
1/16

Circular arc motion programming – Application on UR3e robot

Jean-Louis Boimond

University of Angers

Keywords: UR3e robot, circular arc segment, Polyscope, G-code file

We aim to understand how circular motions, more precisely, arc segment motions, are performed by

the Tool Center Point (TCP) such a point indicating the situation (i.e., the position and orientation) of

the tool attached to the (free) end of the robot arm. The circular arc is specified through three points

defined in the reference frame, noted 𝑅0, of the robot (frame attached to its base), that is:

- A start point, noted 𝑃𝑡1, (also called initial point) which indicates the position of the TCP (just)

before the realization of the circular arc,

- An auxiliary point, noted 𝑃𝑡2 (also called intermediate point) through which the TCP passes during

the circular arc motion,

- An end point, noted 𝑃𝑡3 (also called destination point) which corresponds to the point reached by

the TCP (just) after the realization of the circular arc.

Arcs are oriented. For example, the arc depicted in the following figure is in the clockwise direction.

Figure 1: An example of circular arc defined by points 𝑃𝑡1, 𝑃𝑡2, 𝑃𝑡3.

Different options are usually proposed by manufacturers of industrial robots concerning the

orientation of TCP during a circular motion; by example, for UR robots:

i) A constant orientation, equal to the one of the start point 𝑃𝑡1 (the orientations of points 𝑃𝑡2, 𝑃𝑡3

are disregarded);

2i) A variable orientation allowing a gradual transition from the orientation of point 𝑃𝑡1 to the one

(different) of point 𝑃𝑡3 (the orientation of point 𝑃𝑡2 is disregarded). Such a movement minimizes

the rotation of the tool, see TP4 Génération de trajectoires rectilignes du Tool Center Point dans

l’espace des tâches for details;

3i) An orientation such that the movement of the longitudinal axis of the tool (i.e., the axis 𝑍 of the

TCP) is established relative to the plane and tangent of the arc, which allows, for example, a

welding operation, see https://www.youtube.com/watch?v=jWhsL74CL9c.

The orientation control defined by option i (resp., 2i) is base-related in the sense that it depends on the

orientation of point 𝑃𝑡1 (resp., points 𝑃𝑡1, 𝑃𝑡3) defined in base frame (𝑅0). The orientation control

http://perso-laris.univ-angers.fr/~boimond/TP%204_Kuka_Generation_trajectoires_TCP_espace_des_taches.pdf
http://perso-laris.univ-angers.fr/~boimond/TP%204_Kuka_Generation_trajectoires_TCP_espace_des_taches.pdf
https://www.youtube.com/watch?v=jWhsL74CL9c

2/16

defined by option 3i is path-related in the sense that it directly depends on the shape of the circular

arc.

Here we are interested in the calculation of points (in 𝑅6: 𝑅3 for the position + 𝑅3 for the orientation),

noted 𝑃, that allow the TCP to move approximatively along a circular arc (defined by points

𝑃𝑡1, 𝑃𝑡2, 𝑃𝑡3) with a TCP orientation defined by the option 3i (described below). More precisely:

- The position of points 𝑃 will be such that they belong to the circular arc with a TCP trajectory

corresponding to the passage in straight line from one point 𝑃 to the next point 𝑃. The number,

noted 𝑁𝑏, of points 𝑃 must be large enough so that the generated motion is judged to be close

enough to the desired circular arc, see the following figure.

Figure 2: Approximation of a circular arc through 8 points 𝑃 linked by straight lines.

- The orientation of points 𝑃 along the circular arc will be such that the frame 𝑋, 𝑌, 𝑍 linked to the

TCP verifies that:

- The axis 𝑋 is directed towards the center of the arc,

- The axis 𝑌 is tangent to the circular arc,

- And so, due to the orthogonality of the frame, the axis 𝑍 is normal to the radius of the circular

arc,

see the following figure:

Figure 3: Circular motion with an orientation built from the shape of the circular arc (option 3i).

✓ Above all let us load in your working directory the zip file Tools_Circular_Arc.zip containing two

MatLab functions (Angles_Euler_convention_ZYX_en_fct_matrice_Cosinus_Dir.m,

Fct_Creation_file_Gcode.m) and a script file (File_Toolpath.script) written in a pseudo Python

executable by UR controllers.

http://perso-laris.univ-angers.fr/~boimond/Tools_Circular_Arc.zip

3/16

Steps to build the circular arc motion applied to the UR3e robot:

A) About the position of points 𝑃

A.1) Computation of the center and radius of the circle defined by the points 𝑃𝑡1, 𝑃𝑡2, 𝑃𝑡3

A.2) Computation of the arc travel direction

A.3) Computation of the position of points 𝑃

B) Computation of the orientation of points 𝑃

C) Programming the motion with Polyscope

C.1) Short description of Polyscope

C.2) Implementation of the Polyscope program

A) About the position of points 𝑃

A.1) Computation of the center and radius of the circle defined by the points 𝑃𝑡1, 𝑃𝑡2, 𝑃𝑡3

Let us consider the particular (simpler) case where the 3 points (of course not aligned) belong to a

same plane 𝑋, 𝑌, i.e., have the same coordinate, noted 𝑍𝑐𝑠𝑡, along the axis 𝑍 of the reference frame

(𝑅0) of the robot. We note:

- 𝑥𝐶 , 𝑦𝐶 the coordinates, noted 𝐶, of the circle center in the plane 𝑋, 𝑌 where the circle is

situated; 𝑅 its radius,

- 𝑥1, 𝑦1 the coordinates of point 𝑃𝑡1 ; 𝑥2, 𝑦2 the ones of point 𝑃𝑡2 ; 𝑥3, 𝑦3 the ones of point 𝑃𝑡3.

➢ Question 1: Calculate, in a literal form, the values of 𝑥𝐶 , 𝑦𝐶 and 𝑅. Test your result on a simple

example.

➢ Realization 2: Code a MatLab script that computes the values 𝑥𝐶 , 𝑦𝐶 , 𝑅 from the coordinates of

points 𝑃𝑡1, 𝑃𝑡2, 𝑃𝑡3. Display in a figure the circle (see instruction viscircles), its center, and the

points 𝑃𝑡1, 𝑃𝑡2, 𝑃𝑡3 (see instructions hold and plot), remark that a representation in 𝑅2 (instead

of 𝑅3) is sufficient due to the same 𝑍 coordinate of points. Verify that a circle defined with the

following coordinates 𝑥, 𝑦 for points 𝑃𝑡1, 𝑃𝑡2, 𝑃𝑡3:

𝑃𝑡1 = (100 − √1500, −40), 𝑃𝑡2 = (100 + √1500, −40), 𝑃𝑡3 = (100 + √1200, −70),

has a center equal to (100, −50) and a radius equal to 40.

➢ Question 3: Which geometric shape should be used to intersect the plane (through which the 3

points pass) to obtain the equation of the circle when the plane is arbitrary (not necessarily

orthogonal to the axis 𝑍)?

A.2) Computation of the arc travel direction

Once the equation of the circle has been obtained, we need to calculate the direction (indicated by

an arrow) of the arc of the circle between points 𝑃𝑡1 and 𝑃𝑡3. This direction depends on the position

of the auxiliary point 𝑃𝑡2 and will determine the portion of the circle to travel, as illustrated in the

following figure.

4/16

Figure 4: The direction of the arc is: counterclockwise in the figure on the left, clockwise

in the figure on the right (note that points Pt1 et Pt3 are the same for both figures).

The direction of the arc to be travelled can be deduced from the sign of the (directed) angle,

denoted 𝜑, between the half-lines 𝑃𝑡1𝑃𝑡2 et 𝑃𝑡1𝑃𝑡3 (note that 𝜑 ≠ 0 due to 𝑃𝑡2 ≠ 𝑃𝑡3): the

direction is counterclockwise when 𝜑 is positive, it is clockwise when 𝜑 is negative, as illustrated in

the following figure.

Figure 5: Counterclockwise direction in the figure on the left,

clockwise direction in the figure on the right.

➢ Question 4: Show that the MatLab instruction:

phi=wrapTo180(atan2d(Pt3(2)-Pt1(2),Pt3(1)-Pt1(1))-atan2d(Pt2(2)-Pt1(2),Pt2(1)-Pt1(1)))

allows the calculation of angle 𝜑 in degree given 𝑥, 𝑦 coordinates of points 𝑃𝑡1, 𝑃𝑡2, 𝑃𝑡3 (contained

in variables Pt1, Pt2, Pt3), the value of 𝜑 being between −180° and 180°.

➢ Realization 5: Complete the script corresponding to 'Realization 2' by inserting the variable phi.

Test the validity of the result through some examples.

A.3) Computation of the position of points 𝑃

As a reminder, 𝑁𝑏 is the number of points 𝑃 (belonging to the circular arc) used to achieve the

trajectory. Be sure to take 𝑁𝑏 ≥ 3 so that you have at least one point in addition to points 𝑃𝑡1, 𝑃𝑡3;

for example, 𝑁𝑏 is equal to 8 for the example considered in Figure 2. Let be 𝑃𝑥(𝑛), 𝑃𝑦(𝑛), 𝑃𝑧(𝑛) the

coordinates of the 𝑛th point, denoted 𝑃(𝑛).

Now we need to calculate the coordinates of the points 𝑃(1), … , 𝑃(𝑁𝑏). The coordinates of start

point (𝑃𝑡1) and end point (𝑃𝑡3) are known, we have:

𝑃𝑥(1) = 𝑃𝑡1(1), 𝑃𝑦(1) = 𝑃𝑡1(2), 𝑃𝑧(1) = 𝑍𝑐𝑠𝑡 ,

𝑃𝑥(𝑁𝑏) = 𝑃𝑡3(1), 𝑃𝑦(𝑁𝑏) = 𝑃𝑡3(2), 𝑃𝑧(𝑁𝑏) = 𝑍𝑐𝑠𝑡 .

5/16

𝑁𝑏 − 2 points remain to be calculated, that is, the points 𝑃(2), … , 𝑃(𝑁𝑏 − 1). The coordinates of

point 𝑃(𝑛), for 2 ≤ 𝑛 ≤ 𝑁𝑏 − 1, are calculated as follows:

𝑃𝑥(𝑛) = 𝑥𝐶 + 𝑅 × cos(𝜑𝑛) ,

𝑃𝑦(𝑛) = 𝑦𝐶 + 𝑅 × sin(𝜑𝑛) ,

𝑃𝑧(𝑛) = 𝑍𝑐𝑠𝑡 ,

where 𝜑𝑛 is the angle between the half-line 𝐶𝑃(𝑛) and that carried by the vector 𝑖, as shown in the

following figure where the point 𝑃(𝑛) is considered with 𝑛 = 3.

Figure 6: Calculation of coordinates of point 𝑃(𝑛), for 2 ≤ 𝑛 ≤ 𝑁𝑏 − 1.

➢ Question 6: Write the MatLab instructions allowing the calculation of angles 𝜑1 and 𝜑𝑁𝑏 (used in

the following to calculate points 𝑃(2), … , 𝑃(𝑁𝑏 − 1)).

Three cases are to be considered to calculate 𝜑𝑛, for 2 ≤ 𝑛 ≤ 𝑁𝑏 − 1, according to the sign of the

angle 𝜑 (which indicates the direction of the arc) and the one of angle, noted 𝜑1,𝑁𝑏, in the interval

[−180°, 180°], that there is between the half-lines 𝐶𝑃(1)(= 𝐶𝑃𝑡1) and 𝐶𝑃(𝑁𝑏)(= 𝐶𝑃𝑡3). Indeed,

we have:

i) 𝜑𝑛 = 𝜑1 + 𝜑1,𝑁𝑏 ×
𝑛−1

𝑁𝑏−1
 when (𝜑 > 0 and 𝜑1,𝑁𝑏 > 0) or when (𝜑 < 0 and 𝜑1,𝑁𝑏 < 0), see

the following figure:

Figure 7: Case when (𝜑 > 0 and 𝜑1,𝑁𝑏 > 0) or (𝜑 < 0 and 𝜑1,𝑁𝑏 < 0).

2i) 𝜑𝑛 = 𝜑1 + (360 + 𝜑1,𝑁𝑏) ×
𝑛−1

𝑁𝑏−1
 (in degree) when 𝜑 > 0 and 𝜑1,𝑁𝑏 < 0, see the following

figure:

6/16

Figure 8: Case when 𝜑 > 0 and 𝜑1,𝑁𝑏 < 0.

3i) 𝜑𝑛 = 𝜑1 + (−360 + 𝜑1,𝑁𝑏) ×
𝑛−1

𝑁𝑏−1
 (in degree) when 𝜑 < 0 and 𝜑1,𝑁𝑏 > 0, see the

following figure:

Figure 9: Case when 𝜑 < 0 and 𝜑1,𝑁𝑏 > 0.

➢ Realization 7: Complete the script corresponding to 'Realization 5’ by constructing three column

vectors, noted P_x, P_y, P_z, containing the coordinates 𝑥, 𝑦, 𝑧 of points 𝑃(1), … , 𝑃(𝑁𝑏) with

𝑍𝑐𝑠𝑡 = 10 (mm) and 𝑁𝑏 = 10.

B) Computation of the orientation of points 𝑃

Like the example shown in Figure 3, the frame (𝑃(𝑛), 𝑥⃗(𝑛), 𝑦⃗(𝑛), 𝑧(𝑛)) defining the orientation of

point 𝑃(𝑛), for 1 ≤ 𝑛 ≤ 𝑁𝑏, is such that:

- 𝑥⃗(𝑛) is oriented towards the center of the circular arc,

- 𝑦⃗(𝑛) is tangent to the trajectory,

- 𝑧(𝑛) is normal to the radius of the circular arc,

as illustrated in the following figure:

7/16

Figure 10: Frame associated with point 𝑃(𝑛).

➢ Question 8: Express the vectors 𝑥⃗(𝑛), 𝑦⃗(𝑛), 𝑧(𝑛) as a function of the coordinates of the points 𝐶

and 𝑃(𝑛); deduce the expression of the corresponding Direction Cosine matrix, noted 𝐴(𝑛).

➢ Realization 9: Complete the script corresponding to 'Realization 7’ by constructing the matrix 𝐴(𝑛)

for each of the points 𝑃(1), … , 𝑃(𝑁𝑏).

In order to create a script for the cobot UR3e, the orientation of frames associated with points

𝑃(1), … , 𝑃(𝑁𝑏) is defined from Euler angles Ψ, 𝜃, 𝜑 according to the convention 𝑍𝑌𝑋.

➢ Realization 10: Complete the script corresponding to 'Realization 9’ by constructing three column-

vectors, noted psi, theta, phi, containing, resp., the values of angles Ψ, 𝜃, 𝜑 for each of the

points 𝑃(1), … , 𝑃(𝑁𝑏). To do this, you can use the function:

‘[psi,theta,phi]=Angles_Euler_convention_ZYX_en_fct_matrice_Cosinus_Dir(A).m’

(contained in the zip file Tools_Circular_Arc.zip) that allows the computation of Euler angles Ψ, 𝜃, 𝜑

(according to the convention 𝑍𝑌𝑋) corresponding to the Direction Cosine matrix A (of dimension

3 × 3) given as an input parameter to the function.

To validate your script, consider that 𝑁𝑏 = 10 and the coordinates 𝑥, 𝑦, 𝑧 of points 𝑃𝑡1, 𝑃𝑡2, 𝑃𝑡3

are:

𝑃𝑡1 = (100 − √1500, −40, 𝑍𝑐𝑠𝑡), 𝑃𝑡2 = (100 + √1500, −40, 𝑍𝑐𝑠𝑡), 𝑃𝑡3 = (100 +

√1200, −70, 𝑍𝑐𝑠𝑡) with 𝑍𝑐𝑠𝑡 = 10 (mm),

which corresponds to a circular arc with a center equal to (100, −50) and a radius equal to 40

(mm), situated in the plane 𝑋𝑌 set at a height of 1 cm from the plane 𝑋0𝑌0. Verify that you obtain:

psi=[-14.4775 -36.2022 -57.9270 -79.6517 -101.3764 -123.1011 -144.8258 -166.5506 171.7247 150.0000]’,

theta = phi = [0 0 0 0 0 0 0 0 0 0]’.

Explain why vectors theta and phi are null.

C) Programming the motion with Polyscope

Before coding a program with Polyscope, we have to power up the robot controller, then to put the

robot in Normal mode (‘mode Normal de fonctionnement’) to allow the arm to move:

1) (Power up the robot controller) The robot controller is powered up by pressing the power button

() located at the top of the Teach Pendant. Wait for the main Polyscope screen, including tabs

(located at the top of the screen): the Run tab to run programs; the Program tab to create/modify

programs; the Installation tab to configure robot and Polyscope settings (including TCP, payload,

http://perso-laris.univ-angers.fr/~boimond/Tools_Circular_Arc.zip

8/16

I/O, security); the Move tab to move (jog) the robot arm, either by moving its joints individually (in

the joint space) or by translating/rotating the TCP (in the operational space), in order to learn points;

the I/O tab to define and scan robot inputs/outputs; the Log tab to display warning/error

information about the robot arm; the Program and Installation Manager referring three icons

allowing the creation (New…), the loading (Open…) or the saving (Save…) of programs; Manual to

indicate that the operational mode of the robot is set to Manual (rather than in Automatic or

Remote Control modes); the Safety Checksum tab to display the active safety configuration,

including maximal joint ranges, position/speed of joints, tool position, I/O ; the Hamburger Menu

() tab for help, settings, and to shutdown the robot controller (once the robot arm is powered

down).

2) (Put the robot in Normal mode) After powering up the robot controller, the robot arm is still powered

off, which is indicated by the red color of the Power off (‘Mise hors tension’) button located in

the footer (bottom left) of the screen. To power up the arm and therefore the robot in Normal mode

(‘mode Normal de fonctionnement’):

- Tap this red button to cause the appearance of an Initialize screen; tap the ON button to put

the robot in Active mode (the arm is under tension but still unable to move due to brakes)

which is indicated by the Idle (‘Veille’) button located in the footer,

- Tap the START (‘DÉMARRER‘) button to release the brake system, therefore the robot is in

Normal mode (‘mode Normal de fonctionnement‘), indicated by the Normal button located

in the footer,

- Tap the Exit button to return to the main screen.

N.B.: The posture corresponding to the arm raised vertically (which corresponds to its resting position)

is said to be singular. This posture can be left by manually moving the arm, to do this: select the Move

tab, then tap the Freedrive (‘Operation‘) button (located at the bottom of the screen). It is then

possible to manually pull the robot arm (in a non-vertical posture) as long as you press the Freedrive –

Press & Hold (‘Fonctionnement libre – Maintenez appuyé’) button.

C.1) Short description of Polyscope

Polyscope uses the touch screen of the Teach Pendant as a graphical user interface. Its functioning

is detailed here in English (version 5.11) or here in French (version 5.0.0). We limit ourselves here

to giving the essential concepts needed to create and run a program like the one you are about to

realize.

For example, let us consider the realization of a movement defined by 2 points, entitled

Waypoint_1, Waypoint_2. The creation of the program enabling such a movement is as follows:

1. Select the New…>Program tab to create a program (initially without name and instruction),

situated in a screen located on the left of the screen, in which instructions can be inserted (note

that the tab selected in the screen positioned on the right side of the screen is Command, rather

than Graphics or Variables).

2. The instructions that can be selected are the (basic) ones listed in the Basic (‘De base‘) menu

(menu selected by default in the banner on the left of the screen). Tap WayPoint (‘Pointpassage‘)

button to add a movement instruction to the program tree, entitled Movej (‘DéplacementA‘), with

an associated point entitled Waypoint_1 (by default), see figure below.

http://perso-laris.univ-angers.fr/~boimond/UR3e_User_Manual_en_Global.pdf
http://perso-laris.univ-angers.fr/~boimond/UR3e_User_Manual_fr_Global.pdf

9/16

Figure 11: Instruction Movej.

This movement instruction, calculated in Joint space, enables rapid arm movement to the

Waypoint_1 point (to be defined).

3. Select this waypoint from the program tree, then in the screen of the Command tab (situated on

the right of the screen), tap Set Waypoint (‘Régler le point de passage‘) button, which displays

the screen of the Move (‘Déplacement‘) tab. Be careful to select from the drop-down menu

Feature (‘Fonction‘) the Base item (rather than View item) to display the coordinates in the robot

base frame (𝑅0), see  in the following figure.

Figure 12: Setting point Waypoint_1.

4. Move the robot arm knowing that several methods are possible:

- By pressing the arrow keys (on the left) in the TCP Position (‘Position PCO’) and TCP Orientation

(‘Orientation PCO’) screens, see  in the previous figure,

- By pulling (manually) the robot arm into desired posture, to do that: tap Freedrive

(‘Fonctionnement‘) button; then press and hold Freedrive – Press & Hold (‘Fonctionnement

libre – Maintenez appuyé’) button, as stated in the previous Nota Bene,

- By selecting in the Tool Position (‘Position de l’outil’) screen, situated at top right of screen (see

 in the previous figure), a coordinate X, Y, Z, RX, RY or RZ, which displays a screen enabling

you to modify its contents, validated with the OK button,

10/16

- By selecting in the Joint Position (‘Position d’articulation’) screen, situated at bottom right of

screen (see  in the previous figure), an arrow linked to one of the six joints of the arm robot.

5. Once the robot arm is in the desired posture, tap OK button (see  in the previous figure) to

finalize the definition of the Waypoint_1 point (a return to the screen displaying the program

follows).

6. Repeat steps 2 to 5 to define the second point, entitled Waypoint_2 (by default). Note that the

arm movement is performed via a single motion instruction (that is, Movej (‘DéplacementA’)),

which is based on two points.

7. After moving away from the robot arm, select Graphics tab to simulate the evolution of the arm

as it (really) moves. Then tap Play (►) button, situated at bottom right of screen; then press Play

from beginning – Robot Program (‘Lecture depuis le début – Programme de robot‘) button. In

the screen that appears, press and hold Move robot to: Waypoint_1 (‘Déplacer le robot à

PointPassage_1‘) button to move the arm - under your control (knowing that it can be in any

position at the start) - to the first point of the trajectory, that is Waypoint_1. You can then execute

(in a loop) the program (performing the movement from point Waypoint_1 to point Waypoint_2)

by tapping Play from: Robot Program (‘Lancer à partir de Programme de robot’) button.

8. Tap Pause () button to pause arm movement or Stop (◼) button to stop it.

N.B.: The toolbar of the program tree, situated at bottom of the screen where the program is listed,

facilitates the construction of the current program, indeed:

- Buttons  and  change the position of a node, previously selected, in the program tree,

- Buttons and are used to cancel/redo command changes,

- Buttons  and are used to cut/copy a program node to be used for other actions via

button Paste ,

- Button deletes a node from the program.

• Saving and loading of a program: You can save the current program by tapping on Save…>Save

Program As… tab which opens a screen entitled Save Program (‘Enregistrer le programme‘).

Enter a file name, then validate it by tapping Save button (the file will have the .urp extension as

a Universal Robots program file). The Open…>Program tab lets you load a file in a similar way as

you save a file.

• Other instructions: There are of course other instructions than Movej, in particular:

- In ‘Basic’ menu: Popup to display a customized message, with program execution stopped until

the user presses OK in the Pop-up dialog box; Halt to stop program execution;

- Standard instructions such as Loop, SubProg, Assignment, If, are available in the 'Advanced'

menu.

• Robot shutdown: The robot is stopped through the following steps:

- (Moving the arm to its vertical position (where all joint values are zero)) Select the Move tab,

then tap Home (‘Départ‘) button. A screen appears in which the robot arm can be moved to its

vertical position as long as you press the Move robot to: New position (‘Déplacer le robot à:

Nouvelle position’) button. The Continue button enables to come back in the screen

corresponding to the Move tab,

11/16

- (Power down the arm) Tap the Normal button, situated at bottom right of screen, to access

a screen where you can tap the OFF button. The Exit button enables to come back to the

initial screen,

- (Robot stop) Select the Hamburger menu () tab and tap the Shutdown Robot () button,

then tap the Power off and Discard changes buttons to stop the robot controller after a few

moments.

C.2) Implementation of the Polyscope program

We are now interested in creating a program allowing the TCP to reach points 𝑃(1), … , 𝑃(𝑁𝑏) by

connecting them with straight lines, like the circular arc shown in Figure 2 and with an orientation

illustrated in Figure 10.

To do this, the MatLab script resulting from 'Realization 10' will transmit the coordinates of the

points 𝑃(1), … , 𝑃(𝑁𝑏) to the Polyscope program (to create) by using a G-code file (understandable

by Universal Robots). The G-code language was originally developed to program numerically-

controlled machine tools by producing (in particular) motion instructions to the controller to enable

the tool (attached to the machine tool) to realize lines, arcs, splines, etc. Today, this language is used

for other types of applications such as 3D printing and robotics.

The G-code file to be used, entitled 'File_Gcode.nc' (nc being the extension of G-code files),

consists of a header (indicating the processing mode of the motion instructions) followed by the

motion instructions in charge of situating the TCP at points 𝑃(1), … , 𝑃(𝑁𝑏) by connecting them

with straight lines.

➢ Realization 11: The file ‘File_Gcode.nc’ is created by incorporating, at the end of the MatLab

script corresponding to 'Realization 10', the function ‘Fct_Creation_file_Gcode.m’ (contained

in zip file Tools_Circular_Arc.zip) with the MatLab variables: Nb,P_x,P_y,P_z,phi,theta,psi

as input parameters of the function.

In the case of a UR robot such as UR3e, the use of a G-code file in a Polyscope program is done via

a 'script' written in a language close to Python; this script, entitled ‘File_Toolpath.script’

(contained in zip file Tools_Circular_Arc.zip), is as follows:

(L1) global Waypoint_1_p=p[0.2,0.1,0.2,0.0,0.0,0.0]

(L2) global Waypoint_1_q=[1.09,-1.33,-2.57,-0.81,1.57,-0.48]

(L3) set_tcp(p[0.0,0.0,0.04,3.14159,0.0,0.0])

(L4) while (True):

(L5) movej(get_inverse_kin(Waypoint_1_p,qnear=Waypoint_1_q),a=1.5,v=1.0)

(L6) sleep(3.0)

(L7) mc_initialize(0,p[0.0,0.0,0.04,3.14159,0.0,0.0],6)

(L8) mc_set_pcs(p[0.3,0.1,0.0,0.0,0.0,0.0])

(L9) id_pa=mc_load_path("/programs/File_Gcode.nc",use_feedrate=False)

(L10) id_1_1=mc_add_path(id_pa,1.0,0.05,0.0)

(L11) mc_run_motion(id_1_1)

(L12) end

where:

- Line L1 defines the point coordinates, entitled Waypoint_1_p, in the operational space as:

𝑋 = 0.2, 𝑌 = 0.1, 𝑍 = 0.2 (in m), 𝑅𝑋 = 0, 𝑅𝑌 = 0, 𝑅𝑍 = 0 (in rd),

the aim of this point is to bring the TCP close to the 𝑋, 𝑌 plane where the circular arc will be

located (more precisely, close to the PCS defined in line L8);

- Line L2 defines a posture in joint space, by using six joint coordinates (in rd), to reach the previous

point. The corresponding point, entitled Waypoint_1_q, is used in line L5 to indicate the

http://perso-laris.univ-angers.fr/~boimond/Tools_Circular_Arc.zip
http://perso-laris.univ-angers.fr/~boimond/Tools_Circular_Arc.zip

12/16

posture to adopt (among eight potentially possible solutions) when the TCP reaches point

Waypoint_1_p through a movement generated in operational space (due to movej);

- Line L3 defines the TCP coordinates 𝑋, 𝑌, 𝑍, 𝑅𝑋, 𝑅𝑌, 𝑅𝑍 with respect to the frame associated with

the robot flange whose 𝑋 axis is represented in red, 𝑌 axis in green, 𝑍 axis (not represented)

being oriented towards the outside of the robot flange. Note that the TCP is positioned at 4 cm

along the 𝑍 axis of the frame associated with the robot flange, which corresponds to the tip of

the pencil, see the following figure:

Figure 13: Position of the TCP origin (𝑂𝑇𝐶𝑃) in the frame associated with the robot flange.

- Lines L4 and L12 form an infinite loop that allows the movement to repeat itself until the operator

decides to stop it;

- Line L6 pauses the movement for 3 seconds to allow time for the operator to pause the

movement to check the situation at the point Waypoint_1_p (this line is useful for answering

Question 14);

- Line L7 initializes a motion sequence by using the mc_initialize function with the following

input parameters:

- the value 0 in the first parameter to indicate that the TCP is attached to the (free) end of the

robot arm,

- in the second parameter, the point defined by the coordinates 𝑋, 𝑌, 𝑍, 𝑅𝑋, 𝑅𝑌, 𝑅𝑍 (in the

operational space) corresponding to the situation of the TCP with respect to the frame

associated with the robot flange,

- the value 6 in the third parameter to indicate that the points described in the following are

defined in 𝑅6, enabling the TCP to be situated (that is, positioned and oriented);

- Line L8 situates the Part Coordinate System (PCS), the latter represents a reference frame defined

as follows:

𝑋 = 0.3, 𝑌 = 0.1, 𝑍 = 0 (in m), 𝑅𝑥 = 0, 𝑅𝑦 = 0, 𝑅𝑧 = 0 (in rd),

with respect to the robot base frame (𝑅0), for the points defined in the G-code file;

- Line L9 enables the loading of the G-code file entitled ‘File_Gcode.nc’, the identifier (id_pa)

returned by the function mc_load_path is used in line L10 (by function mc_add_path) to add

a motion as programmed in the G-code file. The parameter use_feedrate set to False

indicates that the speed and acceleration (if any) indicated in the G-code file are not taken into

account;

- Line L11 causes the execution of the movement via the identifier (id_1_1) (returned by the

function mc_add_path).

13/16

➢ Question 12: Relative to line L3, graphically represent the situation of the TCP frame with respect

to the frame associated with the robot flange. Graphically represent in the robot base frame (𝑅0):

the situation of the frame associated with the point Waypoint_1_p, and the one of the PCS frame.

Explain why the TCP takes the situation, shown in the following figure, when it reaches the point

Waypoint_1_p (reached at the end of the execution of line L5):

Figure 14: TCP situation at point Waypoint_1_p.

➢ Realization 13: Verify that the G-code file (readable via Notepad), generated by your MatLab script

with 𝑁𝑏 = 10, 𝑃𝑡1 = (100 − √1500, −40, 𝑍𝑐𝑠𝑡), 𝑃𝑡2 = (100 + √1500, −40, 𝑍𝑐𝑠𝑡) and 𝑃𝑡3 =

(100 + √1200, −70, 𝑍𝑐𝑠𝑡) with 𝑍𝑐𝑠𝑡 = 10 (mm) (assumptions considered in 'Realization 10'),

corresponds to:

(L1) G90 G21

(L2) (About the coordinates of points:)

(L3) (X, Y, Z [in mm] are defined with respect to PCS frame)

(L4) (A, B, C [in degree] correspond resp. to the angles Phi, Theta, Psi)

(L5) (knowing that the rotation matrix R = Rz[C]*Ry[B]*Rx[A])

(L6) G0 X0 Y0 Z30 A0 B0 C0

(L7) G4 P2 (2 secondes wait)

(L8) G1

(L9) X61.2702 Y-40.0000 Z10.0000 A-0.0000 B-0.0000 C-14.4775

(L10) G4 P2

(L11) X67.7225 Y-26.3745 Z10.0000 A-0.0000 B-0.0000 C-36.2022

(L12) G4 P2

(L13) X78.7600 Y-16.1051 Z10.0000 A-0.0000 B-0.0000 C-57.9270

(L14) G4 P2

(L15) X92.8147 Y-10.6506 Z10.0000 A-0.0000 B-0.0000 C-79.6517

(L16) G4 P2

(L17) X107.8901 Y-10.7859 Z10.0000 A0.0000 B-0.0000 C-101.3764

(L18) G4 P2

(L19) X121.8447 Y-16.4917 Z10.0000 A0.0000 B-0.0000 C-123.1011

(L20) G4 P2

(L21) X132.6962 Y-26.9574 Z10.0000 A0.0000 B-0.0000 C-144.8258

(L22) G4 P2

(L23) X138.9030 Y-40.6965 Z10.0000 A0.0000 B-0.0000 C-166.5506

(L24) G4 P2

(L25) X139.5835 Y-55.7572 Z10.0000 A0.0000 B-0.0000 C171.7247

(L26) G4 P2

(L27) X134.6410 Y-70.0000 Z10.0000 A0.0000 B-0.0000 C150.0000

(L28) G4 P2

(L29) M30

where:

- Line L1 indicates that:

14/16

- the following coordinates are absolute (not incremental) due to instruction G90,

- the units are defined in mm (not inches) due to instruction G21,

- Lines L2-L5 are comments (identifiable by parentheses) relating to movement instructions,

- Lines L6-L28 concern movement instructions. The G0 instruction performs a fast movement

(generated in the joint space), the G1 instruction performs a straight-line movement (generated

in the operational space). The movements are made by:

- positioning the TCP, relative to the reference frame corresponding to the PCS, through its

parameters X, Y, Z (in mm), the corresponding values of the Nb points being contained

in the MatLab variables P_x, P_y, P_z,

- orienting the TCP, relative to the robot base frame (𝑅0), through its parameters A, B, C (in

degrees), the corresponding values of the Nb points being contained in the MatLab variables

phi, theta, psi.

The instruction G4 P2 pauses the movement for 2 seconds to allow time for the operator to

view the situation of the Nb points (used to approach the circular arc),

- Line L29 indicates the end of the G-code program.

➢ Question 14: Graphically represent in the 𝑅0 frame the point reached by the TCP after executing

line L6. What does this point correspond to in relation to the PCS? Check that the G-code file

contains the correct number of points to complete the circular arc.

➢ Realization 15: Now it's time to write and run the Polyscope program enabling the TCP to perform

the approximate movement along the desired arc of a circle.

1) A first step is to load/import the G-code file File_Gcode.nc (generated by your MatLab script)

into the robot controller. To do this:

- Copy the file File_Gcode.nc to the root directory of a USB key, then insert the key into the

USB socket of the cable coming out of the robot controller,

- In order to register this program in the robot controller:

- Select the Open>Program menu,

- In the screen that appears, select usbdisk_0 directory (corresponding to the USB key you

connected) and select All Files from the Filter drop-down menu to view the file

File_Gcode.nc,

- Select this file, then tap Copy () button; select Home () icon to access the directory

of the robot controller where programs (urp, script, nc, ...) are stored, then tap Past

button,

- Tap Cancel button to return to the previous screen;

2) Make sure that the URCaps Remote TCP & Toolpath (which allows the use of G-code files) is in

running status. To do this: select Installation>URCaps>Remote TCP & Toolpath menu; in the screen

that appears, check that the Controller Status is RUNNING: otherwise, tap Start button to start the

controller and wait for the Controller Status to be RUNNING.

15/16

3) The program (to be written in Polyscope) must enable the TCP to approximate the circular arc

through rectilinear movements between points 𝑃(1), … , 𝑃(𝑁𝑏). In fact, it simply consists in using

a script instruction to execute the script File_Toolpath.script (the latter uses the file

File_Gcode.nc to generate the arm movements). To create this Polyscope program, proceed as

follows:

- Copy the file File_Toolpath.script to the root directory of a USB key, then insert the key

into the USB socket of the cable coming out of the robot controller;

- Select the Program>Advanced>Script menu which displays a 'Script' command line to be

configured. To do this, in the Command screen (displayed by default): select from the drop-

down menu, located at the top right, the 'File' item (rather than 'Line' item set by default); tap

Edit button. In the File Editor screen that appears, tap Open button to select the file

File_Toolpath.script situated in the usbdisk_0 directory (corresponding to the USB key

you connected); tap Open button (the contents of the file are displayed on the screen).

In order to save this program in the robot controller, tap Save as button, then select Home

() icon to access the directory of the robot controller where programs (urp, script, nc, ...)

are stored and tap Save button. Tap Exit button to return to the previous screen (Command).

The command line must be as follows:

Script: File_Toolpath.script

the fact that this command line is selected displays the contents of the file;

- Select the Save>Save All menu to save your Polyscope program under the name “TP”, in the

File Name field (remember to tap Save button).

4) Run your Polyscope program (TP.urp) to verify that it works correctly. To do this:

- Select the Program menu, then the Graphics tab (rather than Command tab), which should

display the UR3e robot in its initial configuration (all joint values are at 0 degrees) (which

assumes that the arm is in normal mode (‘mode Normal de fonctionnement’));

- Let us simulate the movement before its execution on the real arm to avoid damaging the arm,

to do this:

- Activate the simulation by shifting the white circle, located at the bottom right of the screen,

from left to right (it follows that the button at the bottom left of the screen changes from

'Normal' to 'Simulation'); tap Play (►) button, located at the bottom right of the screen,

then select 'Play from beginning – Robot Program' to simulate the arm movement.

Remember that buttons Pause () and Stop (◼) enable to control the movement

progression;

- Once the movement has been validated by simulation, disable the simulation (by shifting

the white circle from right to left);

- Move the robot arm close to point Waypoint_1_p with a posture close to that of point

Waypoint_1_q (as shown in the simulation). Execute the movement on the (real) arm by

tapping Play (►) button, located at the bottom right of screen, then by selecting ‘Play from

beginning – Robot Program’ (Pause () and Stop (◼) buttons enable to control the movement

progression).

16/16

➢ Realization 16: Consider the move instruction listed on line L9 of the File_Gcode.nc file (see

Realization 13) which allows the first point used to plot the circular arc (that is, 𝑃𝑡1) to be reached.

We wish to have the 𝑋, 𝑌, 𝑍, 𝑅𝑋, 𝑅𝑌, 𝑅𝑍 coordinates of this point with respect to 𝑅0 frame. To

display these coordinates: tap Play (►) button to execute the movement; tap Pause () (located

at the bottom of the screen) when the TCP reaches point 𝑃𝑡1 (you have 2 seconds to do this due to

instruction G4 P2); and select Move (‘Déplacement‘) tab. Beforehand, remember to:

- Select from the drop-down menu Feature (‘Fonction’) the Base item (rather than View item)

to display the coordinates in 𝑅0 frame,

- Verify that the Active TCP field effectively contains the TCP untitled ‘TCP_jlb’ which defines

the frame associated with the TCP with respect to the frame associated with the robot

flange, that is: 𝑋 = 0, 𝑌 = 0, 𝑍 = 40 (mm), 𝑅𝑋 = 3.1416, 𝑅𝑌 = 0, 𝑅𝑍 = 0 (rd).

Recover the value of 𝑋, 𝑌, 𝑍, 𝑅𝑋, 𝑅𝑌, 𝑅𝑍 by using in particular the values 𝑋, 𝑌, 𝑍, 𝐴, 𝐵, 𝐶 listed in line

L9, that is:

X61.2702 Y-40.0000 Z10.0000 (mm) A-0.0000 B-0.0000 C-14.4775 (°).

