{a} \vec{\sigma}$ with $\|\vec{a}\|=1$,
known as a spin measurement in the direction \vec{a} of \mathbb{R}^{3},
known as a spin measurement in the direction \vec{a} of \mathbb{R}^{3},
yielding as possible outcomes the two eigenvalues $\pm\|\vec{a}\|= \pm 1$, with $\operatorname{Pr}\{ \pm 1\}=\frac{1}{2}(1 \pm \vec{r} \vec{a})$.
Lemma: For any \vec{r} and \vec{a} in \mathbb{R}^{3}, one has: $(\vec{r} \vec{\sigma})(\vec{a} \vec{\sigma})=(\vec{r} \vec{a}) \mathrm{I}_{2}+i(\vec{r} \times \vec{a}) \vec{\sigma}$.

Generalized measurement

In a Hilbert space \mathcal{H}_{N} with dimension N, the state of a quantum system is specified by a Hermitian positive unit-trace density operator ρ.

- Projective measurement :

Defined by a set of N orthogonal projectors $|n\rangle\langle n|=\Pi_{n}$,
verifying $\sum_{n}|n\rangle\langle n|=\sum_{n} \Pi_{n}=\mathrm{I}_{N}$,
and $\operatorname{Pr}\{|n\rangle\}=\operatorname{tr}\left(\rho \Pi_{n}\right)$. Moreover $\sum_{n} \operatorname{Pr}\{|n\rangle\}=1, \forall \rho \Longleftrightarrow \sum_{n} \Pi_{n}=\mathrm{I}_{N}$

- Generalized measurement (POVM) : (positive operator valued measure)

Equivalent to a projective measurement in a larger Hilbert space (Naimark th.). Defined by a set of an arbitrary number of positive operators M_{m},
verifying $\sum_{m} \mathrm{M}_{m}=\mathrm{I}_{N}$,
and $\operatorname{Pr}\left\{\mathrm{M}_{m}\right\}=\operatorname{tr}\left(\rho \mathrm{M}_{m}\right) . \quad$ Moreover $\sum_{m} \operatorname{Pr}\left\{\mathrm{M}_{m}\right\}=1, \forall \rho \Longleftrightarrow \sum_{m} \mathrm{M}_{m}=\mathrm{I}_{N}$.

A generalized measurement (POVM) for the qubit

POVM $\quad\left\{\mathrm{M}_{k}=\frac{2}{K}\left|e_{k}\right\rangle\left\langle e_{k}\right|\right\}, \quad$ for $k=0,1, \ldots K-1, \quad$ and $K>2$,
with $\quad\left|e_{k}\right\rangle=\cos \left(\frac{2 \pi k}{K}\right)|0\rangle+\sin \left(\frac{2 \pi k}{K}\right)|1\rangle$.

$K=3$

$K=5$

$K=7$

Information in a quantum system

How much information can be stored in a quantum system?
A classical source of information : a random variable X, with J possible states x_{j}, for $j=1,2, \ldots J$, with probabilities $\operatorname{Pr}\left\{X=x_{j}\right\}=p_{j}$.
Information content by Shannon entropy : $H(X)=-\sum_{j=1}^{J} p_{j} \log \left(p_{j}\right) \leq \log (J)$.
With a quantum system of dimension N in \mathcal{H}_{N}, each classical state x_{j} is coded by a quantum state $\left|\psi_{j}\right\rangle \in \mathcal{H}_{N}$ or $\rho_{j} \in \mathcal{L}\left(\mathcal{H}_{N}\right)$, for $j=1,2, \ldots J$.
Since there is a continuous infinity of quantum states in \mathcal{H}_{N}
an infinite quantity of information can be stored in a quantum system of dim. N (an infinite number J), as soon as $N=2$ with a qubit.

But how much information can be retrieved out?

The von Neumann entropy
For a quantum system of dimension N with state ρ on \mathcal{H}_{N} :

$$
S(\rho)=-\operatorname{tr}[\rho \log (\rho)] .
$$

ρ unit-trace Hermitian has diagonal form $\rho=\sum_{n=1}^{N} \lambda_{n}\left|\lambda_{n}\right\rangle\left\langle\lambda_{n}\right|$,
whence $S(\rho)=-\sum_{n=1}^{N} \lambda_{n} \log \left(\lambda_{n}\right) \in[0, \log (N)]$.

- $S(\rho)=0$ for a pure state $\rho=|\psi\rangle\langle\psi|$,
- $S(\rho)=\log (N)$ at equiprobability when $\lambda_{n}=1 / N$ and $\rho=\mathrm{I}_{N} / N$.

Quantum noise (1/2)

A quantum system of \mathcal{H}_{N} in state ρ interacting with its environment represents an open quantum system. The state ρ usually undergoes a nonunitary evolution.
With $\rho_{\text {env }}$ the state of the environment at the onset of the interaction, the joint state $\rho \otimes \rho_{\text {env }}$ can be considered as that of an isolated system, undergoing a unitary evolution by U as $\rho \otimes \rho_{\text {env }} \longrightarrow \mathrm{U}\left(\rho \otimes \rho_{\text {env }}\right) \mathrm{U}^{\prime}$.
At the end of the interaction, the state of the quantum system of interest is obtained by the partial trace over the environment : $\rho \longrightarrow \mathcal{N}(\rho)=\operatorname{tr}_{\text {env }}\left[U\left(\rho \otimes \rho_{\text {env }}\right) U^{\dagger}\right]$.
Very often, the environment incorporates a huge number of degrees of freedom, and is largely uncontrolled ; it can be understood as quantum noise inducing decoherence.
A very nice feature is that, independently of the complexity of the environment, Eq. (1) can always be put in the form $\rho \longrightarrow \mathcal{N}(\rho)=\sum_{\ell} \Lambda_{\ell} \rho \Lambda_{\ell}^{\dagger}$ operator-sum or Kraus representation, with the Kraus operators Λ_{ℓ}, which need not be more than N^{2}, satisfying $\sum_{\ell} \Lambda_{\ell}^{\dagger} \Lambda_{\ell}=\mathrm{I}_{N}$

Compression of a quantum source (2/2)

For mixed states ρ_{j}, the compressed rate is lower bounded by $\chi_{D}\left(p_{j}, \rho_{j}\right) \leq S_{D}(\rho)$ but this lower bound $\chi_{D}\left(p_{j}, \rho_{j}\right)$ is not known to be generally achievable
The compressed rate $S_{D}(\rho)$ is however always achievable (by purification of the ρ_{j} and optimal compression of these purified states).
Depending on the mixed ρ_{j} 's, and the index of faithfulness, there may exist an achievable lower bound between $\chi_{D}\left(p_{j}, \rho_{j}\right)$ and $S_{D}(\rho)$. (Wilde 2016, §18.

The problem of general characterization of an achievable lower bound for the compressed rate of mixed states still remains open. (Wilde 2016, §18.5)
M. Horodecki; "Limits for compression of quantum information carried by ensembles of mixed states"; Physical Review A 57 (1997) 3364-3369.
H. Barnum, C. M. Caves, C. A. Fuchs, R. Jozsa, B. Schumacher; "On quantum coding for ensembles of mixed states"; Journal of Physics A 34 (2001) 6767-6785
M. Koashi, N. Imoto; "Compressibility of quantum mixed-state signals"; Physical Review Letters 87 (2001) 017902,1-4.

But how much of the input information can be retrieved out?
With a quantum system of dim. N in \mathcal{H}_{N}, each classical state x_{j} is coded by a quantum state $\left|\psi_{j}\right\rangle \in \mathcal{H}_{N}$ or $\rho_{j} \in \mathcal{L}\left(\mathcal{H}_{N}\right)$, for $j=1,2, \ldots J$.
A generalized measurement by the POVM with K elements Λ_{k}, for $k=1,2, \ldots K$.
Measurement outcome Y with K possible values y_{k}, for $k=1,2, \ldots K$,
of conditional probabilities $\operatorname{Pr}\left\{Y=y_{k} \mid X=x_{j}\right\}=\operatorname{tr}\left(\rho_{j} \Lambda_{k}\right)$,
and total probabilities $\operatorname{Pr}\left\{Y=y_{k}\right\}=\sum_{j=1}^{J} \operatorname{Pr}\left\{Y=y_{k} \mid X=x_{j}\right\} p_{j}=\operatorname{tr}\left(\rho \Lambda_{k}\right)$,
with $\rho=\sum_{j=1}^{J} p_{j} \rho_{j}$ the average state.
The input-output mutual information $I(X ; Y)=H(Y)-H(Y \mid X) \leq \chi(\rho) \leq H(X)$,
with the Holevo information $\chi(\rho)=S(\rho)-\sum_{j=1}^{J} p_{j} S\left(\rho_{j}\right) \leq \log (N)$,
and von Neumann entropy $S(\rho)=-\operatorname{tr}[\rho \log (\rho)]$.

The accessible information
For a given input ensemble $\left\{\left(p_{j}, \rho_{j}\right)\right\}$:
the accessible information $I_{\text {acc }}(X ; Y)=\max _{\text {POVM }} I(X ; Y) \leq X\left(p_{j}, \rho_{j}\right)$,
is the maximum amount of information about X

which can be retrieved out from Y,

by using the maximally efficient generalized measurement or POVM.

Entropy from a quantum system

For a quantum system of dim. N in \mathcal{H}_{N}, with a state ρ (pure or mixed),
a generalized measurement by the POVM with K elements Λ_{k}, for $k=1,2, \ldots K$.
Measurement outcome Y with K possible values y_{k}, for $k=1,2, \ldots K$,
of probabilities $\operatorname{Pr}\left\{Y=y_{k}\right\}=\operatorname{tr}\left(\rho \Lambda_{k}\right)$.
Shannon output entropy $H(Y)=-\sum_{k=1}^{K} \operatorname{Pr}\left\{Y=y_{k}\right\} \log \left(\operatorname{Pr}\left\{Y=y_{k}\right\}\right)$.

$$
=-\sum_{k=1}^{\substack{k=1 \\ K}} \operatorname{tr}\left(\rho \Lambda_{k}\right) \log \left(\operatorname{tr}\left(\rho \Lambda_{k}\right)\right) .
$$

For any given state ρ (pure or mixed), K-element POVMs can always be found achieving the limit $H(Y) \sim \log (K)$ at large K.

In this respect, with $H(Y) \longrightarrow \infty$ when $K \longrightarrow \infty$,
an infinite quantity of information can be drawn from a quantum system of dim. N,
as soon as $N=2$ with a qubit. as soon as $N=2$ with a qubit

65/102

Compression of a quantum source (1/2)

A quantum source emits states or symbols ρ_{j} with probabilities p_{j}, for $j=1$ to J.
With $\rho=\sum_{j=1}^{J} p_{j} \rho_{j}$, the D-ary quantum entropy is $S_{D}(\rho)=-\operatorname{tr}\left[\rho \log _{D}(\rho)\right]$, and the Holevo information is $\chi_{D}\left(p_{j}, \rho_{j}\right)=S_{D}(\rho)-\sum_{j=1}^{J} p_{j} S_{D}\left(\rho_{j}\right)$.
For lossless coding of the source, the average number of D-dimensional quantum systems required per source symbol is lower bounded by $\chi_{D}\left(p_{j}, \rho_{j}\right)$.

For pure states $\rho_{j}=\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|$, the lower bound $\chi_{D}\left(p_{j}, \rho_{j}\right)=S_{D}(\rho)$ is achievable (by coding successive symbols in blocks of length $L \rightarrow \infty$).
B. Schumacher; "Quantum coding"; Physical Review A 51 (1995) 2738-2747.
R. Jozsa, B. Schumacher; "A new proof of the quantum noiseless coding theorem";

Journal of Modern Optics 41 (1994) 2343-2349.

Quantum noise (2/2)

A general transformation of a quantum state ρ can be expressed by the quantum operation $\rho \longrightarrow \mathcal{N}(\rho)=\sum_{\ell} \Lambda_{\ell} \rho \Lambda_{\ell}^{\dagger}$, with $\sum_{\ell} \Lambda_{\ell}^{\dagger} \Lambda_{\ell}=\mathrm{I}_{N}$, representing a linear completely positive trace-preserving map, mapping a density operator on \mathcal{H}_{N} into a density operator on \mathcal{H}_{N}

For an arbitrary qubit state defined by $\rho=\frac{1}{2}\left(\mathrm{I}_{2}+\vec{r} \vec{\sigma}\right)$ with $\|\vec{r}\| \leq 1$,
this is equivalent to the affine map $\vec{r} \rightarrow A \vec{r}+\vec{c}$,
with A a 3×3 real matrix
and \vec{c} a real vector in \mathbb{R}^{3},
mapping the Bloch ball onto itself.

1
72/102

Quantum noise on the qubit (1/4)

Quantum noise on a qubit in state ρ can be represented by random applications of some of the 4 Pauli operators $\left\{\mathrm{I}_{2}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right\}$ on the qubit, e.g.

Bit-flip noise : flips the qubit state with probability p by applying σ_{x}, or leaves the qubit unchanged with probability $1-p$:

$$
\rho \longrightarrow \mathcal{N}(\rho)=(1-p) \rho+p \sigma_{x} \rho \sigma_{x}^{\dagger}, \quad \vec{r} \longrightarrow A \vec{r}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1-2 p & 0 \\
0 & 0 & 1-2 p
\end{array}\right] \vec{r} .
$$

Phase-flip noise : flips the qubit phase with probability p by applying σ_{z}, or leaves the qubit unchanged with probability $1-p$:
$\rho \longrightarrow \mathcal{N}(\rho)=(1-p) \rho+p \sigma_{z} \rho \sigma_{z}^{\dagger}, \quad \vec{r} \longrightarrow A \vec{r}=\left[\begin{array}{ccc}1-2 p & 0 & 0 \\ 0 & 1-2 p & 0 \\ 0 & 0 & 1\end{array}\right] \vec{r}$.

Quantum noise on the qubit (4/4)

Generalized amplitude damping noise : interaction of the qubit with a thermal bath at
temperature $T: \quad \rho \longrightarrow \mathcal{N}(\rho)=\Lambda_{1} \rho \Lambda_{1}^{\dagger}+\Lambda_{2} \rho \Lambda_{2}^{\dagger}+\Lambda_{3} \rho \Lambda_{3}^{\dagger}+\Lambda_{4} \rho \Lambda_{4}^{\dagger}$,
with $\Lambda_{1}=\sqrt{p}\left[\begin{array}{cc}1 & 0 \\ 0 & \sqrt{1-\gamma}\end{array}\right], \quad \Lambda_{2}=\sqrt{p}\left[\begin{array}{cc}0 & \sqrt{\gamma} \\ 0 & 0\end{array}\right], \quad \quad p, \gamma \in[0,1]$,
$\Lambda_{3}=\sqrt{1-p}\left[\begin{array}{cc}\sqrt{1-\gamma} & 0 \\ 0 & 1\end{array}\right], \quad \Lambda_{4}=\sqrt{1-p}\left[\begin{array}{cc}0 & 0 \\ \sqrt{\gamma} & 0\end{array}\right]$,
$\Rightarrow \vec{r} \rightarrow A \vec{r}+\vec{c}=\left[\begin{array}{ccc}\sqrt{1-\gamma} & 0 & 0 \\ 0 & \sqrt{1-\gamma} & 0 \\ 0 & 0 & 1-\gamma\end{array}\right] \vec{r}+\left[\begin{array}{c}0 \\ 0 \\ (2 p-1) \gamma\end{array}\right]$.
Damping $[0,1] \ni \gamma=1-e^{-t / T_{1}} \rightarrow 1$ as the interaction time $t \rightarrow \infty$ with the bath of the qubit relaxing to equilibrium $\rho_{\infty}=p|0\rangle\langle 0|+(1-p)|1\rangle\langle 1|$, with equilibrium probabilities $p=\exp \left[-E_{0} /\left(k_{B} T\right) / / Z\right.$ and $1-p=\exp \left[-E_{1} /\left(k_{B} T\right)\right] / Z$ with $Z=\exp \left[-E_{0} / /\left(k_{B} T\right)\right]+\exp \left[-E_{1} /\left(k_{B} T\right)\right]$ governed by the Boltzmann distribution between the two energy levels E_{0} of $|0\rangle$ and $E_{1}>E_{0}$ of $|1\rangle$.
$T=0 \Rightarrow p=1 \Rightarrow \rho_{\infty}=|0\rangle\langle 0| . \quad T \rightarrow \infty \Rightarrow p=1 / 2 \Rightarrow \rho_{\infty} \rightarrow(0\rangle\left\langle\langle 0|+\left(|1\rangle\langle 1) / 2=\mathrm{I}_{2} / 2\right.\right.$

Discrimination from noisy qubits

Quantum noise on a qubit in state ρ can be represented by random applications of (one of) the 4 Pauli operators $\left\{\mathrm{I}_{2}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right\}$ on the qubit, e.g.

Bit-flip noise : $\rho \longrightarrow \mathcal{N}(\rho)=(1-p) \rho+p \sigma_{x} \rho \sigma_{x}^{\dagger}$,
Depolarizing noise : $\rho \longrightarrow \mathcal{N}(\rho)=(1-p) \rho+\frac{p}{3}\left(\sigma_{x} \rho \sigma_{x}^{\dagger}+\sigma_{y} \rho \sigma_{y}^{\dagger}+\sigma_{z} \rho \sigma_{z}^{\dagger}\right)$

With a noisy qubit, discrimination from $\mathcal{N}\left(\rho_{0}\right)$ and $\mathcal{N}\left(\rho_{1}\right)$.
\longrightarrow Impact of the probability p of action of the quantum noise, on the performance $P_{\text {suc }}^{\max }$ of the optimal detector,
in relation to stochastic resonance and enhancement by noise.
(Chapeau-Blondeau, Physics Letters A 378 (2014) 2128-2136.)

Quantum noise on the qubit (2/4)

Depolarizing noise : leaves the qubit unchanged with probability $1-p$, or apply any of σ_{x}, σ_{y} or σ_{z} with equal probability $p / 3$:

$$
\rho \longrightarrow \mathcal{N}(\rho)=(1-p) \rho+\frac{p}{3}\left(\sigma_{x} \rho \sigma_{x}^{\dagger}+\sigma_{y} \rho \sigma_{y}^{\dagger}+\sigma_{z} \rho \sigma_{z}^{\dagger}\right),
$$

$$
\vec{r} \longrightarrow A \vec{r}=\left[\begin{array}{ccc}
1-\frac{4}{3} p & 0 & 0 \\
0 & 1-\frac{4}{3} p & 0 \\
0 & 0 & 1-\frac{4}{3} p
\end{array}\right] \vec{r} .
$$

More on quantum noise, noisy qubits

Quantum noise on the qubit (3/4)

Amplitude damping noise : relaxes the excited state $|1\rangle$ to the ground state $|0\rangle$ with probability γ (for instance by losing a photon)

$$
\rho \longrightarrow \mathcal{N}(\rho)=\Lambda_{1} \rho \Lambda_{1}^{\dagger}+\Lambda_{2} \rho \Lambda_{2}^{\dagger},
$$

with $\Lambda_{2}=\left[\begin{array}{cc}0 & \sqrt{\gamma} \\ 0 & 0\end{array}\right]=\sqrt{\gamma}|0\rangle\langle 1| \quad$ taking $|1\rangle$ to $|0\rangle$ with probability γ,
and $\Lambda_{1}=\left[\begin{array}{cc}1 & 0 \\ 0 & \sqrt{1-\gamma}\end{array}\right]=|0\rangle\langle 0|+\sqrt{1-\gamma}|1\rangle\langle 1| \quad$ which leaves $|0\rangle$ unchanged and reduces the probability amplitude of resting in state $|1\rangle$.
$\Longrightarrow \vec{r} \longrightarrow A \vec{r}+\vec{c}=\left[\begin{array}{ccc}\sqrt{1-\gamma} & 0 & 0 \\ 0 & \sqrt{1-\gamma} & 0 \\ 0 & 0 & 1-\gamma\end{array}\right] \vec{r}+\left[\begin{array}{l}0 \\ 0 \\ \gamma\end{array}\right]$.

Quantum state discrimination

A quantum system can be in one of two alternative states ρ_{0} or ρ_{1}
with prior probabilities P_{0} and $P_{1}=1-P_{0}$.
Question : What is the best measurement $\left\{\mathrm{M}_{0}, \mathrm{M}_{1}\right\}$ to decide
with a maximal probability of success $P_{\text {suc }}$?
Answer: One has $P_{\text {suc }}=P_{0} \operatorname{tr}\left(\rho_{0} \mathrm{M}_{0}\right)+P_{1} \operatorname{tr}\left(\rho_{1} \mathrm{M}_{1}\right)=P_{0}+\operatorname{tr}\left(\mathrm{TM}_{1}\right)$,
with the test operator $\mathrm{T}=P_{1} \rho_{1}-P_{0} \rho_{0}$
Then $P_{\text {suc }}$ is maximized by $\mathrm{M}_{1}^{\text {opt }}=\sum_{\lambda_{n}>0}\left|\lambda_{n}\right\rangle\left\langle\lambda_{n}\right|$,
the projector on the eigensubspace of T with positive eigenvalues λ_{n}.
The optimal measurement $\left\{\mathrm{M}_{1}^{\text {opt }}, \mathrm{M}_{0}^{\text {opt }}=\mathrm{I}_{N}-\mathrm{M}_{1}^{\text {opt }}\right\}$
achieves the maximum $P_{\text {suc }}^{\max }=\frac{1}{2}\left(1+\sum_{n=1}^{N}\left|\lambda_{n}\right|\right)$.
(Helstrom 1976)
78/102

Discrimination among $M>2$ quantum states

A quantum system can be in one of M alternative states ρ_{m}, for $m=1$ to M, with prior probabilities P_{m} with $\sum_{m=1}^{M} P_{m}=1$.

Problem : What is the best measurement $\left\{\mathrm{M}_{m}\right\}$ with M outcomes to decide with a maximal probability of success $P_{\text {suc }}$?
\Longrightarrow Maximize $P_{\text {suc }}=\sum_{m=1}^{M} P_{m} \operatorname{tr}\left(\rho_{m} \mathrm{M}_{m}\right)$ according to the M operators M_{m}

$$
\text { subject to } 0 \leq \mathrm{M}_{m} \leq \mathrm{I}_{N} \quad \text { and } \quad \sum_{m=1}^{M} \mathrm{M}_{m}=\mathrm{I}_{N} .
$$

For $M>2$ this problem is only partially solved, in some special cases (Barnett et al., Adv. Opt. Photon. 2009)

Error-free discrimination between $M=2$ states

Two alternative states ρ_{0} or ρ_{1} of \mathcal{H}_{N}, with priors P_{0} and $P_{1}=1-P_{0}$,
are not full-rank in \mathcal{H}_{N}, e.g. $\operatorname{supp}\left(\rho_{0}\right) \subset \mathcal{H}_{N} \Longleftrightarrow\left[\operatorname{supp}\left(\rho_{0}\right)\right]^{\perp} \supset\{\overrightarrow{0}\}$.
If $\mathcal{S}_{0}=\operatorname{supp}\left(\rho_{0}\right) \cap\left[\operatorname{supp}\left(\rho_{1}\right)\right]^{\perp} \neq\{\overrightarrow{0}\}$, error-free discrimination of ρ_{0} is possible. If $\mathcal{S}_{1}=\operatorname{supp}\left(\rho_{1}\right) \cap\left[\operatorname{supp}\left(\rho_{0}\right)\right]^{\perp} \neq\{\overrightarrow{0}\}$, error-free discrimination of ρ_{1} is possible. Necessity to find a three-outcome measurement $\left\{M_{0}, M_{1}, M_{\text {unc }}\right\}$:

Find $0 \leq \mathrm{M}_{0} \leq \mathrm{I}_{N}$ s.t. $\mathrm{M}_{0}=\vec{a}_{0} \Pi_{1}$ "proportional" to Π_{1} projector on $\left[\operatorname{supp}\left(\rho_{1}\right)\right]^{\perp}$, and $0 \leq \mathrm{M}_{1} \leq \mathrm{I}_{N}$ s.t. $\mathrm{M}_{1}=\vec{a}_{1} \Pi_{0}$ "proportional" to Π_{0} projector on $\left[\operatorname{supp}\left(\rho_{0}\right)\right]^{\perp}$. and $M_{0}+M_{1} \leq I_{N} \Longleftrightarrow\left[M_{0}+M_{1}+M_{\text {unc }}=I_{N}\right.$ with $\left.0 \leq M_{\text {unc }} \leq I_{N}\right]$,
maximizing $P_{\text {suc }}=P_{0} \operatorname{tr}\left(\mathrm{M}_{0} \rho_{0}\right)+P_{1} \operatorname{tr}\left(\mathrm{M}_{1} \rho_{1}\right)$

$$
\left(\equiv \min P_{\mathrm{unc}}=1-P_{\text {suc }}\right)
$$

This problem is only partially solved, in some special cases,
(Kleinmann et al., J. Math. Phys. 2010).

Communication over a noisy quantum channel (2/3)

For given $\mathcal{N}(\cdot)$ therefore $\chi_{\text {max }}=\max _{\left\langle p_{j}, p_{j}\right\rangle} \chi\left(\mathcal{N}\left(\rho_{j}\right), p_{j}\right)$
is the overall maximum and achievable rate for error-free communication of classical information over a noisy quantum channel,
or the classical information capacity of the quantum channel,
for product states or successive independent uses of the channel.

Error-free discrimination between $M \geq 2$ states

M alternative states ρ_{m} of \mathcal{H}_{N}, with prior P_{m}, for $m=1, \ldots M$
each ρ_{m} must be with defective rank $<N$.
For all $m=1$ to M, define $\mathcal{S}_{m}=\operatorname{supp}\left(\rho_{m}\right) \cap \overbrace{\left\{\not \bigcap_{\ell \neq m}\left[\operatorname{supp}\left(\rho_{\ell}\right)\right]^{\perp}\right.}$.
For each nontrivial $\mathcal{S}_{m} \neq\{\overrightarrow{0}\}$, then ρ_{m} can go where none other ρ_{ℓ} can go.
\Longrightarrow Error-free discrimination of ρ_{m} is possible,
by M_{m} such that $0 \leq \mathrm{M}_{m} \leq \mathrm{I}_{N}$ and M_{m} "proportional" to the projector on \mathcal{K}_{m}.
To parametrize M_{m}, find an orthonormal basis $\left\{\left|u_{j}^{m}\right\rangle\right\rangle_{j=1}^{\operatorname{dim}\left(\mathcal{K}_{m}\right)}$ of \mathcal{K}_{m},
then $\mathrm{M}_{m}=\sum_{j=1}^{\operatorname{dim}\left(\mathcal{K}_{m}\right)} a_{j}^{m}\left|u_{j}^{m}\right\rangle\left\langle u_{j}^{m}\right|=\vec{a}^{m} \Pi_{m}$, with Π_{m} projector on \mathcal{K}_{m}.
Find the M_{m} (the $\left.\vec{a}^{m}\right)$ with $\sum_{m} \mathrm{M}_{m} \leq \mathrm{I}_{N}$ maximizing $P_{\text {suc }}=\sum_{m} P_{m} \operatorname{tr}\left(\mathrm{M}_{m} \rho_{m}\right)$.
This problem is only partially solved, in some special cases, (Kleinmann, J. Math. Phys. 2010)
83/102

Communication over a noisy quantum channel (1/3)

$\left(X=x_{j}, p_{j}\right) \longrightarrow \rho_{j} \longrightarrow \mathcal{N} \longrightarrow \mathcal{N}\left(\rho_{j}\right)=\rho_{j}^{\prime} \longrightarrow K$-element POVM $\longrightarrow Y=y_{k}$ Rate $I(X ; Y) \leq \chi\left(\rho_{j}^{\prime}, p_{j}\right)=S\left(\rho^{\prime}\right)-\sum_{j=1}^{J} p_{j} S\left(\rho_{j}^{\prime}\right) \quad$ with $\rho^{\prime}=\sum_{j=1}^{J} p_{j} \rho_{j}^{\prime}$.
$\forall\left\{\left(p_{j}, \rho_{j}\right)\right\}$ and $\mathcal{N}(\cdot)$ given, there always exists a POVM to achieve $I(X ; Y)=\chi\left(\rho_{j}^{\prime}, p_{j}\right)$,
i.e. $\chi\left(\rho_{j}^{\prime}, p_{j}\right)$ is an achievable maximum rate for error-free communication, by coding successive classical input symbols X in blocks of length $L \rightarrow \infty$.
B. Schumacher, M. D. Westmoreland; "Sending classical information via noisy quantum channels"; Physical Review A 56 (1997) 131-138
A. S. Holevo; "The capacity of the quantum channel with general signal states";

IEEE Transactions on Information Theory 44 (1998) 269-273.

Infinite-dimensional states (1/5)

A particle moving in one dimension has a state $|\psi\rangle=\int_{-\infty}^{\infty} \psi(x)|x\rangle d x$ in an orthonormal basis $\{|x\rangle\}$ of a continuous infinite-dimensional Hilbert space \mathcal{H}.

The basis states $\{|x\rangle\}$ in \mathcal{H} satisfy $\left\langle x \mid x^{\prime}\right\rangle=\delta\left(x-x^{\prime}\right)$ (orthonormality),

$$
\int_{-\infty}^{\infty}|x\rangle\langle x| d x=\text { I (completeness). }
$$

The coordinate $\mathbb{C} \ni \psi(x)=\langle x \mid \psi\rangle$ is the wave function, satisfying

$$
1=\int_{-\infty}^{\infty}|\psi(x)|^{2} d x=\int_{-\infty}^{\infty} \psi^{*}(x) \psi(x) d x=\int_{-\infty}^{\infty}\langle\psi \mid x\rangle\langle x \mid \psi\rangle d x=\langle\psi \mid \psi\rangle
$$

with $|\psi(x)|^{2}$ the probability density for finding the particle at position x when measuring position operator (observable) $\mathrm{X}=\int_{-\infty}^{\infty} x|x\rangle\langle x| d x$ (diagonal form).

Infinite-dimensional states (4/5)

Particle with arbitrary state $\mathcal{H} \ni|\psi\rangle=\int \underbrace{\psi(\vec{r})}_{\langle\vec{r} \mid \psi\rangle}|\vec{r}\rangle \mathrm{d} \vec{r}=\int \underbrace{\Psi(\vec{p})}_{\langle\vec{p} \mid \psi\rangle}|\vec{p}\rangle \mathrm{d} \vec{p}$,
with $\Psi(\vec{p})=\langle\vec{p} \mid \psi\rangle=\int \psi(\vec{r})\langle\vec{p} \mid \vec{r}\rangle \mathrm{d} \vec{r}=\frac{1}{(2 \pi \hbar)^{3 / 2}} \int \psi(\vec{r}) \exp \left(-i \frac{\vec{p} \vec{r}}{\hbar}\right) \mathrm{d} \vec{r}$,
i.e. the wave function $\Psi(\vec{p})$ in momentum representation is the

Fourier transform of the wave function $\psi(\vec{r})$ in position representation.

Position operator $\overrightarrow{\mathrm{R}}=\int \vec{r}|\vec{r}\rangle\langle\vec{r}| \mathrm{d} \vec{r}$ acting on state $|\psi\rangle$ with wave function $\psi(\vec{r})$ in \vec{r}-representation $\Longrightarrow \overrightarrow{\mathrm{R}}|\psi\rangle$ has wave function $\vec{r} \psi(\vec{r})$ in \vec{r}-representation, since $\overrightarrow{\mathrm{R}}|\psi\rangle=\int \vec{r}|\vec{r}\rangle\langle\vec{r}| \mathrm{d} \vec{r}|\psi\rangle=\int \vec{r}|\vec{r}\rangle \underbrace{\langle\vec{r} \mid \psi\rangle}_{\psi(\vec{r})} \mathrm{d} \vec{r}=\int \underbrace{\vec{r} \psi(\vec{r})}_{\text {wf of } \overrightarrow{\mathrm{R}}|\psi\rangle}|\vec{r}\rangle \mathrm{d} \vec{r}$.

Infinite-dimensional states (5/5)

Momentum operator $\overrightarrow{\mathrm{P}}=\int \vec{p}|\vec{p}\rangle\langle\vec{p}| \mathrm{d} \vec{p}$ (its diagonal form)
acting on state $|\psi\rangle$ with wave function $\Psi(\vec{p})$ in \vec{p}-representation
$\Longrightarrow \overrightarrow{\mathrm{P}}|\psi\rangle$ has wave function $\vec{p} \Psi(\vec{p})$ in \vec{p}-representation,
since $\overrightarrow{\mathrm{P}}|\psi\rangle=\int \vec{p}|\vec{p}\rangle\langle\vec{p}| \mathrm{d} \vec{p}|\psi\rangle=\int \vec{p}|\vec{p}\rangle \underbrace{\langle\vec{p} \mid \psi\rangle}_{\Psi(\vec{p})} \mathrm{d} \vec{p}=\int \underbrace{\vec{p} \Psi(\vec{p})}_{\text {wf of } \overrightarrow{\mathrm{P}}|\psi\rangle}|\vec{p}\rangle \mathrm{d} \vec{p}$.
$\mathrm{FT}^{-1}[\vec{p} \Psi(\vec{p})]=-i \hbar \vec{\nabla} \psi(\vec{r})$ gives wave function(s) of $\overrightarrow{\mathrm{P}}|\psi\rangle$ in \vec{r}-representation.

Canonical commutation relations $\left[\mathrm{R}_{k}, \mathrm{P}_{\ell}\right]=i \hbar \delta_{k \ell} \mathrm{I}, \quad$ for $k, \ell=x, y, z$,
then $\Delta r_{k} \Delta p_{\ell} \geq \frac{\hbar}{2} \delta_{k \ell} \quad$ Heisenberg uncertainty relations.

91/102

System dynamics :

- Schrödinger equation (for isolated systems)
$\frac{d}{d t}|\psi\rangle=-\frac{i}{\hbar} H|\psi\rangle \Longrightarrow\left|\psi\left(t_{2}\right)\right\rangle=\underbrace{\exp \left(-\frac{i}{\hbar} \int_{\left.t_{1}, t_{1}\right)}^{t_{2}} \mathrm{H} d t\right)}_{\text {uniary }}\left|\psi\left(t_{1}\right)\right\rangle\rangle U\left(t_{1}, t_{2}\right)\left|\psi\left(t_{1}\right)\right\rangle$
Hermitian operator Hamiltonian $H=H_{0}+H_{u}\left(\right.$ control part $\left.H_{u}\right)$.
$\frac{d}{d t} \rho=-\frac{i}{\hbar}[\mathrm{H}, \rho] \quad$ (Liouville - von Neumann equa. $) \Longrightarrow \rho\left(t_{2}\right)=\mathrm{U}\left(t_{1}, t_{2}\right) \rho\left(t_{1}\right) \mathrm{U}^{\dagger}\left(t_{1}, t_{2}\right)$.
- Lindblad equation (for open systems
$\frac{d}{d t} \rho=-\frac{i}{\hbar}[\mathrm{H}, \rho]+\sum_{j}\left(2 \mathrm{~L}_{j} \rho \mathrm{~L}_{j}^{\dagger}-\left\{\mathrm{L}_{j}^{\dagger} \mathrm{L}_{j}, \rho\right\}\right)$, Lindblad op. L_{j} for interaction with environment.
Measurement : Arbitrary operators $\left\{\mathrm{E}_{m}\right\}$ such that $\sum_{m} \mathrm{E}_{m}^{\star} \mathrm{E}_{m}=\mathrm{I}_{N}$,
$\operatorname{Pr}\{m\}=\operatorname{tr}\left(\mathrm{E}_{m} \rho \mathrm{E}_{m}^{\dagger}\right)=\operatorname{tr}\left(\rho \mathrm{E}_{m}^{\dagger} \mathrm{E}_{m}\right)=\operatorname{tr}\left(\rho \mathrm{M}_{m}\right)$ with $\mathrm{M}_{m}=\mathrm{E}_{m}^{\dagger} \mathrm{E}_{m}$ positive,
Post-measurement state $\rho_{m}=\frac{\mathrm{E}_{m} \rho \mathrm{E}_{m}^{\dagger}}{\operatorname{tr}\left(\mathrm{E}_{m} \rho \mathrm{E}_{m}^{\dagger}\right)}$

PHYSICAL REVIEW A 91, 052310 (2015)

Optimized probing states for qubit phase estimation with general quantum noise

François Chapeau-Blondeau

 62 avenue Noorre Dame du Lac, 49000 Angers, France
(Received 27 March 2015; published 12 May 2015)
We exploit the theory of quantum estimation to investigate quantum state estimation in the presence of noise. The quantum Fisher information is used to assess the estimation performance. For the qubit in Bloch representation, general expressions are detived for the quantum score and then for the quantum Fisher information.
From this later expression. it is proved that the Fisher information always increases with the purity of the From this latter expression. it is proved that the Fisher information always increases with the purity of the
measured qubit statc. An arbitrary quantum noise affecting the qubit is taken into account for its impact on the Fisher information. The task is then specified to estimating the phase of a qubit in a rotation around an arbitrary axis. equivalent to cstimating the phase of an arbitrary single-qubit quantum gate. The analysis enables
determination of the optimal probing states best resistant to the noise, and proves that they always are pure determination of the optimal probing states best resistant to the noise, and proves that they always are pure
states but need to be specifically matched to the noise. This optimization is worked out for several noise models states but need to be specifically matched to the noise. This optimizaztion is worked out for several hoise modects
important to the qubit. An adaptive scheme and a Bayesian approach are presented to handle phase-dependent imporantint
solutions.
DOI: $10.1103 /$ PhysRevA. $91.052310 \quad$ PACS number(s): 03.67.-a.42.50.Lc. 05.40.-a

Dimensionality expansion in quantum theory

- The most elementary and nontrivial object of quan
$\left.\psi_{1}\right\rangle$ in the 2 -dimensional complex Hibert space \mathcal{H}_{2}.

Such a pure state $\left|\psi_{1}\right\rangle$ of a qubit is thus a 2 -dimensional object (a 2×1 vector).
On such a pure state $\left|\psi_{1}\right\rangle$, any unitary evolution is described by a unitary operator belonging to the 4 -dimensional space $\mathcal{L}\left(\mathcal{H}_{2}\right)$, the space of linear applications or operators on \mathcal{H}_{2}
A unitary evolution of a pure state ψ,) of a qubit is thus a 4 -dimensional object (a 2×2 matrix)

- Accounting for the essential property of decoherence on a qubit, requires it be represented with the extended notion of a density operator ρ_{1}, existing in the 4 -dimensional space $\mathcal{L}\left(\mathcal{H}_{2}\right)$.
Such a mixed state ρ_{1} of a qubit is thus a 4 -dimensional object (a 2×2 matrix).
On such a mixed state ρ_{1} of a qubit, any nonunitary evolution such as decoherence, should be described by an operator belonging to the 16 -dimensional space $\mathcal{L}\left(\mathcal{L}\left(\mathcal{H}_{2}\right)\right)$.
A nonunitary evolution of a mixed state ρ_{1} of a qubit is thus a 16 -dimensional object (a 4×4 matrix).
- The essential property of intrication starts to arise with a qubit pair. A qubit pair in a pure state $\left|\psi_{2}\right\rangle$ exists in the 4-dimensional Hilbert space $\mathcal{H}_{2} \otimes \mathcal{H}_{2}$, while a qubit pair in a mixed state is represented by a density operator ρ_{2} existing in the 16 -dimensional Hilbert space $\mathcal{L}\left(\mathcal{H}_{2} \otimes \mathcal{H}_{2}\right)$.
A mixed state ρ_{2} of a qubit pair is thus a 16 -dimensional object (a 4×4 matrix)
On such a mixed state ρ_{2} of a qubit pair, any nonunitary evolution such as decoherence, should be described by an operator belonging to the 256 -dimensional space $\mathcal{L}\left(\mathcal{L}\left(\mathcal{H}_{2} \otimes \mathcal{H}_{2}\right)\right)$.
A nonunitary evolution of a mixed state ρ_{2} of a qubit pair is thus a 256 -dimensional object (a 16×16 matrix).
$98 / 102$

Quantum feedback contro

PHYSICAL REVIEW A 80, 013 305 (20009)
Quantum feedback by discrete quantum nondemolition measurements:
Towards on-demand generation of phon Towards on-demand generation of photon-number states

Dol: 10.1103Phyyserva.so. 13 3sos
PACS number(s): 42.50.Dv. 02.30. Yy.42.50.Pq
93/102

PHYSICAL REVIEW A 94, 022334 (2016)

Optimizing qubit phase estimation

François Chapeau-Blondeau

Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), Université dAngers,
62 avenue Notre Dame duL Lac, 49000 Angers. France
Received 5 June 2016 : revised manuscript received 2 Augus 2016: publish
(Received 5 June 2016; revised manuscript received 2 August 2016 ; published 24 August 2016)
The theory of quantum state estimation is exploited here to investigate the most efficient strategies for this task.
especially targeting a complete picture identifying optimal conditions in terms of Fisher information, quantum especialy targeting a complete picture identify ying optimal conditions in terms of Fisher information, quantum
measurement, and associated estimator: The approach is specified to estimation of the phase of a qubit in a rotation around an arbitrary given axis, cquivalent to estimating the phase of an arbitrary single-qubit quantun gate, bolh in noise-frec and then in noisy conditions. In noisc-frece conditions, we establish the possibility defining an optimal quantum probe, optimal quantum measurement, and optimal estimator togecther capable e
achieving the ultimate best performance uniformly for any unknown phase. With arbitrary quantum noise, we show that in general the optimal solutions are phase dependent and require adaptive techniques for pracica implementation. However. for the importan case of the depolarizing noise. we again establish the possibility of a quantum probe. quantum measurement. and estimator uniformly optimal for any unknown phase. In this way.
for qubit phase estimation, without and then with guantum noise, we characterize the phase- independent optimal solutions when they generally exist, and also identify the complementary conditions where the optimal solutions are phase dependent and only adaptively implementable
DOI: $10.1103 /$ PhysRevA. 94.022334

Technologies for quantum computer

- Quantum-circuit decomposition approach :
- Photons : with mirrors, beam splitters, phase shifters, polarizers
- Trapped ions : confined by electric fields, qubits stored in stable electronic states, manipulated with lasers. Interact via phonons.
- Light \& atoms in cavity : Cavity quantum electrodynamics (Jaynes-Cummings model).
2012 Nobel Prize of D. Wineland (USA) and S. Haroche (France)
- Nuclear spin : manipulated with radiofrequency electromagnetic waves.
- Superconducting Josephson junctions : in electric circuits and control by electric signals.
(Quantronics Group, CEA Saclay, France.)
- Electron spins : in quantum dots or single-electron transistor, and control by electric signals.
M. Veldhorst et al.; "A two-qubit logic gate in silicon"; Nature 526 (2015) 410-414.

Quantum annealing, adiabatic quantum computation

For finding the global minimum of a given objective function, coded as the ground state of an objective Hamiltonian.
Computation decomposed into a slow continuous transformation of an initial Hamiltonian into a final Hamiltonian, whose ground states contain the solution

Starts from a superposition of all candidate states, as stationary states of a simple controllable initial Hamiltonian.
Probability amplitudes of all candidate states are evolved in parallel, with the time-dependent Schrödinger equation from the Hamiltonian progressively deformed toward the (complicated) objective Hamiltonian to solve.
Quantum tunneling out of local maxima helps the system converge to the ground state solution.
A class of universal Hamiltonians is the lattice of qubits (with Pauli operators X, Z) $\mathrm{H}=\sum_{j} h_{j} \mathrm{Z}_{j}+\sum_{k} g_{k} \mathrm{X}_{k}+\sum_{j, k} J_{j k}\left(\mathrm{Z}_{j} \mathrm{Z}_{k}+\mathrm{X}_{j} \mathrm{X}_{k}\right)+\sum_{j, k} K_{j k} \mathrm{X}_{j} \mathrm{Z}_{k}$
J. D. Biamonte, P. J. Love; "Realizable Hamiltonians for universal adiabatic quantum computers"; Physical Review A 78 (2008) 012352,1-7.

A commercial quantum computer: Canadian D-Wave :

Since 2011 : a 128-qubit processor, with superconducting circuit implementation Based on quantum annealing, to solve optimization problems.
May 2013 : D-Wave 2, with 512 qubits. $\$ 15$-million joint purchase by NASA \& Google. Aug. 2015 : D-Wave 2X with 1000 qubits. Jan. 2017 : D-Wave 2000Q with 2000 qubits. M. W. Johnson, et al.; "Quantum annealing with manufactured spins"; Nature 473 (2011) 194-198. 101/102
Antrece Tak \qquad
Quantum Experiments at Space Scale

